当前位置:文档之家› 一种导航卫星中长期轨道预报方法

一种导航卫星中长期轨道预报方法

一种导航卫星中长期轨道预报方法
一种导航卫星中长期轨道预报方法

全球四大卫星定位系统

全球四大卫星定位系统 一.GPS系统(美国) 二.北斗系统(中国) 三.GLONASS系统(俄罗斯) 四.伽利略卫星导航系统(欧盟) GPS系统(美国) GPS系统是美国从上世纪70年代开始研制,历时20年,耗资近200亿美元,于1994年全面建成的新一代卫星导航与定位系统。GPS利用导航卫星进行测时和测距,具有在海、陆、空全方位实时三维导航与定位能力。它是继阿波罗登月计划、航天飞机后的美国第三大航天工程。如今,GPS已经成为当今世界上最实用,也是应用最广泛的全球精密导航、指挥和调度系统。 GPS系统概述GPS系统由空间部分、地面测控部分和用户设备三部分组成。 (1)空间部分GPS系统的空间部分由空间GPS卫星星座组成。 (2)控制部分控制部分包括地球上所有监测与控制卫星的设施。 (3)用户部分GPS用户部分包括GPS接收机和用户团体。 主要功能: 导航 测量 授时

标准:全球定位系统(GPS)测量规范GB/T 18314-2001 Specifications for global positioning system (GPS) surveys 种类: GPS卫星接收机种类很多,根据型号分为测地型、全站型、定时型、手持型、集成型;根据用途分为车载式、船载式、机载式、星载式、弹载式。 北斗卫星导航系统 中国北斗卫星导航系统(BeiDou Navigation Satellite System, 统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。 段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户 度0.2米/秒,授时精度10纳秒。 系统构成 北斗卫星导航系统空间段由5颗静止轨道卫星和30颗非静止轨 道卫星组成,中国计划2012年左右,“北斗”系统将覆盖亚太地区,

GPS卫星预报星历的解码及卫星预报

GPS 卫星预报星历的解码及卫星预报 郑 ,王解光 (同济大学测量系,上海 200092) 摘要:本文对GPS 卫星播发的预报星历进行了分析,主要讲述GPS 接收机接收到的二进制预报星历 文件的详细格式,将其解码并生成R EN I X 210标准格式文件,利用解码获得的卫星轨道参数来计算GPS 卫星坐标,并进行卫星预报。 关键词:解码;预报星历;标准格式文件;轨道参数 中图分类号:P 22814 文献标识码:B Abstract :T h is paper analyzes the fo recasting ephem eris trans m itted by GPS 2satellites and describes and detailed fo r m at of the binary ephem eris docum ent received by GPS 2receivers .T he docum ent is then decoded into the standard fo r m at in R EN I X 210and the o rbit pa 2ram eters of satellites are obtained .T he calculati on of GPS 2satellites coo rdinates and satellites fo recasting are perfo r m ed w ith these pa 2ram eters . Key words :decoding ;fo recasting ephem eris ;o rbit param eters 1  前言 GPS 卫星播发的导航电文中包含广播星历(卫星星历)和预报星历(卫星历书)。广播星历可用于GPS 实时定位计 算,预报星历则用于在较长的时间周期内对GPS 卫星的位置进行预报。 为了能在GPS 卫星观测之前拟订观测计划,我们需要进行GPS 卫星的预报工作,从而可以比较确切地知道在所观测的地点及所观测的时间段中,GPS 接收机能够接收到的GPS 卫星的情况。要进行卫星预报,就需要将二进制的预报星历文 件解码得到卫星轨道参数,利用轨道参数计算出GPS 卫星的 空间坐标(W GS 84坐标系)。 2 导航电文及其格式 GPS 卫星的导航电文是二进制文件,按一定格式组成数 据帧,按帧向外播送。每一数据帧的长度为1500bit ,播送速度 为50bit s ,所以播送一帧电文的时间需要30秒。 每帧导航电文含有5个子帧,每个子帧分别含有10个字,每个字为30bit ,故每一子帧共含300bit ,其持续播发的时间为6秒(见图1)。 图1 导航电文格式 收稿日期:1999211212;修订日期:1999212227 作者简介:郑 (1977—),男(汉族),浙江嵊州人,同济大 学硕士研究生 3 预报星历的详细格式 所有GPS 卫星预报星历的参数都在导航电文每一数据帧的第4、5子帧中占据第三到第十个字,每个字30bit (其中包括奇偶检验位6bit )。预报星历中的参数如表1所示。 311 子帧5之第1~24页,子帧4之第2~5页及第7~ 10页,提供1~32号卫星的概略星历 卫星的概略星历包括参考时刻Toa 、开普勒轨道参数e 、

全球卫星导航定位技术的原理及应用论文概要.doc

浅析全球卫星导航定位技术原理及应用 一、前言 导航定位的需求,可以说不是历来就有的,在人类早期物质生产活动中以牧猎为主,日出而作,日落而息。当时人们离不开森林和水草,或是随着水草的兴衰而漂泊不定,根本不需要什么明确的定位。但是,随设社会的发展,到了农业时代,在人们开发农田,兴修水利等相应活动中就逐渐产生了测绘定位的需求,可以说在这时,导航定位就在慢慢酝酿之中。等到了工业时代,人类的活动遍及全球,而一些工程比如航海、航空、洲际交通工程,通信工程,矿产资源勘探工程,地球生态及环境变迁的研究,就需要精确地定位。这些需求促使导航定位技术的发展,并把这项技术带到一个前所未有的发展时期,它的手段也从光学机械过渡到光电子精密机械仪器的时代。社会是不断发展的,科技是不断进步的,20世纪末,出现了电子计算器技术、半导体技术、激光技术、航天科学技术,它们的出现,把人类带到了电子信息时代和航天探索时代。当1957年前苏联发射了人类第一颗人造地球卫星,人类跟踪无线电信号中发现了卫星无线电信号的多普勒频移现象,这预示着一种全新的天空定位技术的可行性,由此,人类进入了卫星定位和导航的时代。 二、简介 1:全球卫星导航定位系统(global navigation and positioning satellite system采用极轨道星座和无源定位方式为美国提供全球覆盖的导航及定位系统。简称GPS。其轨道高度约为2×104 km,在6条轨道上运行有24颗卫星,每12 h绕地球一周,能保证地球上任何地点的用户都能至少同时看到4颗卫星。它属于非静止卫星定位系统。移动用户利用导航定位接收机来接收4颗(或4颗以上卫星的导航定位信号,并测量不同信号的到达时间,求出移动用户的三维空间坐标,自动给出经度和纬度显示,从而实现用户的自主定位。也可通过无线传输手段将用户定位信息传送到调度中心,实现对移动用户的调度控制。 GPS向用户广播的导航信号为双频,分别为1 575.42MHz 和1 226.60MHz。采用多种直接序列扩频码的码分多址和伪码测距技术。直接序列扩频码主要有P码

基于STK的卫星轨道预报

《航天器操作与控制试验》综合作业 卫星轨道预报 姓名:王备 学号:38151312 院系:宇航学院

二〇一〇年十一月

一、实验题目:卫星轨道预报 二、实验目的 1.学会STK(Satellite Tool Kit)软件的使用,掌握STK的基本操作; 2.学会使用STK仿真,并实现卫星的轨道预报,重点掌握HPOP高精度轨道预 报和LOP长期轨道预报。 三、实验内容 (一)、HPOP高精度轨道预报 1. 建立两颗卫星HPOP1与HPOP2; 2. 设置HPOP1考虑大气阻力,而HPOP2不考虑,其他参数相同; 3. 用HPOP高精度轨道预报器生成轨道; 4. 动画显示,观察两颗卫星轨道的不同; 5. 生成多种类型的卫星轨道数据; 6. 计算卫星轨道寿命。 (二)、LOP长期轨道预报 1. 建立两颗卫星LOP1与LOP2; 2. 设置LOP1考虑大气阻力,而LOP2不考虑,其他参数相同; 3. 用HPOP高精度轨道预报器生成轨道; 4. 生成多种类型的卫星轨道数据,观察两颗卫星轨道的不同。 四、实验过程描述 (一)、HPOP高精度轨道预报 1.建立新的场景将其命名为BUAA_HPOP。 2.在浏览窗口选中场景,打开Basic Properties 窗口 3.在Time Period栏,输入如下设置: 区域值 Start Time 1 Jan 2010 00:00:00.00 Stop Time 1 Jan 2010 04:00:00.00 Epoch 1 Jan 2010 00:00:00.00

4.选择Animation栏输入如下内容: 区域值 Start Time 1 Jan 2010 00:00:00.00 Stop Time 1 Jan 2010 04:00:00.00 Time Step 60 seconds Refresh Delta Change to High Speed 5.在Units栏输入如下设置: 6.完成后,点击确定,从File菜单中选择Save As…,保存场景为 BUAA_HPOP.sc。 7.在浏览窗口点击Satellite按钮新建一颗卫星,取消轨道向导,命名卫星为 HPOP1。,打开HPOP1卫星的Basic Properties 窗口,在Orbit栏,选择HPOP Propagator。 8.点击Semimajor Axis右侧的下拉菜单,改变为Period。设置为95 min。 9.点击Force Models…按钮,确认HPOP Force Model 窗口中所有参数均被 选用。

全球四大卫星导航系统

全球四大卫星导航系统 美国GPS系统 目前世界使用最多的全球卫星导航定位系统是美国的GPS系统。它是世界上第一个成熟、可供全民使用的全球卫星定位导航系统。该系统由28颗中高轨道卫星组成,其中4颗为备用星,均匀分布在距离地面约20000千米的6个倾斜轨道上。 俄罗斯格洛纳斯系统 格洛纳斯是前苏联国防部于20世纪80年代初开始建设的全球卫星导航系统,从某种意义上来说是冷战的产物。该系统耗资30多亿美元,于1995年投入使用,现在由俄罗斯联邦航天局管理。格洛纳斯是继GPS之后第2个军民两用的全球卫星导航系统。 欧洲伽利略系统 伽利略系统是欧空局与欧盟在1999年合作启动的,该系统民用信号精度最高可达1米。 计划中的伽利略系统由30颗卫星组成。2005年12月28日,首颗实验卫星Glove-A发射成功,第2颗实验卫星Glove-B在2007年4月27日由俄罗斯联盟号运载火箭于哈萨克斯坦的拜科努尔基地发射升空。 中国北斗系统 北斗全球卫星定位导航系统由5颗静止轨道卫星和30颗非静止轨道卫星组成,提供开放服务和授权服务两种模式。根据系统建设总体规划,2020年左右,建成覆盖全球的北斗卫星导航系统。 2011年4月10日,我国成功发射第八颗北斗导航卫星,标志着北斗区域卫星导航系统的基本系统建设完成,我国自主卫星导航系统建设进入新的发展阶段。从当初的“最高机密”,到今日向民用市场推广,北斗计划已经走过了20多年。曾经的主力科学家已经成了白发苍苍的院士,北斗系统的理论创始人也已经故去。4月10日4时47分,我国在西昌卫星发射中心用“长征三号甲”运载火箭,成功将第八颗北斗导航卫星送入太空预定转移轨道。这是一颗倾斜地球同步轨道卫星。这颗卫星将与2010年发射的5颗导航卫星共同组成“3+3”基本系统(即3颗GEO卫星加上3颗IGSO卫星),经一段时间在轨验证和系统联调后,将具备向我国大部分地区提供初始服务条件。今明两年,我国还将陆续发射多颗组网导航卫星,完成北斗区域卫星导航系统建设,满足测绘、渔业、交通运输、气象、电信、水利等行业,以及大众用户的应用需求。 中国卫星导航系统管理办公室负责人冉承其介绍,目前,北斗卫星导航系统正按照“三步走”发展战略稳步推进第一步,2003年建成北斗导航试验系统。系统由三颗地球同步静止轨道卫星和地面系统组成,可为我国及周边地区的中、低动态用户提供定位、短报文通信和授时服务,已应用于水利、渔业、交通、救援等国民经济领域,经济和社会效益显著。第二步,2012年左右,将建成由10余颗卫星组成的北斗区域卫星导航系统,具备覆盖亚太地区的服务能力,采用无源定位体制,具有定位、导航、授时以及短报文通信功能。第三步,2020年左右,建成由30余颗卫星组成,覆盖全球的北斗全球卫星导航系统,系统性能达到同期国际先进水平。 北斗卫星导航系统除了能够提供高精度、高可靠的定位、导航和授时服务,还保留了北斗卫星导航试验系统的短报文通信、差分服务和完好性服务特色,是我国经济社会发展不可或缺的重大空间信息基础设施。

全球卫星导航定位行业分析报告

全球卫星导航定位行业分析报告 一、全球卫星进展概况 卫星导航定位技术指利用全球卫星导航定位系统所提供的位置、速度及时刻信息对各种目标进行定位、导航及监管的一项新兴技术。与传统的导航定位技术相比,由于卫星导航定位技术具有全时空、全天候、连续实时地提供导航、定位和定时的特点,已成为人类活动中普遍采纳的导航定位技术。因此,全球卫星导航定位系统一经问世,在市场需求的牵动下专门快就深入到各国军事、安全、经济领域的方方面面,使航空、航海、测绘、机械操纵等传统产业的工作方式发生了全然的改变,开拓了移动位置服务等全新的信息服务领域,并迅速进展成为一个新兴的产业——卫星导航定位产业。 以美国GPS为代表的卫星导航定位产业差不多成为当今国际公认的八大无线电产业之一。在人类信息社会中,有80%以上的信息与“位置”和“时刻”有关,在卫星导航定位技术出现以后,它能够迅速将位置、时刻信息数字化,进入互联网和各行各业的信息应用系统,被人们所使用。 目前世界上投入正式运行的卫星导航定位系统有美国的GPS 系统、俄罗斯的Glonass系统和我国的北斗卫星导航定位系统。

其中GPS的应用最为广泛,占到全球应用的95%以上。鉴于民用需求的巨大与旺盛,为了摆脱对美国GPS系统的依靠,打破美国对全球卫星导航产业的垄断,欧盟在2002年提出建设Galileo 系统,俄罗斯则打算在2010年全面恢复Glonass系统,我国在2006年对外公布建设我国新一代北斗卫星导航定位系统,卫星导航定位产业步入了一个多系统并存、多技术融合的进展新时期。 我国的卫星导航定位应用是在全球卫星导航定位系统逐步开放、透明的大环境下,通过学习、引进、消化、汲取再创新的方式进展起来的。美国的GPS系统在20世纪80年代建设初期是一个严加保密的纯军事系统。随着全球政治格局和经济一体化的进展,其已从最初的“军用为主、民用为辅”进展到“强军护民、以民养军”的新时期。美国GPS政策的每一次开放调整,都有力地推动了本国及全球卫星导航定位产业的市场进展。随着卫星导航定位在我国应用领域的不断拓展和深入以及自主的北斗卫星导航定位系统的建设,使我国在卫星导航定位系统技术和导航信号处理技术、卫星导航定位芯片技术和板卡、高精度接收机产品等方面取得重大突破,积存了应用经验,卫星导航定位技术与产品已呈现自主创新,集成创新,引进、消化、汲取再创新的多元

卫星轨道报

林火监测业务常用卫星轨道报及其解读 闫厚(国家林业局森林防火预警监测信息中心北京100714) 廖晓宏(北京川页电气科技发展有限公司北京100714) 摘要利用卫星轨道报进行卫星轨道预报是林火监测业务的重要环节。本文介绍了卫星轨道报的种类、相关概念和内容含义,为利用卫星轨道报进一步作好林火监测各项工作奠定基础。 关键词林火监测卫星轨道报 在卫星林火监测业务中,必须对卫星过境时间、扫描区域和卫星运动轨迹进行准确预报,才能确保地面站天线系统的正常运行,为森林火灾处置提供及时准确的监测成果。人造地球卫星在空间环绕地球运行,可用轨道半长轴、偏心率、倾角、升交点赤经、近地点角距和近地点时刻等六个要素描述。记录了这六个轨道参数的文件,称为卫星轨道报,又叫开普勒根数(Keplerian Elements,简称“Keps根数”),是以400年前德国天文学家开普勒命名的。详细了解卫星轨道报格式内容,对于深入了解监测系统构造、确保监测系统稳定运行和提高林火监测技术水平都具有非常重要的意义。 1相关术语 为便于对卫星轨道报的理解,需要对涉及的相关术语进行解释。 人造地球卫星绕地球运行遵循开普勒行星运动三定律。(1)卫星轨道为一椭圆,地球在椭圆的一个焦点上。其长轴的两个端点是卫星离地球最近和最远的点,分别叫做远地点和近地点。(2)人造地球卫星在椭圆轨道上绕地球运行时,其运行速度是变化的,在远地点时最低,在近地点时最高。速度的变化服从面积守恒规律,即卫星的向径(卫星至地球的连线)在相同的时间内扫过的面积相等。(3)人造地球卫星在椭圆轨道上绕地球运行,其运行周期取决于轨道的半长轴(与半长轴的二分之三次方成正比)。由此可知,人造地球卫星在空间的位置可以用半长轴、偏心率、倾角、升交点赤经、近地点角距和近地点时刻等参数来描述。这些特定参数解释如下: 春分点 - 在地球和太阳的相对运动中,如果假定地球不动,则太阳绕地球运行,当太阳从地球的南半球向北半球运行时,穿过地球赤道平面的那一点叫春分点; 升交点 - 人造地球卫星绕地球运行,当它从地球南半球向北半球运行时,穿过地球赤道平面的那一点; 星下点 - 卫星与地球中心连线在地球表面的交点; 历元年 - 轨道报预报的年份; 星下点轨迹- 所有星下点连成的曲线; 近地点时刻 - 即卫星通过近地点的时间; 升交点赤经Ω- 从春分点到地心的连线与从升交点到地心的连线的夹角; 近地点幅角ω- 又称近地点幅角,就是卫星从升交点到地心的连线与从近地点到地心 的连线的夹角; 半长轴–轨道长轴的一半; 偏心率e- 轨道焦距与半长轴之比; 倾角i -在卫星轨道升段时由赤道平面反时针旋转到轨道平面的夹角; 平均近地角 - 若卫星通过近地点的时刻为tp,卫星的平均角速度为 n,则任一时刻的

卫星轨道参数计算

卫星轨道平面的参数方程: 1cos( ) p e r r :卫星与地心的距离 P :半通径(2 (1)p a e 或21p b e ) θ:卫星相对于升交点角 ω:近地点角距 卫星轨道六要素: 长半径a 、偏心率e 、近地点角距ω、真近点角f (或者卫星运动时间t p )、轨道面倾角i 、升交点赤径Ω。

OXYZ─赤道惯性坐标系,X轴指向春分点T ; ON─卫星轨道的节线(即轨道平面与赤道平面的交线),N为升交点; S─卫星的位置; P─卫星轨道的近地点; f─真近点角,卫星位置相对于近地点的角距; ω─近地点幅角,近地点到升交点的角距; i─轨道倾角,卫星通过升交点时,相对于赤道平面的速度方向; Ω─升交点赤经,节线ON与X轴的夹角; e─偏心率矢量,从地心指向近地点,长度等于e; W─轨道平面法线的单位矢量,沿卫星运动方向按右旋定义,它与Z轴的夹角为i; a─半长轴; α,δ─卫星在赤道惯性坐标系的赤经、赤纬。 两个坐标系:地心轨道坐标系、赤道惯性坐标系。 地心轨道坐标系Ox0y0z0:以e e 1为x0轴的单位矢量,以W为z0轴的单位矢量,y0轴的单位矢量可以由x0轴的单位矢量与z0轴的单位矢量确定,它位于轨道平面内。 赤道惯性坐标系:OXYZ,X轴指向春分点。 由地心轨道坐标系到赤道惯性坐标系的转换: 1.先将地心轨道坐标绕W旋转角(-ω),旋转矩阵为R Z(-ω); 2.绕节线ON旋转角(-i),旋转矩阵为R X(-i); 3.最后绕Z轴旋转角(-Ω),旋转矩阵为R Z(-Ω); 经过三次旋转后,地心轨道坐标系和赤道惯性坐标系重合。 在地心轨道坐标系中,卫星的位置坐标是: 0 0 0 cos sin 0 x r f y r f z

卫星轨道和位置

摘要 本文主要在已知水星的远日点和绕日运行的线速度的条件下,通过建立微分方程模型,使用解析法和数值方法求解水星的轨道方程与位置。解析法的求解的过程中,结合了开普勒三大定律,准确的给出了微分方程的精确解,求得水星到太阳的最近距离)(104.601610m r m ?≈,水星绕太阳运行的周期约为88天。数值计算求解水星自远日点运行50天后的位置时,本文分别采用了Simpson 求积法,基于压缩映射的求根方法以及经典的四阶龙格—库塔法,使用matlab 数学软件编程,得到了较为合理的行星运行模型的近似解,三种方法所得结果对应分1 3.791θ=,101 4.76710r ≈?, 2 3.791θ=,102 4.76710r ≈?及 3 3.802θ=,103 4.77910r ≈?。 关键词 行星轨道 微分方程 Simpson 法 四阶龙格—库塔法 matlab 一. 问题重述 水星到太阳的最远距离为110.698210?m ,此时水星绕太阳运行的线速度为43.88610? m /s 。试求 问题一 水星到太阳的最近距离 问题二 水星绕太阳运行的周期 问题三 从远日点开始的第50天(地球天)结束时水星的位置并画出轨道曲线 二. 问题分析 求水星到太阳的最近距离以及水星绕太阳运行的周期等,需要先将水星轨道方程 求出,因此可以根据Newton 第二定律及万有引力定律222i mMG d Z e m r dt θ-=,建立微 分方程模型,将原问题转化为求解带有初值条件的微分方程问题,进而采用解析法或数值方法求解远日点和周期。

三. 模型假设 1.水星运行的轨道是以太阳为一个焦点的椭圆 2.从太阳指向水星的线段在单位时间内扫过的面积相等 3.水星运行周期的平方与其运行轨道椭圆长轴的立方之比为常量 四. 符号系统 1.0v 水星在远日点的线速度 2. M 太阳的质量 3. m 水星的质量 4. o r 水星在远日点的距离 5. T 周期 五. 建立模型与求解 模型一 水星的轨迹方程 设太阳中心所在的位置为复平面的原点O ,在时刻t ,水星位于 ()i Z t re θ= 所表示的点P 。这里(),()r r t t θθ==均为t 的函数,分别表示()Z t 的模和辐角。于是水星的速度为 ()i i i dZ dr d dr d e ire e ir dt dt dt dt dt θθθθθ=+=+,加速度为2222222(())(2)i d Z d r d d dr d e r i r dt dt dt dt dt dt θθθθ?? =-++???? () ,而太阳对行星的引力依万有引力定律,大小为 2mMG r ,方向由行星位置P 指向太阳的中心O,故为 2 i mMG e r θ -,其中301.98910()M kg =?为太阳的质量,m 为水星的质量,11226.67210(/)G N m kg -=??为 万有引力常数。 依Newton 定律,我们得到 222i mMG d Z e m r dt θ-= ,将()代入,然后比较实部 与虚部,就有

全球四大卫星导航系统对比

简单对比全球四大卫星导航系统 2011年12月27日,对于中国的高精度测绘定位领域来说是一个不平凡的日子,中国北斗卫星导航系统(CNSS)正式向中国及周边地区提供连续的导航定位和授时服务,这是世界上第三个投入运行的卫星导航系统。 在此之前,美国的全球定位系统(GPS)和俄罗斯的格洛纳斯卫星导航系统(GLONASS)早在上世纪90年代就已经建成并投入运行。与此同时,欧盟也在打造自己的卫星导航系统——“伽利略”计划。 那么,这四大卫星导航系统之间到底有着怎么样的区别和联系呢?下面,就让我们来逐个分析一下,通过四大卫星导航系统的优劣分析,给大家一个较为明显的概念。 四大卫星导航系统各有优势,详情如下: GPS:成熟 GPS,作为大家最为熟悉的定位导航系统,她最大的特点就是技术方面最为成熟。 美国“全球定位系统”(GPS),是目前世界上应用最广泛、也是技术最成熟的导航定位系统。GPS空间部分目前共有30颗、4种型号的导航卫星。1994年3月,由24颗卫

星组成的导航“星座”部署完毕,标志着GPS正式建成。 中国北斗:互动开放 北斗卫星导航系统是中国正在实施的自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统。北斗卫星导航系统由空间段、地面段和用户段三部分组成。目前市面上定位导航仪器公司如国外的天宝、拓普康,国内的华测导航等都已支持北斗卫星导航定位系统。 欧盟伽利略:精准 伽利略定位系统是欧盟一个正在建造中的卫星定位系统,有“欧洲版GPS”之称。伽利略定位系统总共发射30颗卫星,其中27颗卫星为工作卫星,3颗为候补卫星。该系统除了30颗中高度圆轨道卫星外,还有2个地面控制中心。 俄罗斯格洛纳斯:抗干扰能力强 早在美苏冷战时期,美国和苏联就各项技术特别是空间技术方面争锋相对,在美国GPS技术遍布全国的同时,苏联也没闲着,一直忙于研发自己的全球导航定位系统。俄罗斯的这套格洛纳斯系统便是其不断努力的结果。格洛纳斯由24颗卫星组成,也是由军方负责研制和控制的军民两用导航定

全球四大导航系统

全球四大卫星定位系统 目前,世界上只有少数几个国家能够自主研制生产卫星导航系统。当前全球有四大卫星定位系统,分别是美国的全球卫星导航定位系统GPS、俄罗斯的格罗纳斯GLONASS系统、欧洲在建的"伽利略"系统、和中国的北斗卫星导航系统。 一、美国GPS长期垄断 美国国防部从1973年开始实施的GPS系统,这是世界上第一个全球卫星导航系统,在相当长的一段时间内垄断了全球军用和民用卫星导航市场。GPS全球定位系统计划自1973年至今,先后共发射了41颗卫星,总共耗资190亿美元。GPS原来是专门用于为洲际导弹导航的秘密军事系统,在1991年的海湾战争中首次得到实战应用。随后,在科索沃战争、阿富汗战争和伊拉克战争中大显身手。从克林顿时代起,该系统开始应用在了民用方面。现运行的GPS系统由24颗工作卫星和4颗备用卫星组成。美国利用GPS获得了巨大的经济利益,多年来在出售信号接收设备方面赚取了巨额利润。以1986年为例,当时一台一般精度的GPS定位仪价格5万美元,高精度的则达到10万美元。现在价格虽然有所下降,但也可推算出20年来GPS"收获颇丰"。以GPS为代表的卫星导航定位应用产业,已成为八大无线产业之一。据美国国家公共管理研究院进行的调查评估表明,GPS的全球销售额将以每年38%的速度增长,2005年全球GPS市场已达到310亿美元。长期以来,美国对本国军方提供的是精确定位信号,对其他用户提供的则是加了干扰的低精度信号--也就是说,地球上任何一个目标的准确位置,只有美国人掌握,其他国家只知道个"大概"。在海湾战争时,美国还曾置欧盟各国利益不顾,一度关闭对欧洲GPS服务。 2003年3月20日,伊拉克战争爆发。大批轰炸机、战斗机猛扑向伊拉克首都巴格达,用炸弹准确地将一座建筑彻底摧毁,行动代号:"斩首行动";4月,一架B-1B"枪骑兵"轰炸机临时接到任务,用炸弹摧毁了另一座建筑。他们的目标都是一个人:萨达姆侯赛因,他们所使用的炸弹都是一种:联合攻击炸弹(JDAM),这些炸弹之所以都能够精确的打击目标,是因为他们都是通过卫星定位来实现定位,提供这种定位服务的正是由24颗美国卫星组成的全球定位系统--GPS。 由于GPS技术所具有的全天候、高精度和自动测量的特点,作为先进的测量手段和新的生产力,已经融入了国民经济建设、国防建设和社会发展的各个应用领域。 随着冷战结束和全球经济的蓬勃发展,美国政府宣布,在保证美国国家安全不受威胁的前提下,取消SA政策,GPS民用信号精度在全球范围内得到改善,利用C/A码进行单点定位的精度由100米提高到10米,这将进一步推动GPS技术的应用,提高生产力、作业效率、科学水平以及人们的生活质量,刺激GPS市场的增长。 二、俄罗斯GLONASS(格洛纳斯)系统 "格洛纳斯GLONASS"是俄语中"全球卫星导航系统GLOBAL NAVIGATION SATELLITE SYSTE"的缩写。作用类似于美国的GPS、欧洲的伽利略卫星定位系统。最早开发于苏联时期,后由俄罗斯继续该计划。俄罗斯1993年开始独自建立本国的全球卫星导航系统。1995年俄罗斯耗资30多亿美元,完成了GLONASS导航卫星星座的组网工作。它也由24颗卫星组成,原理和方案都与GPS类似,不过,其24颗卫星分布在3个轨道平面上,这3个轨道平面两两相隔120°,同平面内的卫星之间相隔45°。每颗卫星都在19100千米高、64.8°倾角的轨道上运行,轨道周期为11小时15分钟。地面控制部分全部都在俄罗斯领土境内。俄罗斯自称,多功能的GLONASS系统定位精度可达1米,速度误差仅为15厘米/秒。如果必要,该

全球卫星导航定位技术

全球卫星导航定位技术 摘要:卫星导航定位系统在国民经济建设中占有重要的位置,是国民经济信息化建设的重要组成部分和推进力量,是建设国家信息体系的重要基础设施,是直接关系到国家安全、经济发展的关键性系统技术平台。以GPS为代表的卫星导航定位(GNSS)应用产业已逐步成为一个全球性的高新技术产业。国家对卫星导航定位产业的发展高度重视,“十五”计划发展纲要确定卫星导航定位为国家高技术工程的12个专项之一,国家发改委在2002年实施了卫星导航产业化专项,以北斗卫星导航试验系统和其他卫星定位导航系统的广泛应用为推动力的我国卫星导航定位产业,正进入高速发展的关键时期。本文介绍了全球卫星导航系统的现状以及分析其原理,并分析了全球卫星导航的发展应用。 关键词:卫星导航定位系统;高新技术 Abstract: the satellite navigation and positioning system in the development of national economy, holds the important position, the informationization of the national economy is the important part of the construction and promote the strength, the construction of national information system is the important infrastructure, is directly related to national security, economic development and the key system technology platform. As a representative of the with GPS satellite navigation and positioning (GNSS) application industry has gradually become a global new high technology industry. National satellite navigation and positioning of the development of the industry, more attention of the tenth five-year plan to determine the program for the development of satellite navigation and positioning for the national high technology project of one of the 12 special, the national development and reform commission in 2002, the industrialization of the satellite navigation special to beidou satellite navigation test system and other positioning satellite navigation system for the wide application of driving force of China’s satellite navigation and positioning industry, entering the critical period of development. This paper introduces the present situation of the global satellite navigation system and analyzes the principle, and analyzed the development and the application of the global satellite navigation. Keywords: satellite navigation and positioning system; High and new technology 按照定位导航的方式可分成:卫星定位导航、自主式导航、组合导航以及无源导航。 1、全球卫星导航系统介绍 世界上现有卫星导航系统有美国的GPS、俄罗斯的GLONASS以及欧洲

全球四大卫星定位系统

全球四大卫星导航系统简介 一、美国的GPS 系统: 美国的GPS系统,由24 颗(3 颗为备用卫星) 在轨卫星组成。 的信号有两种GPS码。码,P C/A 米。一般的接收机利用29.3m 到2.93 民用:

C/A 码的误差是码计算 C/A 代中期为了自身的安全考虑,在信号上加入了90 定位。美国在 米左右。在 SA(SelectiveAvailability),令接收机的误差增大,到100 精度应该能在GPS年2000 5 月2 日,SA取

消,所以,咱们现在的米以内。20 码P C/A 0.293 米是码的十分之一。但是2.93 军用:P 码的误差为米到 AS(Anti-Spoofing) 只能美国军方使用,码上加上的干扰信号。P,是在 二、中国的“北斗”卫星导航定位系统:“北斗”卫

星导航定位系统需要发射35 颗卫星,足足要比GPS多出11 颗。按照规划,“北斗”卫星导航定位系统将有 5 颗静止轨道 卫星和30 颗非静止轨道卫星组成,采用“东方红”-3 号卫星平台。30 颗非静止轨道卫 星又细分为27 颗中轨道(MEO)卫星和3 颗倾斜同步(IGSO) 卫星组成,27 颗MEO卫星平均分布在倾

角55 度的三个平面上, 轨道高度21500 公里。“北斗” 卫星导航定位系统将提供开放服务和授权服务。开放服务在服务区免费提供 纳秒,测速精度50 定位,测速和授时服务,定位精度为10 米,授时精度为 为0.2 米/ 秒。授权服务则是军事用途的马甲,将向授权用户提供更安全与更

高精度的定位,测速,授时服务,外加继承自北斗试验系统的通信服务功 能,精度可以达到重点地区水平10 米,高程10 米,其他大部分地区水平20 的水平是差不多的。秒。这和美国GPS 0.2 米/ 米,高程20 米;测速精度优于 另外,“北斗一号”还可以提供用户的双向通讯功能,

卫星星历计算和轨道参数计算编程实习(精)

专业:地图学与地理信息工程(印刷 班级:制本49—2 学号:3272009010 姓名:张连杰 时间:2012/9/21 一、概述 在C++6.0中建立基于单文档的MFC工程,利用简洁的界面方便地由卫星轨道根数计算卫星的实时位置和速度,并可以根据卫星的星历反求出卫星轨道根数。 二、目的 通过卫星编程实习,进一步加深理解和掌握卫星轨道参数的计算和卫星星历的计算方法,提高编程能力和实践能力。 三、功能 1、由卫星位置与速度求取卫星轨道参数; 2、由卫星轨道参数计算卫星星历。 四、编程环境及工具 Windows7环境,VC++6.0语言工具 五、计划与步骤 1.深入理解课本上的星历计算方法和轨道根数的求取方法,为编程实习打下算法基础; 2.学习vc++对话框的设计和编程,解决实习过程中的技术难题;

3.综合分析程序的实现过程,一步步编写代码实现。 六、程序异常处理 1.在进行角度转换时候出现的问题导致结果错误。计算三角函数时候先要把角度转换成弧度进行计算,最后输出结果的时候需要再把弧度转换回角度输出。 2.在计算omiga值得时候的错误。对计算出的omiga值要进行象限的判断,如果不符合条件要加或减一个周期pi(因为是反正弦函数。 七、原创声明 本课程设计报告及相应的软件程序的全部内容均为本人独立完成。其间,只有程序中的中间参量计算值曾与同学共同讨论。特此声明。 八、程序中的关键步骤和代码 1、建立基于单文档的名字为TrackParameter的MFC工程。 2、在资源视图里面增加一个对话框改属性ID为IDD_DIALOG1,在新的对话框IDD_DIALOG1上面添加控件按钮,并建立新的类CsatelliteDlg. 3、在菜单栏里面添加菜单实习一,并添加命令响应函数OnMenuitem32771(,在该函数中编写代码 CsatelliteDlg dlg; dlg.DoModal(; 这样执行时候调出对话框satelliteDlg. 4.在对话框satelliteDlg中的OK按钮的消息响应函数中添加相关赋值和公式计算代码。 5.按照以上步骤设计实习二。

卫星轨道计算-很重要

一.GPS观测量 接收机在观测相位和伪距数据的同时,还将广播星历和预报星历记录下来。接收GPS信号还能获取纳秒级精度的时间基准信号。 由于接收机的型号很多,厂商设计的数据格式各不相同,国际上为了能统一使用不同接收机的数据,设计了一种与接收机无关的RINEX(The Receiver Independent Exchange Format)格式,目前已使用2号版本。下面分别介绍RINEX 2格式的广播星历文件、观测数据文件、和地面气象数据文件。 RINEX 2格式的GPS数据文件的命名规则为: . s s s s d d d f y y t 其中:ssss~以4个字节表示的台站名; ddd~文件中第一组数据观测时间的年积日(例如:1月1日为001,2月2日为032); f~该站该日收到的某类文件的顺序号,0表示只有一个; yy~以两位数表示的年(例如:96表示1996年); t~文件种类: O~观测数据文件; N~广播星历文件; M~地面气象数据文件。 为了便于交流,RINEX 2格式的GPS数据文件均以①无带标;②ASCII码;③每个记录长度为80个字符,块大小为8000;录制在磁带上,磁带上的第一个文件是全部文件的目录。但目前国际上的IGS等组织是通过通讯方式(Internet网),来快速地提取全球GPS长年观测站数据的,并将数据存在大型计算机中,使用着可通过Internet网任意提取。 应注意,在RINEX 2格式的GPS数据中,时间均以GPST计,即与UTC要差一个整数跳秒数。 ⒈广播星历文件 接收机锁定卫星并解出C/A码后,就能取得广播星历,即卫星坐标计算参数,在实时GPS应用中,它是必不可少的,大部分的工程网观测数据的后处理也采用广播星历。RINEX 2格式的广播星历文件如下表2.1.1所示,作为例子,表中给出了PRN9和PRN17两颗卫星的广播星历数据,PRN表示GPS卫星的伪随机编号号码,GPS卫星在有些场合采用美国航空与航天局NASA(National Aeronautics and Space Administration)的编号。 表2.1.1 RINEX 2格式的广播星历文件

计算卫星位置的程序

计算卫星位置 一、C语言程序 #include #include #include #define bGM84 3.986005e14 #define bOMEGAE84 7.2921151467e-5 void main() { long double roota=0.515365263176E+04; //轨道长半轴的平方根(根号a) long double toe=0.720000000000E+04; //观测时刻toe long double m0=-0.290282040486E+00; //参考时刻toe的平近点角 long double e=0.678421219345E-02; //轨道偏心率e long double delta_n=0.451411660250E-08;//卫星的摄动改正数△n long double smallomega=-0.258419417299E+01;//近地点角距ω long double cus=0.912137329578E-05;//纬度幅角正弦调和项改正的振幅(弧度)long double cuc=0.189989805222E-06;//纬度幅角余弦调和项改正的振幅(弧度)long double crs=0.406250000000E+01;//轨道半径的余弦调和项改正的振幅(m)long double crc=0.201875000000E+03;//轨道半径的正弦调和项改正的振幅(m)long double cis=0.949949026108E-07;//轨道倾角的余弦调和项改正的振幅(弧度)long double cic=0.130385160446E-07;//轨道倾角的正弦调和项改正的振幅(弧度)long double idot=-0.253939149013E-09;//轨道倾角变化率I long double i0=0.958512160302E+00; //轨道倾角(弧度) long double bigomega0=-0.137835982556E+01;//升交点赤经 long double earthrate=bOMEGAE84; //地球自转的速率we long double bigomegadot=-0.856928551657e-08; long double t=0.720000000000E+04; //加入卫星钟差改正的归化时间 long double A; long double n0=0,n,tk; long double mk,ek,tak,ik,omegak,phik,uk,rk; long double corr_u,corr_r,corr_i; long double xpk,ypk,xk,yk,zk; int i; printf("输入的数据:\n"); printf("√a=%e \n",roota); printf("toe=%e \n",toe); printf("e=%e \n",e); printf("i0=%e \n",i0); printf("ω=%e \n",smallomega); printf("△n=%e \n",delta_n); printf("Ω0=%e \n",bigomega0); printf("I=%e \n",idot); printf("Cuc=%e \n",cuc);

相关主题
文本预览
相关文档 最新文档