当前位置:文档之家› 裂缝宽度与拉应变的关系

裂缝宽度与拉应变的关系

裂缝宽度与拉应变的关系
裂缝宽度与拉应变的关系

混凝土裂缝宽度与拉应变的关系研究

1.引言

混凝土是由水泥、砂(细骨料)、石(粗骨料)组成的材料。由于混凝土本身的抗拉强度很小,易于开裂,所以实际工程中,多数混凝土结构都是带缝工作的。钢筋混凝土构件产生裂缝的原因有多种,主要有是荷载作用,钢筋混凝土构件在静荷载或动荷载作用下,当主拉应力超过混凝土抗拉强度时引起混凝土开裂,这种裂缝沿主拉应力方向增宽,扩展方向通常与主拉应力方向正交。除载荷作用外,结构的不均匀沉降、收缩、温度变化,以及在混凝土凝结、硬化阶段等都会引起拉应力,从而产生裂缝。

结构中主拉应力达到混凝土(当时)的抗拉强度时,并不立即产生裂缝,而是当拉应变达到极限拉应变εtu时才出现裂缝。硬化后的混凝土极限拉应变εtu约为150×10?6,即10m场的构件,产生1.5mm的很小拉变形即会产生裂缝。由于混凝土材料的不均匀性,裂缝首先在强度很小的位置发生。裂缝发生前瞬间的应变分布会产生应变集中。不同龄期的混凝土,其裂缝断面状况有较大差别。龄期很短的混凝土,裂缝断面较为光滑,两裂缝不能完全闭合;而充分硬化后的混凝土,裂缝断面则呈不规则较为锋锐状态,两断面可以闭合。

裂缝对结构的危害性表现在如下几个方面:首先是影响建筑物的美观。一些可见裂缝虽然不影响结构的安全和使用性能,但对建筑的美观产生负面影响;其次,裂缝宽度较大时对结构安全性、适用性产生影响。裂缝的出现对结构承载力有一定的消弱,如果结构处于海洋、高温高湿等侵蚀性环境中,裂缝的出现还会使氯离子等侵蚀性介质更容易进入到钢筋表面,引发和加速钢筋腐蚀,从而减少结构的使用寿命,因此必须控制裂缝宽度。

2.裂缝宽度计算理论

前面已经论述,结构中主拉应力达到混凝土(当时)的抗拉强度时,并不立即产生裂缝,而是当拉应变达到极限拉应变εtu时才出现裂缝,所有裂缝及其宽度与拉应变之间存在着对应关系。对于裂缝问题,尽管自20世纪30年代以来各国

学者做了大量的研究工作,提出了多种计算理论,但至今对于裂缝宽度的计算理论并未取得一致的看法。这些不同观点反映在各国关于裂缝宽度的计算公式有较大差别。但我们可以从这些不同的观点中理解和体会影响裂缝宽度的各种因素,为我们有效地控制构件的裂缝宽度提供理论基础。

从目前的裂缝计算模式上看,计算理论大致可以分为四类:第一类是经典的粘结—滑移理论;第二类是无滑移理论;第三类是一般裂缝理论;第四类是试验统计模式。目前我国《混凝土结构设计规范》(GB50010)采用的是以一般裂缝理论为指导,结合大量试验结果而形成的裂缝计算公式。而《公路钢筋混凝土与预应力混凝土桥涵设计规范》(JTJ023)结合影响裂缝宽度的各主要因素分析,采用的是以试验统计得到的计算公式。

(1)粘结—滑移理论

粘结—滑移理论是由R. Saligar于1936年根据钢筋混凝土拉杆试验提出的,一种最早的裂缝理论,直至60年代中期这个理论还一直被广泛的接受应用。这一理论认为,裂缝的开展是由于钢筋与混凝土之间不再保持变形协调,出现相对滑移而产生的。因此裂缝宽度等于裂缝间距范围内钢筋和混凝土的变形差。而裂缝的间距取决于钢筋与混凝土间粘结应力的大小与分布。粘结应力越大,混凝土拉应力沿构件纵向从零增大到其极限抗拉强度所需的粘结传递长度会越短,裂缝的间距也就越短,裂缝宽度越小,此时裂缝“密而多”;反之,裂缝“疏而稀”,裂缝宽度越大。由粘结—滑移理论得到的两个基本公式如下:

l m=K d

(1)

ρte

w m=(εs?εc)l m(2) 式中,l m为平均裂缝间距;w m为平均裂缝宽度;d为纵向受拉钢筋直径;ρte为按有效受拉混凝土面积计算的配筋率;εs、εc分别为平均裂缝间距内钢筋和混凝土的平均拉应变。从以上两个公式可以看出,决定裂缝宽度主要有两个因素,一个?,另一个是钢筋的拉应变水平。

是dρte

(2)无滑移理论

粘结-滑移理论有一个基本假设,即构件开裂、混凝土回缩后,裂缝截面仍保持为平面。但试验量测表明,裂缝出现后混凝土将产生沿横截面不均匀的回缩变形,钢筋处的裂缝宽度比构件表面的裂缝宽度要小得多,距离钢筋表面越大,裂缝宽度也越大。这一变形分布说明,由于钢筋对混凝土变形的约束作用(该约束作用

的范围称作钢筋有效约束区),混凝土在横截面上存在着局部应变梯度,该应变梯度的大小,控制着构件表面的裂缝宽度。而且,在使用阶段的工作应力下,由于近钢筋处横向内裂缝的出现,变形钢筋与混凝土在接触面处的相对滑移很小,可以忽略不计。从这些试验现象出发,Broms 和Base 在20世纪60年代提出了无滑移理论。

无滑移理论认为,构件表面裂缝宽度主要是由钢筋周围的混凝土回缩形成的,其决定性因素是构件表面到最近钢筋的距离,它包括混凝土保护层厚度和钢筋间的距离两个变量。一般认为,对于保护层厚度在15mm 至80mm 的梁,用这一理论的计算结果与试验对比,吻合良好。给出的最大裂缝宽度计算公式为:

s 2max s 1E h w K c h σ=??

(3) 式中:c 为保护层厚度;K 为钢筋品种系数;h 1为受拉钢筋重心到截面中和轴之间的距离;h 2为最外边缘受拉纤维到截面中和轴之间的距离。

(3) 一般裂缝理论

从裂缝机理来看,无滑移理论考虑了应变梯度的影响,采用在裂缝的局部范围内,变形不再保持平面的假定,无疑比粘结滑移理论更为合理了。但假定钢筋处完全没有滑移,把保护层厚度作为唯一的变量,显然是过于简单化了。一种合乎逻辑的发展是将粘结-滑移理论与无滑移理论结合起来。从平均裂缝间距的计算公式来看,粘结-滑移理论的计算公式(1)表明,当纵向配筋率很大,d ρte ?趋于零时,公式计算的平均裂缝间距亦趋近于零,这与试验结果是不相符的。这是因为,粘结-滑移理论认为在即将出现裂缝截面处,受拉区混凝土的拉应力是均匀的。而实际上,无滑移理论表明,受拉区混凝土受到周围钢筋的约束作用以及内裂缝的影响,其拉应力分布并不均匀,也就是说,裂缝间距与混凝土保护层厚度c 亦有一定的关系。因此,合理的平均裂缝间距公式应综合考虑两者的影响。这就是所谓的一般裂缝理论,又称为综合裂缝理论,即:

cr m

cr 312w c h x αεα=-??+ ?-?? (4)

式中, αcr 为钢筋表面到裂缝宽度计算点的距离;?为构件截面高度; εm 为相邻裂缝间钢筋的平均应变;x 为截面的受压区高度。

(4) 断裂力学理论

Bazant 和Oh 于1983年采用断裂力学的能量判据和强度判据对钢筋的裂缝间距和裂缝宽度进行了理论研究,建立了最大裂缝宽度计算公式:

()()1,max

4.5

312s 3159 2.880.0002t w φφεφφ=+++ (5)

式中:?1为保护层厚度与中性轴至受拉面距离的比值;?2为钢筋周围平均有效混凝土面积与钢筋锚筋的比值;?3为中性轴到受拉面与中性轴到钢筋距离的比值。

(5) 数理统计理论

以上的讨论表明,不同的裂缝理论认为影响裂缝宽度和间距的主要因素并不相同,各种理论之间的差异是如此之大,似乎难以理解。实际上,由于裂缝出现后,钢筋与混凝土相互作用区域发生的变形及应力状态是极其复杂的。而且,裂缝是一种半随机现象,即使同样的试件,在完全相同的条件下,裂缝间距和裂缝宽度也会在很大范围内变化。简单地选取一两个变量作为其主要影响因素,从而得到裂缝宽度的计算公式,显然不能适用于大多数情况。尽管以上介绍的三种裂缝计算理论都有一定的理论根据,而且都分别有试验在不同程度上表明了各自理论的正确性。但与广泛的试验相对照,这些计算理论的符合程度都还很难令人满意。鉴于影响裂缝因素的复杂性,其机理也还未十分清楚,有些学者干脆不作机理上的探求而在广为收集试验数据的基础上,回归分析各种参数对裂缝的影响程度,从中选择最主导的若干因素建立统计公式。其中最具代表性的是美国学者Gergely 和Lutz 的工作。他们对六组由不同研究者所进行的612个底面裂缝宽度和355个侧面裂缝宽度的实测数据进行了统计分析。在统计中,他们对各种参数及其不同的组合方式进行了回归统计。结果表明,对于裂缝宽度影响最重要的因素是钢筋的应力和保护层厚度。他们的研究结果最终被美国混凝土协会所采用。他们建立的考虑有关影响因素的最大裂缝宽度计算公式为:

)3max s 510w f =-? (6) 3. 小结

结构中当拉应变达到极限拉应变εtu 时才出现裂缝,所有裂缝及其宽度与拉应变之间存在着对应关系。目前普遍公认的影响裂缝宽度和间距的主要因素大致包括:钢筋的混凝土保持层厚度、纵向受拉钢筋的工作应力、钢筋直径、纵向受

拉钢筋的配筋率、钢筋的布置型式、钢筋外形、构件的受力性质,以及长期荷载的影响等。

参考文献

[1] 王铁梦. 工程结构裂缝控制[M]. 北京:中国建筑工业出版社,1997.

[2] 赵国藩,李树瑶,廖婉卿等. 钢筋混凝土结构的裂缝控制[M]. 北京:海洋出版社,1985.

[3] 张岚. 正常使用极限状态下考虑二阶效应问题裂缝宽度计算方法研究[D] . 重庆大学硕

士学位论文,2014.

[4] 徐世烺,刘建强,张秀芳. 水工有压隧洞衬砌双K断裂理论分析及裂缝宽度计算[J]. 土

木工程学报,2010,43(1):114-124.

[5] 燕伟. 钢筋混凝土梁裂缝宽度的影响因素分析[D]. 重庆交通大学硕士学位论文,2010.

现浇混凝土板开裂宽度要求规范要求值

现浇混凝土板开裂宽度规范要求值 一、裂缝的形态与发生部位 裂缝形态呈上宽下窄形式,或肉眼只观察到上部裂缝,下部没有缝,但浇水试验,渗水轨迹清晰。裂缝呈现一定的规律性,即大开间多、小开间少;南向房间多、北向房间少;底层多、上层逐渐减少;进深方向多、开间方向少;条形楼中间单元多,边单元少。 裂缝深度多为贯通裂缝和纵深裂缝,少部分为表面裂缝和浅层裂缝。裂缝宽度在0.1毫米~0.5毫米居多,个别的大于0.5毫米,或只有0.05毫米。 裂缝主要发生部位有:现浇楼板跨中,沿进深通长方向;沿负弯矩筋边缘,进深方向;模板四角45度折角处;沿电线管预埋方向;施工缝处。 二、裂缝的成因分析 裂缝具有较明显的规律性和普遍性,是目前在

工程结构领域中一个相当普遍的问题。大量的调查与实测研究证明,90%以上的裂缝是由变形作用引起的,在变形作用中,主要是温度变形和收缩变形引起的。由于这两种变形受到约束超过混凝土的抗拉强度,导致裂缝产生。 1.温度应力产生的温度裂缝。水泥水化过程中产生大量的热量,每克水泥约放出50.2卡的热量,从而使混凝土内部温度升高,在浇筑温度的基础上通长升高35℃,如果使施工规范规定的最高浇筑温度28℃,则可使混凝土内部温度达到60℃多度,因为混凝土内部与表面的散热条件不同,所以中心温度高,形成温度梯度,造成温度应力。当这种温度应力超过混凝土的内外约束力(包括混凝土抗拉强度)时,就会产生裂缝。一般认为,混凝土的内外温差超过25℃,极易产生温度裂缝,这种裂缝出现在混凝土浇筑后的3~5天,初期出现的裂缝很细,随着时间的发展而继续扩大,甚至达到贯穿的情况。 2.塑性收缩裂缝。造成混凝土塑性收缩裂缝的

钢筋混凝土构件的变形和裂缝宽度验算

8钢筋混凝土构件的变形和裂缝宽度验算 一、选择题 1.进行变形和裂缝宽度验算时() A.荷载用设计值,材料强度用标准值 B.荷载和标准值,材料强度设计值 C.荷载和材料强度均用设计值 D.荷载和材料强度用标准值 2.钢筋混凝土受弯构件的刚度随受荷时间的延续而() A.增大 B.不变 C.减小 D.与具体情况有关 3.提高受弯构件的刚度(减小挠度)最有效的措施是() A.提高混凝土强度等级 B.增加受拉钢筋截面面积 C.加大截面的有效高度 D.加大截面宽度 4.为防止钢筋混凝土构件裂缝开展宽度过大,可() A.使用高强度钢筋 B.使用大直径钢筋 C.增大钢筋用量 D.减少钢筋用量 5.一般情况下,钢筋混凝土受弯构件是() A.不带裂缝工作的 B.带裂缝工作的 C.带裂缝工作的,但裂缝宽度应受到限制 D.带裂缝工作的,裂缝宽度不受到限制 6.为减小混凝土构件的裂缝宽度,当配筋率为一定时,宜采用() A.大直径钢筋 B.变形钢筋 C.光面钢筋 D.小直径变形钢筋 7.当其它条件相同的情况下,钢筋的保护层厚度与平均裂缝宽度的关系是( ) A.保护层愈厚,裂缝宽度愈大 B.保护层愈厚,裂缝宽度愈小 C.保护层厚度与裂缝宽度无关 D.保护层厚度与裂缝宽度关系不确定 8.计算钢筋混凝土构件的挠度时需将裂缝截面钢筋应变值乘以不均匀系数 ,这是因为()。 A.钢筋强度尚未充分发挥 B.混凝土不是弹性材料 C.两裂缝见混凝土还承受一定拉力 D.钢筋应力与应力不成正比

9.下列表达()为错误。 A.验算的裂缝宽度是指钢筋水平处构件侧表面的裂缝宽度 B.受拉钢筋混凝土应变不均匀系数ψ愈大,表明混凝土参加工作程度愈小 C.钢筋混凝土梁采用高等级混凝土时,承受力提高有限,对裂缝宽度和刚度的影响也很有限 D.钢筋混凝土等截面受弯构件,其截面刚度不随荷载变化,但沿构件长度变化 二、判断题 1.一般来说,裂缝间距越小,其裂缝开展宽度越大。 2.在正常使用情况下,钢筋混凝土梁的受拉钢筋应力越大,裂缝开展宽度也越大。 3.在其它条件不变的情况下,采用直径较小的钢筋可使构件的裂缝开展宽度减小。 4.裂缝间纵向受拉钢筋的应变不均匀系数ψ接近与1时,说明受拉混凝土将完全脱离工作。 5.在钢筋混凝土结构中,提高构件抗裂度的有效办法是增加受拉钢筋用量。 6.无论是受拉构件还是受弯构件,在裂缝出现前后,裂缝处的钢筋应力会发生突变。 7.钢筋混凝土梁抗裂弯矩的大小主要与受拉钢筋配筋率的大小有关。 8.当梁的受压区配有受压钢筋时,可以减小梁在长期荷载作用下的挠度。 9.超过正常使用极限状态所产生的后果较之超过承载力极限状态的后果要严重的多。 三、填空题 1.钢筋混凝土受弯构件的裂缝宽度和挠度是以的应力状态为计算依据的。 2.受弯构件的挠度,在长期荷载作用下将会时间而。着主要是由于影响造成的。 3.裂缝间受拉钢筋应变不均匀系数ψ越大,受弯构件的抗弯刚度越,而混凝土参与受拉工作的程度越。 4.钢筋混凝土梁截面抗弯刚度随弯矩增大而。 5.弹性匀质材料的M-φ关系,当梁的材料和截面尺寸确定后,截面弯抗刚度EI 是,钢筋混凝土梁,开裂后梁的M-φ关系是,其刚度不是,而是随弯矩而变化的值。M小B ,M大B 。 6.减小裂缝宽度最有效的措施是。 7.变形和裂缝宽度控制属于极限状态。应在构件的得到保证的前提下,再验算构件的变形或裂缝宽度。验算时荷载采用,材料强度采用。 8.平均裂缝宽度位置取。

04第四章裂缝宽度计算

第四章 裂缝宽度计算 裂缝宽度计算也是钢筋混凝土构件正常使用极限状态验算的一部分。因为是正常使用状态的验算,所以输入的内力值是标准值,即不考虑荷载分项系数计算出的内力值。 裂缝宽度计算公式为 )07.030(max te s s d c E ρσαω++= 公式符号说明: α——构件受力特征和荷载长期作用的综合影响系数,程序根据受力特征,自动赋值。 c ——最外排纵向受拉钢筋外边缘至受拉区底边的距离。 d ——受拉钢筋直径。 te ρ——纵向受拉钢筋的有效配筋率。 σs ——按荷载标准值计算的构件纵向受拉钢筋应力。 已设计完成的裂缝宽度计算程序包括:轴心受拉裂缝宽度计算、受弯裂缝宽度计算、大偏心受压裂缝宽度计算、偏心受拉裂缝宽度计算等。下面分节介绍。

第一节 轴心受拉裂缝宽度计算 一、 采用公式 该程序可计算矩形截面轴心受拉构件的裂缝宽度,纵向受拉钢筋的应力σs ,采用以下公式: s s A N σ 其中: N ——轴向拉力标准值; s A ——受拉钢筋截面积。 二、 操作方法 图 4-1 矩形截面轴心受拉裂缝宽度计算对话框 使用时,用户点“轴心受拉裂缝宽度计算”菜单项,弹出如图4-1所示

的对话框。在该对话框中,输入项目名称、拉力标准值、混凝土构件截面尺寸值等信息,设定钢筋的级别(则钢筋的弹性模量会自动变化),点取“裂缝宽度计算” 按钮,程序会立即计算出裂缝宽度值,如果用户点“保存文件”按钮,程序就会把已知条件和计算结果保存成一个文件,用户点“退出”按钮,程序退出当前的计算。 第二节 受弯构件裂缝宽度计算 一、 采用公式 该程序可计算矩形截面受弯构件的裂缝宽度,纵向受拉钢筋的应力σs ,采用以下公式: s s A h M 087.0 σ 其中: M ——按荷载标准值计算的弯距标准值; s A ——受拉钢筋截面积。 0h ——截面有效高度。 二、 操作方法

裂缝宽度验算及减小裂缝宽度的主要措施

8.2.5 裂缝宽度验算及减小裂缝宽度的主要措施 对裂缝宽度的限制,应从保证结构耐久性,钢筋不被锈蚀及过宽的裂缝影响结构外观,引起人们心理上的不安两个因素来考虑。 《混凝土结构设计规范》(GB50010)规定,钢筋混凝土构件在荷载的标准组合下,并考虑长期作用影响的最大裂缝宽度,应符合下式规定: (8-20) 式中w max——按荷载的标准组合并考虑长期作用影响计算的构件最大裂缝宽度,按式; w lim——裂缝宽度限值,根据构件所处的环境类别(表8-1)不同,裂缝宽度限值取表8-2中的值。 表8-1 混凝土结构的使用环境类别 表8-2 混凝土结构构件的最大裂缝宽度限值w lim (mm)

《公路钢筋混凝土和预应力混凝土桥涵设计规范》(JTJ023)规定,钢筋混凝土构件在正常使用极限状态下的裂缝宽度,应按作用短期效应组合并考虑长期效应影响进行验算,且不得超过以下规定的限值: 一般环境0.20mm 有气态、液态或固态侵蚀物质环境0.10mm 这里,一般环境系指寒冷和严寒、无侵蚀物质影响的地面和水下及与土直接接触的环境;有气态、液态或固态侵蚀物质环境系指包括海水、使用除冰盐在内及工业污染的环境。 从影响裂缝宽度的主要因素以及两本规范的裂缝宽度计算公式中我们发现,当设计计算发现裂缝宽度超限,或要求减小裂缝宽度时,选择较细直径的钢筋及变形钢筋是最为经济的措施。因为同样面积的钢筋,直径小则其周长与面积比就大,这就增大了钢筋与混凝土间的粘结力,采用变形钢筋亦是这个道理。粘结力大,可使裂缝间距缩短,裂缝即多而密,裂缝间距内钢筋与混凝土之间的变形差就小,裂缝宽度减小。 但是,当采用上述措施仍不能满足要求时,亦可增大钢筋截面面积,从而增大截面的配筋率,减小钢筋的工作应力,减小平均裂缝间距;当然,有时也可采取改变截面形式及尺寸或提高混凝土强度等级等办法。 8.2.6 小结 两本规范的裂缝宽度计算公式相差较大(见表8-3)。从理论基础上看,《混凝土结构设计规范》(GB50010)采用一般裂缝理论,然后通过试验数据统计回归的方法确定其中的系数;《公路钢筋混凝土与预应力混凝土桥涵设计规范》(JTJ023)公式则纯粹是建立在试验统计分析基础上的。但二者所反映的裂缝宽

裂缝宽度验算

15 裂缝宽度验算:B墙8*15 15.1 基本资料 15.1.1 工程名称:一泵房地下室外墙 15.1.2 矩形截面受弯构件构件受力特征系数αcr = 2.1 截面尺寸 b×h = 1000×500mm 15.1.3 纵筋根数、直径:第 1 种:10Φ20 受拉区纵向钢筋的等效直径 deq =∑(ni * di^2) / ∑(ni * υ * di) = 20mm 带肋钢筋的相对粘结特性系数υ = 1 15.1.4 受拉纵筋面积 As = 3142mm 钢筋弹性模量 Es = 200000N/mm 15.1.5 最外层纵向受拉钢筋外边缘至受拉区底边的距离 c = 40mm 纵向受拉钢筋合力点至截面近边的距离 as =50mm ho = 450mm 15.1.6 混凝土抗拉强度标准值 ftk = 2.2N/mm 15.1.7 按荷载效应的标准组合计算的弯距值 Mk = 226kN·m 15.1.8 设计时执行的规范: 《混凝土结构设计规范》(GB 50010-2002),以下简称混凝土规范 15.2 最大裂缝宽度验算 15.2.1 按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte,按下式计算:ρte = As / Ate (混凝土规范 8.1.2-4) 对矩形截面的受弯构件:Ate = 0.5 * b * h = 0.5*1000*500 = 250000mm ρte = As / Ate = 3142/250000 = 0.01257 15.2.2 按荷载效应的标准组合计算的纵向受拉钢筋的等效应力σsk,按下列公式计算:受弯:σsk = Mk / (0.87 * ho * As) (混凝土规范 8.1.3-3) σsk = 226000000/(0.87*450*3142) = 184N/mm 15.2.3 裂缝间纵向受拉钢筋应变不均匀系数ψ,按混凝土规范式 8.1.2-2 计算:ψ = 1.1 - 0.65 * ftk / (ρte * σsk) = 1.1-0.65*2.2/(0.01257*184) = 0.479 15.2.4 最大裂缝宽度ωmax,按混凝土规范式 8.1.2-1 计算: ωmax =αcr * ψ * σsk * (1.9 * c + 0.08 * deq / ρte ) / Es = 2.1*0.479*184*(1.9*40+0.08*20/0.0126)/200000 = 0.188mm<0.2mm 9 裂缝宽度验算:A墙4.9*11.9 9.1 基本资料 9.1.1 工程名称:一泵房地下室外墙 9.1.2 矩形截面受弯构件构件受力特征系数αcr = 2.1 截面尺寸 b×h = 1000×500mm 9.1.3 纵筋根数、直径:第 1 种:8Φ20 受拉区纵向钢筋的等效直径 deq =∑(ni * di^2) / ∑(ni * υ * di) = 20mm 带肋钢筋的相对粘结特性系数υ = 1 9.1.4 受拉纵筋面积 As = 2513mm 钢筋弹性模量 Es = 200000N/mm 9.1.5 最外层纵向受拉钢筋外边缘至受拉区底边的距离 c = 40mm 纵向受拉钢筋合力点至截面近边的距离 as =50mm ho = 450mm 9.1.6 混凝土抗拉强度标准值 ftk = 2.2N/mm 9.1.7 按荷载效应的标准组合计算的弯距值 Mk = 188.86kN·m 9.1.8 设计时执行的规范:

钢筋混凝土构件的变形和裂缝宽度验算

第八章混凝土构件变形和裂缝宽度验算 一、填空题: 1、钢筋混凝土构件的变形或裂缝宽度过大会影响结构的适用性、耐久性。 2、规范规定,根据使用要求,把构件在荷载标准值作用下产生的裂缝和变形控制在允许范围内。 3、在普通钢筋混凝土结构中,只要在构件的某个截面上出现的拉应力超过混凝土的抗拉强度,就将在该截面上产生垂直于拉应力方向的裂缝。 4、平均裂缝间距就是指裂缝出齐后的裂缝宽度的平均值。 5、平均裂缝间距的大小主要取决于钢筋和混凝土之间的粘结强度。 6、影响平均裂缝间距的因素有纵筋配筋率、纵筋直径、纵筋表面形状、混凝土保护层厚度。 7、钢筋混凝土受弯构件的截面抗弯刚度是一个变量,它随着荷载值和 加荷时间而变化。 8、钢筋应变不均匀系数的物理意义是反映裂缝之间受拉混凝土与纵向受拉钢筋应变的影响程度。 9、变形验算时一般取同号弯矩区段内弯矩最大截面抗弯刚度作为该区段的抗弯刚度。 10、规范用用长期效应组合挠度增大系数来考虑荷载长期效应对刚度的影响。 二、判断题: 1、混凝土结构构件只要满足了承载力极限状态的要求即可。(×) 2、混凝土构件满足正常使用极限状态的要求是为了保证安全性的要求。() 3、构件中裂缝的出现和开展使构件的刚度降低、变形增大。() 4、裂缝按其形成的原因,可分为由荷载引起的裂缝和由变形因素引起的裂缝两大类。() 5、实际工程中,结构构件的裂缝大部分属于由荷载为主引起的。() 6、引起裂缝的变形因素包括材料收缩、温度变化、混凝土碳化及地基不均匀沉降等。() 7、荷载裂缝是由荷载引起的主应力超过混凝土抗压强度引起的。() 8、进行裂缝宽度验算就是将构件的裂缝宽度限制在规范允许的范围之内。() 9、规范控制温度收缩裂缝采取的措施是规定钢筋混凝土结构伸缩缝最大间距。() 10、规范控制由混凝土碳化引起裂缝采取的措施是规定受力钢筋混凝土结构保护层厚度。() 11、随着荷载的不断增加,构件上的裂缝会持续不断地出现。()

裂缝计算

8.2.2 裂缝宽度计算理论 对于裂缝问题,尽管自20世纪30年代以来各国学者做了大量的研究工作,提出了多种计算理论,但至今对于裂缝宽度的计算理论并未取得一致的看法。这些不同观点反映在各国关于裂缝宽度的计算公式有较大差别。但我们可以从这些不同的观点中理解和体会影响裂缝宽度的各种因素,为我们有效地控制构件的裂缝宽度提供理论基础。 从目前的裂缝计算模式上看,计算理论大致可以分为四类:第一类是经典的粘结—滑移理论;第二类是无滑移理论;第三类是一般裂缝理论;第四类是试验统计模式。目前我国《混凝土结构设计规范》(GB50010)采用的是以一般裂缝理论为指导,结合大量试验结果而形成的裂缝计算公式。而《公路钢筋混凝土与预应力混凝土桥涵设计规范》(JTJ023)结合影响裂缝宽度的各主要因素分析,采用的是以试验统计得到的计算公式。 ◆粘结-滑移理论 粘结—滑移理论是由R. Saligar于1936年根据钢筋混凝土拉杆试验提出的,一种最早的裂缝理论,直至60年代中期这个理论还一直被广泛的接受应用。这一理论认为,裂缝的开展是由于钢筋与混凝土之间不再保持变形协调,出现相对滑移而产生的。因此裂缝宽度等于裂缝间距范围内钢筋和混凝土的变形差。而裂缝的间距取决于钢筋与混凝土间粘结应力的大小与分布。粘结应力越大,混凝土拉应力沿构件纵向从零增大到其极限抗拉强度所需的粘结传递长度会越短,裂缝的间距也就越短,裂缝宽度越小,此时裂缝“密而多”;反之,裂缝“疏而稀”,裂缝宽度越大。由粘结—滑移理论得到的两个基本公式如下(如何根据以上条件推导出来的?) (8-2) (8-3) 式中lm --平均裂缝间距; Wm--平均裂缝宽度; d --纵向受拉钢筋直径; ρte--(=As/Ate )按有效受拉混凝土面积计算的配筋率; ,--平均裂缝间距内钢筋和混凝土的平均拉应变。 Ate--有效受拉区混凝土的截面面积,对受弯构件,取二分之一截面高度以下的面积。 对于矩形截面, Ate=0.5bh; 倒T形截面,则Ate=0.5bh-(bf-b)hf 。 从以上两个公式可以看出,决定裂缝宽度有两个主要因素,一个是d/ρte ,另一个是钢筋的应力水平。 ◆无滑移理论 粘结-滑移理论有一个基本假设,即构件开裂、混凝土回缩后,裂缝截面仍保持为平面。但试验量测表明,裂缝出现后混凝土将产生沿横截面不均匀的回缩变形,钢筋处的裂缝宽度比构件表面的裂缝宽度要小得多,距离钢筋表面越大,裂缝宽度也越大(如图8-6所示)。这一变形分布说明,由于钢筋对混凝土变形的约束作用(该约束作用的范围称作钢筋有效约束区),混凝土在横截面上存在着局部应变梯度,该应变梯度的大小,控制着构件表面的裂

混凝土裂缝控制等级的规定

混凝土裂缝控制等级的规定 《混凝土结构设计规范》GB 50010-2015 3.4.4 结构构件正截面的受力裂缝控制等级分为三级,等级划分及要求应符合下列规定: 一级——严格要求不出现裂缝的构件,按荷载标准组合计算时,构件受拉边缘混凝土不应产生拉应力。 二级——一般要求不出现裂缝的构件,按荷载标准组合计算时,构件受拉边缘混凝土拉应力不应大于混凝土抗拉强度的标准值。 三级——允许出现裂缝的构件:对钢筋混凝土构件,按荷载准永久组合并考虑长期作用影响计算时,构件的最大裂缝宽度不应超过本规范表3.4.5规定的最大裂缝宽度限值。对预应力混凝土构件,按荷载标准组合并考虑长期作用的影响计算时,构件的最大裂缝宽度不应超过本规范第3.4.5条规定的最大裂缝宽度限值;对二a类环境的预应力混凝土构件,尚应按荷载准永久组合计算,且构件受拉边缘混凝土的拉应力不应大于混凝土的抗拉强度标准值。 条文说明: 3.4.4 本规范将裂缝控制等级划分为三级,等级是对裂缝控制严格程度而言的,设计人员需根据具体情况选用不同的等级。关于构件裂缝控制等级的划分,国际上一般都根据结构的功能要求、环境条件对钢筋的腐蚀影响、钢筋种类对腐蚀的敏感性和荷载作用的时间等因素来考虑。本规范在裂缝控制等级的划分上也考虑了以上因素。 在具体划分裂缝控制等级和确定有关限值时,主要参考了下列资料:历次混凝土结构设计规范修订的有关规定及历史背景;工程实践经验及调查统计国内常用构件的设计状况及实际效果;耐久性专题研究对典型地区实际工程的调查以及长期暴露试验与快速试验的结果;国外规范的有关规定。 经调查研究及与国外规范对比,原规范对受力裂缝的控制相对偏严,可适当放松。对结构构件正截面受力裂缝的控制等级仍按原规范划分为三个等级。一级保持不变;二级适当放松,仅控制拉应力不超过混凝土的抗拉强度标准值,删除了原规范中按荷载准永久组合计算构件边缘混凝土不宜产生拉应力的要求。 对于裂缝控制三级的钢筋混凝土构件,根据现行国家标准《工程结构可靠性设计

现浇混凝土板开裂宽度规范要求值

现浇混凝土板开裂宽度 规范要求值 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

现浇混凝土板开裂宽度规范要求值 一、裂缝的形态与发生部位 裂缝形态呈上宽下窄形式,或肉眼只观察到上部裂缝,下部没有缝,但浇水试验,渗水轨迹清晰。裂缝呈现一定的规律性,即大开间多、小开间少;南向房间多、北向房间少;底层多、上层逐渐减少;进深方向多、开间方向少;条形楼中间单元多,边单元少。 裂缝深度多为贯通裂缝和纵深裂缝,少部分为表面裂缝和浅层裂缝。裂缝宽度在毫米~毫米居多,个别的大于毫米,或只有毫米。 裂缝主要发生部位有:现浇楼板跨中,沿进深通长方向;沿边缘,进深方向;模板四角45度折角处;沿电线管预埋方向;施工缝处。 二、裂缝的成因分析 裂缝具有较明显的规律性和普遍性,是目前在工程结构领域中一个相当普遍的问题。大量的调查与实测研究证明,90%以上的裂缝是由变形作用引起的,在变形作用中,主要是温度变形和收缩变形引起的。由于这两种变形受到约束超过混凝土的抗拉强度,导致裂缝产生。

1.产生的温度裂缝。过程中产生大量的热量,每克水泥约放出卡的热量,从而使混凝土内部温度升高,在浇筑温度的基础上通长升高35℃,如果使规定的最高浇筑温度28℃,则可使混凝土内部温度达到60℃多度,因为混凝土内部与表面的散热条件不同,所以中心温度高,形成,造成。当这种超过混凝土的内外约束力(包括)时,就会产生裂缝。一般认为,混凝土的内外温差超过25℃,极易产生温度裂缝,这种裂缝出现在后的3~5天,初期出现的裂缝很细,随着时间的发展而继续扩大,甚至达到贯穿的情况。 2.塑性收缩裂缝。造成混凝土塑性收缩裂缝的主要原因是混凝土在塑性状态时混凝土表面失水过快造成的,经常发生在混凝土板或表面积较大的墙面上,一般长度大约~2米,宽度为1~5毫米,从外观分为无规则网络状和混凝土构件截面变化等规则的形状,深度一般3~10厘米,裂缝在后1~3小时内出现。 3.干燥收缩裂缝。干燥收缩裂缝主要是混凝土在硬化后较长时间产生的水分蒸发引起的。当混凝土因养护不够,表面水分蒸发过快,混凝土表面收缩加快,受混凝土内部的约束,将在表面产生拉应力,便产生裂缝。反应,使混凝土内部和表面形成很大的温差,不足以抵抗因收缩产生的拉应力时,便产生表面裂缝。

第九章 变形和裂缝宽度验算

第十章混凝土构件变形和裂缝宽度验算 一、填空题: 1.验算钢筋混凝土构件抗裂度、裂缝宽度和变形时,荷载采用值,混凝土强度用强度。 2.其他条件相同时,配筋率愈高,平均裂缝间距愈,平均裂缝宽度愈。其他条件相同时,混凝土保护层愈厚,平均裂缝宽度愈。 3、平均裂缝间距的大小主要取决于。 4、钢筋应变不均匀系数的物理意义是。 5、变形验算时一般取同号弯矩区段内截面抗弯刚度作为该区段的抗弯刚度。 6、规范用来考虑荷载长期效应对刚度的影响。 二、判断题: 1.裂缝的开展是由于混凝土的回缩,钢筋的伸长,导致混凝土与钢筋之间产生相对滑移的结果()。 2.当计算最大裂缝宽度超过允许值不大时,可以通过增加保护层厚度的方法来解决。() 3.配筋率较低的受弯构件,正截面强度低,裂缝宽度易满足() 4.受弯构件考虑长期荷载作用时的刚度时,将荷载乘以刚度降低系数θ,且1 θ()θ为挠度增 < 大系数,大于1 5、实际工程中一般采用限制最大跨高比来验算构件的挠度。() 6、裂缝按其形成的原因,可分为由荷载引起的裂缝和由变形因素引起的裂缝两大类。() 7.裂缝宽度计算中的 σ是按阶段Ⅱ末即Ⅱa应力状态建立的()是按阶段Ⅱ应力状态建立的 s 8、混凝土构件满足正常使用极限状态的要求是为了保证安全性的要求。() 9、规范控制温度收缩裂缝采取的措施是规定钢筋混凝土结构伸缩缝最大间距。() 10、有效配筋率 ρ是所有纵向受拉钢筋对构件截面的配筋率。() te 11、当纵向受拉钢筋的面积相等时,选择较细直径的变形钢筋可减小裂缝宽度。() 12、减小裂缝宽度的首选措施是增加受拉钢筋的配筋率。() 13、 ρ相同时,钢筋直径小者平均裂缝间距大些。(×) te 三、选择题: 1.下面的关于受弯构件截面弯曲刚度的说明错误的是()。 A.截面弯曲刚度随着荷载增大而减小; B.截面弯曲刚度随着时间的增加而减小; C.截面弯曲刚度随着变形的增加而减小; D.截面弯曲刚度不变; 2.钢筋混凝土构件变形和裂缝验算中关于荷载、材料强度取值说法正确的是()。 A.荷载、材料强度都取设计值;

混凝土结构最大裂缝宽度检测作业指导书

砼最大裂缝宽度检测作业指导书 1.目的 使测试人员在进行最大裂缝宽度检测时有章可循,并使其操作合乎规范。 2.适用范围 适用于需用到最大裂缝宽度该指标的相关检验。 3.检测依据 3.1《建筑结构检测技术标准》(GB/T 50344-2004); 3.2《混凝土结构工程施工质量验收规范》(GB 50204-2015); 3.3《混凝土结构设计规范》(GB 50010-2010); 3.4《危险房屋鉴定标准》(JGJ 125-1999(2004年版)); 4.主要仪器设备 4.1裂缝测宽仪; 4.2 电锤、钢直尺、钢卷尺等辅助工具。 5.测试原理 采用DJCK-2型裂缝测宽仪对混凝土结构最大裂缝宽度进行检测,该仪器在0.02-2mm范围内的估读精度为0.01mm。用电缆连接显示屏和测量探头,将测量探头的两支脚放置在裂缝上,使裂缝图像与刻度尺垂直,根据裂缝图像所占刻度线长度,读取裂缝宽度值。 6.规范相关条款 根据《混凝土结构工程施工质量验收规范》(GB 50204-2015)第8.1.2条规定,现浇结构的外观质量,应由各方根据其对结构性能和使用功能影响的严重程度,按表8.1.2确定。表8.1.2中明确了裂缝缺陷的分级,检查数量为全数检查。附录B(受弯预制构件结构性能检验)中提及构件的承载力检验系数允许值的检验内容中提及了最大裂缝宽度的检验。第B.1.5、B.1.6条的规定中也提及了最大裂缝宽度的检测。 在《危险房屋鉴定标准》(JGJ 125-1999(2004年版))中第4.5条共规定了16种现象为危险点的判定依据,其中关于裂缝的有10种,提到具体裂缝宽度限值的有6种,裂缝宽度限值有0.4mm、0.5mm和1mm三种。大于相关限值,则判定为危险点。 7.操作步骤 7.1首先对仪器进行校验:校验标准刻度板上分别有宽度为0.02、0.10、0.20和1.00mm

裂缝宽度验算及减小裂缝宽度的主要措施

裂缝宽度验算及减小裂缝宽度的主要措施

8.2.5 裂缝宽度验算及减小裂缝宽度的主要措施 对裂缝宽度的限制,应从保证结构耐久性,钢筋不被锈蚀及过宽的裂缝影响结构外观,引起人们心理上的不安两个因素来考虑。 《混凝土结构设计规范》(GB50010)规定,钢筋混凝土构件在荷载的标准组合下,并考虑长期作用影响的最大裂缝宽度,应符合下式规定: (8-20) 式中w max——按荷载的标准组合并考虑长期作用影响计算的构件最大裂缝宽度,按式; w ——裂缝宽度限值,根据构件所处的环境类别(表8-1)不同,裂缝lim 宽度限值取表8-2中的值。 表8-1 混凝土结构的使用环境类别 环境类别说明 一室内正常环境;无侵蚀性介质、无高温高湿影响、不与土壤直接接触的环境 a室内潮湿环境、露天环境及与无侵蚀性的水或土壤直接接触的环境二 b严寒和寒冷地区的露天环境及与无侵蚀性的水或土壤直接接触的环境三使用除冰盐的环境、严寒及寒冷地区冬季的水位变动环境、滨海室外环境四海水环境(海水潮汐区、浪溅区、海面大气区、海水水下区) 五受人为或自然的侵蚀性物质影响的环境 表8-2 混凝土结构构件的最大裂缝宽度限值w lim (mm) 环境类别最大裂缝宽度限值 一0.3 二0.2

宽度的主要影响因素大体上仍然是一致的,即钢筋直径、形式、配筋率和钢筋的工作应力等。 需要再次强调的是,本节上述裂缝宽度验算方法只是针对于荷载作用下的竖向弯曲裂缝而言的。实际工程中大量存在的非荷载裂缝及荷载作用下其他形式的裂缝,目前还没有可靠的计算方法来控制,这些裂缝往往是通过构造措施来保证的。从这个角度来理解构造设计,应该更能帮助大家领会构造设计的重要意义了。 表8-3 建筑工程与公路桥梁工程关于受弯构件最大裂缝宽度计算公式的比较 GB50010 JTJ023 计算公式 计算理论 以一般裂缝理论为基 础,试验统计确定其中 系数 试验统计模式工作应力 配筋率 不同直径钢筋 的等效直径 换算直径d0=4A s/0.75u

t梁裂缝限值,规范

竭诚为您提供优质文档/双击可除t梁裂缝限值,规范 篇一:新规范混凝土梁裂缝控制验算计算书 裂缝控制验算计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、构件编号:l-1 二、示意图 三、依据规范: 《混凝土结构设计规范》(gb50010-20xx) 四、计算信息 1.几何参数 截面类型t形 截面宽b=400mm 截面高h=1200mm 受压翼缘宽bf=1000mm 受压翼缘高hf=120mm 2.材料信息 混凝土等级c30f2

tk=2.01n/mm 钢筋种类hRb400e2 s=200000.00n/mm 钢筋类型带肋钢筋 纵筋相对粘结特性系数νi=1.000 纵筋根数、直径:第1种纵向钢筋:8f25 纵筋实配面积a2 s=3927mm 3.计算信(t梁裂缝限值,规范)息 受弯αcr=1.90 受拉钢筋合力点至近边距离as=60mm 混凝土保护层厚度c=30mm 最大裂缝宽度限值ωlim=0.300mm 4.荷载信息 荷载效应准永久组合计算的弯矩值mq=900.000kn*m 五、计算过程 1.计算有效受拉混凝土截面面积ate ate=0.5*b*h =0.5*400*1200 =240000mm2 2.计算纵向钢筋配筋率ρte ρte=as/ate

=3927/240000 =0.016 3.计算受拉区纵向钢筋的等效直径deq d2 eq=Σnidi/Σniνidi =(8*252)/(8*25*1.000) =25.000mm 4.计算构件受拉区纵向钢筋的应力σs h0=h-as =1200-60 =1140mm σs=1000000*mq/(0.87*as*h0) =1000000*900.000/(0.87*3927*1140) =231.078n/mm2 5.计算裂缝间纵向受拉钢筋应变不均匀系数ψ ψ=1.1-(0.65*ftk/(ρte*σs)) =1.1-(0.65*2.010/(0.016*231.078)) =0.754 6.计算最大裂缝宽度ωmax ωmax=αcr*ψ*σs/es(1.9*c+(0.08*deq/ρte)) =1.900*0.754*231.078/200000.000*(1.9*30.000+(0.08*2

裂缝宽度计算理论优缺点

钢筋混凝土裂缝宽度计算理论优缺点 姓名:黄子文专业:水利工程(工程地质方向)学号:2014161403 1、引言 混凝土是当今世界上用量最大、用途最广泛的工程材料。自20世纪80年代我国改革开放以来,我国推行大规模的经济建设、基础设施建设和住宅建设,其中绝大多数都采用混凝土结构或钢筋混凝土结构。随着经济的发展我国已经成为世界上混凝土生产和应用最多的国家,2004年我国水泥的产量达到了9.4亿吨,混凝土的产量约为20亿立方米。 但是,随着大量钢筋混凝土结构的兴建和混凝土技术的进步,过去不太突出的混凝土裂缝问题,近年来却日趋严重。钢筋混凝土结构的裂缝不仅影响到结构的美观,也是结构物的承载能力、耐久性、防水性等各种性能下降的主要原因。当裂缝宽度达到一定的数值时,还可能危及结构的安全。 由于裂缝导致的诸多不利影响,每年在混凝土结构裂缝的预防和修补上要花费大量的人力财力,给国家造成了巨大的经济损失和资源浪费。因此,对于混凝土结构裂缝的研究既符合认识客观世界的要求,也响应了人们改造客观世界的要求,具有重大科研意义和工程意义。 对于混凝土裂缝问题国内外都投入了大量的科研力量。虽然从总体上来说混凝土结构是一种耐久性较好的结构体系。但是由于混凝土材料本身是一种多相的成分复杂、性能多样的复合材料,其均匀性较差,抗拉强度大大低于其抗压强度导致一般混凝土结构都是带裂缝工作的。因此,裂缝也是人们可以接受的混凝土材料特性,问题是如何将其有害程度控制在允许范围之内。为了解决这个问题,国内外学者提出了各种各样的裂缝宽度计算理论。然而,工程师在选择裂缝宽度计算理论时,往往十分重视不同裂缝宽度计算理论的优缺点,以便根据实际的工程选择最合适的宽度计算理论。因此,本文就不同裂缝宽度计算理论的优缺点进行深入的探讨。 2、裂缝宽度计算理论 钢筋混凝土宏观上是钢筋与混凝土组合而成的材料,其裂缝成因是很复杂的。从国内外研究现状来看,对于荷载作用下的裂缝宽度计算理论的研究开展的比较好,主要分为半经验半理论方法和数理统计方法,其中半经验半理论方法又可以细分为粘结滑移理论、无粘结滑移理论和综合理论。基于以上理论出现了多种裂缝宽度计算公式,可以从设计上采取措施,控制其开展宽度值。 至于其他因素引起的裂缝,由于没有合理的裂缝宽度计算方法,则主要从材料选择、构造措施、施工工艺、养护、使用条件等方面综合采取合理的措施,消

混凝土结构裂缝宽度的控制

混凝土结构裂缝宽度的控制 发表时间:2019-07-10T15:28:10.930Z 来源:《建筑学研究前沿》2019年5期作者:丁红艳 [导读] 从裂缝的出现谈起,阐述裂缝宽度控制的必要,以及梁板塑性重分布下裂缝宽度的计算要点 中冶东方工程技术有限公司山东青岛 266555 摘要:从裂缝的出现谈起,阐述裂缝宽度控制的必要,以及梁板塑性重分布下裂缝宽度的计算要点 关键词:正常使用极限状态;控制等级;塑性内力重分布 Abstract:Start with the cracks,expound the necessity of crack width control,and calculation of crack width under plastic internal force redistribution of beam and slab Keywords:Normal use ultimate state,control level,plastic internal force redistribution 一、裂缝产生的机理 钢筋混凝土结构的裂缝成因分两种:一类是荷载作用产生裂缝,另一种为非荷载原因引起的裂缝,主要因素有:温度变化、混凝土收缩塑性变形、水泥水化热、水泥的碱液与活性骨料的化学反应、地基的不均匀沉降等。 混凝土结构构件受力的作用,在裂缝未产生时,混凝土和钢筋的应变沿着该构件的长度方向均匀分布,而当混凝土的拉应力达到其抗拉极限时,在构件最薄弱的截面处会出现第一批裂缝;裂缝出现的瞬间,混凝土(裂缝截面处的)拉应力消失为零,而钢筋拉应力相应增加,配筋率愈小应力增量愈大;随着裂缝的进一步增长,混凝土和钢筋之间的粘结力又逐步产生并增加,混凝土再次产生拉应力,此消彼长之下,钢筋的拉应力随着裂缝宽度截面距离增加(混凝土粘结力增加)而减小。当裂缝截面足够长时,混凝土的拉应力达到混凝土轴心抗拉强度设计值时,新的裂缝将会出现。按此规律,随着弯矩的增大,裂缝将逐条出现,待裂缝基本出齐后,处于裂缝分布稳定状态。裂缝的开展正是由于混凝土的收缩,钢筋的不断伸长,两者之间的变形差导致,这是我们进行裂缝宽度计算的依据。 二、裂缝的控制要求 因为混凝土这种材料的不均匀性,裂缝的出现、分布和开展都表现出很大的离散性,表征为裂缝间距和宽度不均匀。我们现在使用的裂缝间距和宽度的平均值正是钢筋和混凝土之间粘结受力机理的反映,大量的数据及实验反映该值具有一定的规律性。以裂缝的最大展开宽度即最大裂缝宽度作为评价指标,这是因为在一定的荷载标准组合下裂缝宽度的不均匀性;在荷载的长期作用下,混凝土进一步收缩以及受拉混凝土应力松弛和滑移徐变等使得裂缝间的混凝土进一步退出工作,平均裂缝宽度增大较多。这些因素可以概括为“扩大系数”,该系数是实验统计结果并结合使用经验确定。最大裂缝宽度正是平均裂缝宽度乘以扩大系数得到的。而计算确定的最大裂缝宽度,并不是绝对最大值,而是概率为95%的相对最大裂缝宽度。 《混凝土结构设计规范》中依据结构构件所处的混凝土类别,钢筋类别,构件受力特征,环境中的侵蚀介质,将裂缝控制分为三个等级:一级:严格要求不出现裂缝的构件。在荷载标准组合作用下,构件受拉边缘混凝土不得出现拉应力;二级:一般要求不出现裂缝的构件。在荷载标准组合计算式,构件受拉边缘混凝土拉应力不大于混凝土抗拉强度的标准值。三级:允许出现裂缝的构件。按荷载准永久值组合并应考虑长期作用影响计算时,构件最大裂缝宽度应满足表中的限值: 结构构件的裂缝控制等级及最大裂缝宽度限值(mm) 三、减少裂缝宽度的措施 那么如何控制裂缝,减小裂缝呢?合理配置钢筋。在同样的配筋率下,采用小直径,根数多的钢筋,能有效分散裂缝,减小裂缝宽度;采用带肋钢筋,增强粘结系数;合理的钢筋混凝土保护层厚度,保护层厚度加大使裂缝宽度增加;适当增加配筋率;对受拉及受弯构件施加预应力可以有效满足裂缝或变形的限值要求。 对于直接承受吊车荷载但不需要做疲劳验算的受弯构件,因吊车满载的可能性较小,且已取=1,所以可将计算求得的最大裂缝宽度乘以0.85;对e0/h0<=0.55的偏心受压构件,实验表明最大裂缝宽度小于允许值,因此可不验算。 对于斜裂缝宽度,当配置受剪承载力所需的腹筋后,使用阶段的裂缝宽度一般小于0.2mm,故可以不用验算。 四、考虑塑性重分布时裂缝的计算要求 《混凝土结构设计规范》中规定“按考虑塑性内力重分布分析方法设计的结构和构件,应选用符合规范第4.2.4条规定的钢筋,并应满足正常使用极限状态要求且采取有效的构造措施”,当进行梁、板的内力、挠度及裂缝宽度验算时,计算跨度的选用应满足《钢筋混凝土连续梁和框架考虑内力重分布设计规程CECS51:93》中4.1.1,4.2.2,4.2.4.1条规定: 连续梁的计算跨度l0应根据支承条件来确定:当两端与梁或柱整体连接时,取l0为净跨ln;当两端搁支在墙上时,取l0=1.05ln,并不得大于支座中心线间的距离;当一端与梁或柱整体连接,另一端搁支在墙上时,取l0=1.025ln,并不得大于净跨加支承宽度的1/2。承受均布荷载的等跨单向连续板计算跨度l0,根据支承条件按下列规定确定:当两端与梁整体连接时,取净跨ln;当两端搁支在墙上时,取净跨加板厚,并不得大于支座中心线间的距离;当一端与梁整体连接,另一端搁支在墙上时,取净跨加板厚,并不得大于净跨加墙支承宽度的1/2。按荷载的最不利布置,用弹性分析方法计算连续板各控制截面的最不利弯矩,此时,连续板的计算跨l0 应根据支承条件确定:当两端与梁整体连接时,l0取为支座中心线间的距离;当两端搁支在墙上时,取l0=ln+ 板厚,并不得大于支座中心线间的距离;当一端与梁整体连接,另一端搁支在墙上时,取l0=ln+b/2+板厚/2,并不得大于支座中心线间的距离,其中 b为梁的支承宽度。 裂缝宽度验算时,在确定正常使用极限状态下纵向受拉钢筋的应力时候,计算界面应考虑塑性内力重分布影响下的弯矩值。

水利工程常见规范裂缝宽度计算的异同

浅析水利工程常见规范裂缝宽度计算的异同 摘要:钢筋混凝土结构在荷载作用下会产生裂缝,裂缝的存在和发展会在一定程度上影响结构的耐久性,为了将荷载作用下的裂缝控制在一定范围之内,保证结构的正常使用状态,混凝土结构设计规范对最大裂缝宽度做了详细规定并给出计算方法。然而在实际工程应用中,不同的规范对于裂缝宽度的计算方法也存在差异,本文通过算例对水利工程中经常应用的规范中裂缝宽度计算方法进行 比较及分析,并给出设计参考方法。 关键词: 水利工程;裂缝宽度;计算方法;对比分析 the analysis of the difference of reinforced concrete crack width calculation in codes for water conservancy project abstract: cracks may occur in loaded reinforced concrete structure . the existence and spread of cracks leads to adverse effects on structure durability. codes for design of concrete structures detail the calculating method and the maximum width of cracks to ensure that the cracks width within tolerance and the structure on function . however, in practical engineering applications, the calculating methods are variance based on different codes.this paper discusses the comparison and analysis of reinforced concrete crack

构件的裂缝宽度及变形计算

第5章构件的裂缝宽度及变形计算 5.1构件的裂缝宽度计算 裂缝的分类: ●荷载作用裂缝:由于荷载作用在结构上导致构件产生的裂缝。主要分为弯曲裂缝,斜裂缝和钢筋与混凝土的粘结撕裂裂缝; ●变形裂缝:除荷载因素以外,由于温度影响,混凝土的收缩影响,结构的支座沉降等因素导致的结构构件中产生的裂缝。 目前,国内外的裂缝宽度计算主要是针对荷载作用下弯曲裂缝宽度进行计算。 1.裂缝开展机理及主要模型 ①粘结滑移模型 1943年由Watstein和Parsens建立了粘结滑移理论,1962年,Hognestad推导出了相应的理论计算公式。如图所示,裂缝处钢筋和混凝土之间发生滑移,靠近裂缝处,钢筋通过粘结应力将受到的拉力的一部分传递给混凝土,使混凝土受拉。 粘结滑移模型

裂缝宽度取为两裂缝间钢筋的伸长量减去混凝土的伸长量。由于混凝土的伸长量很小,忽略不计,则: s t max s max s c E 2f w l σφ ετρ==? ② 无滑移模型 Base 等人与1966年建立了与上述不同的理论,即无滑移理论。该理伦假设在所允许的裂缝宽度范围内,钢筋相对混凝土没有粘结滑移,裂缝宽度在钢筋的表面处为0。 无滑移模型 给出的最大裂缝宽度计算公式为: s 2 max s 1 E h w K c h σ=?? 式中:c -保护层厚度; K -钢筋品种系数; h 1-受拉钢筋重心到截面中和轴之间的距离; h 2-最外边缘受拉纤维到截面中和轴之间的距离。 ③ 组合模型 Bianchini 等人1968年讨论了裂缝的开展机理,建立了粘结滑移—无滑移组合模型。

组合模型 Beeby 于1979年建立考虑多种因素影响的受弯构件裂缝宽度计算公式: cr m cr 312w c h x αεα= -??+ ? -?? cr α-钢筋表面到裂缝宽度计算点的距离; h -构件截面高度; m ε-相邻裂缝间钢筋的平均应变 x -截面的受压区高度; ④ 断裂力学方法 Bazant 和Oh 于1983年采用断裂力学的能量判据和强度判据对钢筋的裂缝间距和裂缝宽度进行了理论研究,建立了最大裂缝宽度计算公式: ( ) ()1 ,max 4.531 2s 3159 2.880.0002t w φ φεφφ =+++ 式中: 1φ-保护层厚度与中性轴至受拉面距离的比值; 2φ-钢筋周围平均有效混凝土面积与钢筋锚筋的比值; 3φ-中性轴到受拉面与中性轴到钢筋距离的比值。 ⑤ 数理统计方法

相关主题
文本预览
相关文档 最新文档