当前位置:文档之家› 质谱法的原理和应用

质谱法的原理和应用

质谱法的原理和应用
质谱法的原理和应用

质谱法的原理和应用

原理

待测化合物分子吸收能量(在离子源的电离室中)后产生电离,生成分子离子,分子离子由于具有较高的能量,会进一步按化合物自身特有的碎裂规律分裂,生成一系列确定组成的碎片离子,将所有不同质量的离子和各离子的多少按质荷比记录下来,就得到一张质谱图。由于在相同实验条件下每种化合物都有其确定的质谱图,因此将所得谱图与已知谱图对照,就可确定待测化合物

用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片)按它们的质荷比分离后进行检测的方法。测出了离子的准确质量,就可以确定离子的化合物组成。这是由于核素的准确质量是一多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。

应用

质谱中出现的离子有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子。综合分析这些离子,可以获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。

质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。近年的仪器都具有单离子和多离子检测的功能,提高了灵敏度及专一性,灵敏度可提高到10(克水平。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片图为基础,确定药物和代谢产物的存在;也可用于定量分析,用被检化合物的稳定性同位素异构物作为内标,以取得更准确的结果。

在无机化学和核化学方面,许多挥发性低的物质可采用高频火花源由质谱法测定。该电离方式需要一根纯样品电极。如果待测样品呈粉末状,可和镍粉混合压成电极。此法对合金、矿物、原子能和半导体等工艺中高纯物质的分析尤其有价值,有可能检测出含量为亿分之一的杂质。

利用存在寿命较长的放射性同位素的衰变来确定物体存在的时间,在考古学和地理学上极有意义。例如,某种放射性矿物中有放射性铀及其衰变产物铅的存在,铀238和铀235的衰变速率是已知的,则由质谱测出铀和由于衰变产生的铅的同位素相对丰度,就可估计该轴矿物生成的年代。

近年来质谱技术发展很快。随着质谱技术的发展,质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学,化工,环境,能源,医药,运动医学,刑侦科学,生命科学,材料科学等各个领域。

质谱仪种类繁多,不同仪器应用特点也不同,一般来说,在300C左右能汽化的样品,可以优先考虑用GC-MS进行分析,因为GC-MS使用EI源,得到的质谱信息多,可以进行库检索。毛细管柱的分离效果也好。如果在300C左右不能汽化,则需要用LC-MS分析,此时主要得分子量信息,如果是串联质谱,还可以得一些结构信息。如果是生物大分子,主要利用LC-MS和MALDI-TOF分析,主要得分子量信息。对于蛋白质样品,还可以测定氨基酸序列。质谱仪的分辨率是一项重要技术指标,高分辨质谱仪可以提供化合物组成式,这对于结构测定是非常重要的。双聚焦质谱仪,傅立叶变换质谱仪,带反射器的飞行时间质谱仪等都具有高分辨功能。

质谱分析法对样品有一定的要求。进行GC-MS分析的样品应是有机溶液,水溶液中的有机物一般不能测定,须进行萃取分离变为有机溶液,或采用顶空进样技术。有些化合物极性太强,在加热过程中易分解,例如有机酸类化合物,此时可以进行酯化处理,将酸变为酯再进行GC-MS分析,由分析结果可以推测酸的结构。如果样品不能汽化也不能酯化,那就只能进行LC-MS分析了。进行LC-MS 分析的样品最好是水溶液或甲醇溶液,LC流动相中不应含不挥发盐。对于极性样品,一般采用ESI源,对于非极性样品,采用APCI源。

质谱的分类:电子轰击质谱FAB-MS,场解吸附质谱FD-MS,快原子轰击质谱FAB-MS,基质辅助激光解吸附飞行时间质谱MALDI-TOFMS,电子喷雾质谱ESIMS 等等,不过能测大分子量的是基质辅助激光解吸附飞行时间质谱MALDI-TOFMS 和电子喷雾质谱ESIMS,其中基质辅助激光解吸附飞行时间质谱MALDI-TOFMS可以测量的分子量达100000.

浅谈质谱技术及其应用word精品

浅谈质谱技术及其应用 摘要:质谱分析灵敏度高,分析速度快,被广泛应用于化学,化工,环境,能源,医药,运动医学,刑事科学技术,生命科学,材料科学等各个领域。本文对质谱仪原理进行了介绍,并叙述了质谱仪的发展过程,对质谱仪技术在各个领域的应用进行了综述,并对其发展提出了展望。 关键词:质谱仪应用发展 1质谱技术 质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。 1.1质谱原理 质谱分析是一种测量离子质荷比(质量-电荷比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。 1.2质谱技术的发展 1910年,英国剑桥卡文迪许实验室的汤姆逊研制出第一台现代意义上的质谱仪器。这台质谱仪的诞生,标志着科学研究的一个新领域一质谱学的开创。第一台质谱仪是英国科学家弗朗西斯阿斯顿于1919年制成的。阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。1934年诞生的双聚焦质谱仪是质谱学发展的又一个里程碑。在此期间创立的离子光学理论为仪器的研制提供了理论依据。双聚焦仪器大大提高了仪器的分辨率,为精确原子量测定奠定了基础 1.3质谱技术的分类

反证法在数学中的应用

论文 反证法在数学中的应用 开封县八里湾镇第一初级中学 杨继敏

反证法在数学中的应用 摘要反证法是数学教学中所涉及的基本论证方法,它为一些从正面入手,无法使已知条件和结论找出联系的问题,提供了一条解题途径,它通过给出合理的反设,来增加演绎推理的前提,从而使那种只依靠所给前提而变的山穷水尽的局面,有了柳暗花明又一村的境地,使学生看到增加演绎推理前提的方便功效。在过去的数学学习中,许多人拘泥于传统的推理方法,常常使问题复杂化,尽管最后能达到目的,但往往费时费力,因为数学的研究往往体现一种思维转换,我们可以用一种“换位”思想来处理我们日常遇到的数学问题。 【关键词: 逆向思维;假设;归谬;数学逻辑推理;矛盾;结论。】 1.引言 反证法是数学中一种重要的解题方法,对数学解题有着重要作用。其基本思想是通过求证对立面的不成立从而推出正面的正确。因为这种方法推理严密,说服性强,所以除了在数学中应用反证法,在实际生活中的应用也比较广泛。 在不同的数学情境下,反证法的前提假设不同。因此,在数学中应用反证法,一定要具体问题提出相应具体正确的假设。这就需要熟练掌握反证法的反设词,除此,还应熟记反证法的证题步骤——假设,归谬,结论。有关这个课题的研究,以及涉及到各种文章说明其步骤,适用范围,并附以大量例题。但对反证法在数学中的应用,文字讲解与反证法适宜的数学题型的归纳总结还欠缺。本文就基于这方面的考虑,根据反证法在数学中适宜的命题应用进行了详细的文字讲解及归纳总结。 2. 反证法初探 2.1 反证法的含义及逻辑依据 含义:所谓反证法就是从反面证明命题的正确性,即欲证明“p则q”,则从反面推导出“若p非q”不能成立,从而证明“若p则q”成立。它从否定结论出发,经过正确的严格推理,得到与已知(假设)或已成立的数学命题相矛盾的结果,从而验证产生矛盾的原因,推出原命题的结论不容否定的正确结论。

高中物理选修3-4知识点整理

选 修3—4 一、知识网络 周期:g L T π2= 机械振动 简谐运动 物理量:振幅、周期、频率 运动规律 简谐运动图象 阻尼振动 受力特点 回复力:F= - kx 弹簧振子:F= - kx 单摆:x L mg F -= 受迫振动 共振 波的叠加 干涉 衍射 多普勒效应 特性 实例 声波,超声波及其应用 机械波 形成和传播特点 类型 横波 纵波 描述方法 波的图象 波的公式:vT =λ x=vt 电磁波 电磁波的发现:麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场产生磁场→预言电磁波的存在 赫兹证实电磁波的存在 电磁振荡:周期性变化的电场能与磁场能周期性变化,周期和频率 电磁波的发射和接收 电磁波与信息化社会:电视、雷达等 电磁波谱:无线电波、红外线、可见光、紫外线、x 射线、ν射线

二、考点解析 考点80 简谐运动 简谐运动的表达式和图象 要求:I 1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。 简谐运动的回复力:即F = – kx 注意:其中x 都是相对平衡位置的位移。 区分:某一位置的位移(相对平衡位置)和某一过程的位移(相对起点) ⑴回复力始终指向平衡位置,始终与位移方向相反 ⑵―k ‖对一般的简谐运动,k 只是一个比例系数,而不能理解为劲度系数 ⑶F 回=-kx 是证明物体是否做简谐运动的依据 2)简谐运动的表达式: ―x = A sin (ωt +φ)‖ 3)简谐运动的图象:描述振子离开平衡位置的位移随时间遵从正弦(余弦)函数的规律变化的,要求能将图象与恰当的模型对应分析。可根据简谐运动的图象的斜率判别速度的方向,注意在振幅处速度无方向。 A 、简谐运动(关于平衡位置)对称、相等 ①同一位置:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相同. ②对称点:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相反. 相对论简介 相对论的诞生:伽利略相对性原理 狭义相对论的两个基本假设:狭义相对性原理;光速不变原理 时间和空间的相对性:“同时”的相对性 长度的相对性: 20)(1c v l l -= 时间间隔的相对性:2 )(1c v t -?=?τ 相对论的时空观 狭义相对论的其他结论:相对论速度变换公式:21c v u v u u '+'= 相对论质量: 2 )(1c v m m -= 质能方程2mc E = 广义相对论简介:广义相对性原理;等效原理 广义相对论的几个结论:物质的引力使光线弯曲 引力场的存在使得空间不同位置的时间进程出现差别

LC-MS原理 质谱法原理及应用

LC-MS原理质谱法原理及应用 质谱法的原理及应用 质谱法的原理及应用 摘要:用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片)按它们的质荷比分离后进行检测的方法。测出了离子的准确质量,就可以确定离子的化合物组成。这是由于核素的准确质量是一多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是 另一核素质量的整数倍。 关键词:质谱法离子运动离子源质量分析器 正文:1898年W.维恩用电场和磁场使正离子束发生偏转时发现,电荷相同时,质量小的离子偏转得多,质量大的离子偏转得少。1913年J.J.汤姆孙和F.W.阿斯顿用磁偏转仪证实氖有两种同位素[kg1]Ne和[kg1]Ne 阿斯顿于1919年制成一台能分辨一百分之一质量单位的质谱计,用来测定同位素的相对丰度,鉴定了许多同位素。但到1940年以前质谱计还只用于气体分析和测定化学元素的稳定同位素。后来质谱法用来对石油馏分中的复杂烃类混合物进行分析,并证实了复杂分子能产生确定的能够重复的质谱之后,才将质谱法用于测定有机化合物的结构,开拓了有 机质谱的新领域。 质谱法的原理是待测化合物分子吸收能量(在离子源的电离室中)后产生电离,生成分子离子,分子离子由于具有较高的能量,会进一步按化

合物自身特有的碎裂规律分裂,生成一系列确定组成的碎片离子,将所有不同质量的离子和各离子的多少按质荷比记录下来,就得到一张质谱图。由于在相同实验条件下每种化合物都有其确定的质谱图,因此将所得谱图与已知谱图对照,就可确定待测化合物。 利用运动离子在电场和磁场中偏转原理设计的仪器称为质谱计或质谱仪。前者指用电子学方法检测离子,而后者指离子被聚焦在照相底板上进行检测。质谱法的仪器种类较多,根据使用范围,可分为无机质谱仪和有机质谱计。常用的有机质谱计有单聚焦质谱计、双聚焦质谱计和四极矩质谱计。目前后两种用得较多,而且多与气相色谱仪和电子计算机联 用。主要由以下部分组成: 1,高真空系统 质谱计必须在高真空下才能工作。用以取得所需真空度的阀泵系统,一般由前级泵(常用机械泵)和油扩散泵或分子涡轮泵等组成。扩散泵能使离子源保持在10~10毫米汞柱的真空度。有时在分析器中还有一只扩散泵,能维持10~10毫米汞柱的真空度。 2,样品注入系统 可分直接注入、气相色谱、液相色谱、气体扩散四种方法。固体样品通过直接进样杆将样品注入,加热使固体样品转为气体分子。对不纯的样品可经气相或液相色谱预先分离后,通过接口引入。液相色谱-质谱接口有传动带接口、直接液体接口和热喷雾接口。热喷雾接口是最新提出的一种软电离方法,能适用于高极性反相溶剂和低挥发性的样品。样品

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

反证法在数学中的应用

论文编码:O1-0 摘要 反证法是数学证明方法中很重要的一部分,本文主要介绍了反证法再出等数学中的应用。首先阐述反证法的概念、逻辑根据和一般步骤。然后讨论了反正法的适用范围,这也是本文的重点内容,任何一种方法都要以应用为首要任务,我们学习它、了解它、掌握它,学会用反证法解决更多的实际问题才是我们的目的。其次研究了反证法的教学,反证法的这种数学思想在课堂教学中的渗透是很有必要的。最后讨论了应用反证法应注意的问题,真正用好反证法并非一件易事,所以我们的研究学习是很有必要的。 关键词:反证法逻辑基础教学方法适用范围;

Abstract Apagoge is an important part of math demonstration.This article introduces the application of Apagoge in elementary math.First,expounds the Apagoge's concept,logic ground and the general steps.Next,discusses the range of application,which is highlighted.Whatever methods we use,we should base on application.So we must study the method and use it to help us solve many practical problem.Then,studies how to teach the Apagoge's thinking into people's minds in the https://www.doczj.com/doc/957856500.html,st,talks about the problem which should pay attention to in Apagoge's application.It is difficult to make a good use of the Apagoge,so we are supposed to study continuously. Keywords:Apagoge ;Logical basis;Teaching methods; Scope;

(完整版)质谱法的原理和应用

质谱法的原理和应用 原理 待测化合物分子吸收能量(在离子源的电离室中)后产生电离,生成分子离子,分子离子由于具有较高的能量,会进一步按化合物自身特有的碎裂规律分裂,生成一系列确定组成的碎片离子,将所有不同质量的离子和各离子的多少按质荷比记录下来,就得到一张质谱图。由于在相同实验条件下每种化合物都有其确定的质谱图,因此将所得谱图与已知谱图对照,就可确定待测化合物用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片)按它们的质荷比分离后进行检测的方法。测出了离子的准确质量,就可以确定离子的化合物组成。这是由于核素的准确质量是一多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。 应用 质谱中出现的离子有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子。综合分析这些离子,可以获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。 质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。近年的仪器都具有单离子和多离子检测的功能,提高了灵敏度及专一性,灵敏度可提高到10(克水平。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片图为基础,确定药物和代谢产物的存在;也可用于定量分析,用被检化合物的稳定性同位素异构物作为内标,以取得更准确的结果。 在无机化学和核化学方面,许多挥发性低的物质可采用高频火花源由质谱法测定。该电离方式需要一根纯样品电极。如果待测样品呈粉末状,可和镍粉混合压成电极。 此法对合金、矿物、原子能和半导体等工艺中高纯物质的分析尤其有价值,有可能检测出含量为亿分之一的杂质。 利用存在寿命较长的放射性同位素的衰变来确定物体存在的时间, 在考古学和地理学上极有意义。例如, 某种放射性矿物中有放射性铀及其衰变产物铅的存在,铀238 和铀235 的衰变速率是已知的,则由质谱测出铀和由于衰变产生的铅的同位素相对丰度,就可估计该轴矿物生成的年代。 近年来质谱技术发展很快。随着质谱技术的发展, 质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学,化工,环境,能源,医药,运动医学,刑侦科学,生命科学,材料科学等各个领域。 质谱仪种类繁多,不同仪器应用特点也不同,一般来说,在300C左右能汽化的样品,可以优先考虑用GC-MS进行分析,因为GC-M3使用EI源,得到的质谱信息多,

有限元法理论及应用参考答案

有限元法理论及应用大作业 1、试简要阐述有限元理论分析的基本步骤主要有哪些? 答:有限元分析的主要步骤主要有: (1)结构的离散化,即单元的划分; (2)单元分析,包括选择位移模式、根据几何方程建立应变与位移的关系、根据虚功原理建立节点力与节点位移的关系,最后得到单元刚度方程; (3)等效节点载荷计算; (4)整体分析,建立整体刚度方程; (5)引入约束,求解整体平衡方程。 2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。 题2图 答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。 有限元划分网格的基本原则: 1.拓扑正确性原则。即单元间是靠单元顶点、或单元边、或单元面连接 2.几何保持原则。即网络划分后,单元的集合为原结构近似 3.特性一致原则。即材料相同,厚度相同 4.单元形状优良原则。单元边、角相差尽可能小 5.密度可控原则。即在保证一定精度的前提下,网格尽可能的稀疏一些。(a)(b)中节点没有有效的连接,且(b)中单元边差相差很大。 (c)中没有考虑对称性,单元边差很大。 3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?

题3图 答:(a )划分为杆单元, 8个节点,12个自由度。 (b )划分为平面梁单元,8个节点,15个自由度。 (c )平面四节点四边形单元,8个节点,13个自由度。 (d )平面三角形单元,29个节点,38个自由度。 4、什么是等参数单元?。 答:如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。 5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么? (1). ?????++=++=2 65432 21),(),(y x y x v y x y x u αααααα (2). ?????++=++=2 65242 3221),(),(y xy x y x v y xy x y x u αααααα 答:(1)不能,因为位移函数要满足几何各向同性,即单元的位移分布不应与人为选取的 坐标方位有关,即位移函数中的坐标x,y 应该是能够互换的。所以位移多项式应按巴斯卡三角形来选择。 (2)不能,位移函数应该包括常数项和一次项。

反证法逻辑原理孙贤忠

反证法逻辑原理 即证“完备性前提下的原命题的逆否命题” 作者:孙贤忠(湖南省长沙市第七中学邮编:410003 ) 【摘要】:阐明反证法的定义、逻辑依据、证明的一般步骤、种类,探索其在中学数学中的应用。这实际上就是在证“完备性前提下的原命题的逆否命题”了。一个命题:若A则B为真,这只是简洁的形式,因为若A则B为真,其本身就还含有所有的已知定义,定理,大家都知道的事实,乃至正确的逻辑推理等等一切必须为真的系统性条件为真,否则绝不可能推出结论B 为真。 【关键词】:反证法证明矛盾逆否命题一反证法出现 反证法(Proofs by Contradiction ,又称归谬法、背理法),是一种论证方式,他首先假设某命题不成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说明假设不成立,原命题得证。 反证法常称作RedUCtiO ad absurdum ,是拉丁语中的转化为不可能”,源自希 腊语中的“ ει? To αδυνατο阿基米德丫经常使]用它。 二反证法所依据的逻辑思维规律 反证法所依据的是逻辑思维规律中的矛盾律”和排中律”。在同一思维过程中, 两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中 的排中律”。反证法在其证明过程中,得到矛盾的判断,根据矛盾律”,这些矛盾的判 断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以否定的结论”必为假。再根据排中律”,结论与否定的结论” 这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。 反证法是间接证明法”一类,是从反方向证明的证明方法,即:肯定题设而否定结论,从而得出矛盾。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:若肯定定理的假设而否定其结论,就会导致矛盾”。具体地讲,反证法就是从反论题入手,把命题结论的否定当作条件,使之得到与条件相矛盾,肯定了命题的结论,从而使命题获得了证明。 在应用反证法证题时,一定要用到反设”,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫穷举法”。 反证法在数学中经常运用。当论题从正面不容易或不能得到证明时,就需要运用 反证法,此即所谓"正难则反"。

气相色谱-质谱联用原理和应用

气相色谱-质谱联用测定农药多残留 摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。 关键词:气相色谱-质谱联用仪;农药多残留;检测 1引言 当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-Mass Spectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。 近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。 由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。目前,我国农药残留限量标准制定工作滞后,残留监测体系不健全,残留检测能力有限、覆盖面窄。因此,我国应该根据自己的技术条件及农产品市场制定相应的多残留分析方法。 食品中的农药残留污染影响着人民生活质量的提高和食品贸易的顺利进行。日常食用的果蔬施用的农药种类繁多,常见的农药如有机磷类农药、氨基甲酸酯类农药、菊酯类农药和除草剂,抑菌剂等。由于果蔬中往往同时残留不同种类的农药,这对多残留同时检测条件提出很高要求。由于气相色谱-质谱联用( GC

光的衍射及其应用

光的衍射及其应用 摘要:光在传播的过程中能绕过障碍物边缘,偏离直线传播,而进入几何阴影,并出现光强分布不均匀的现象称为光的衍射。光波的波长比声波的波长短很多,这也是为什么人们最先意识到声波的衍射而往往把光波的衍射当成直线的传播,直到1814年,法国物理学家费涅尔注意到光在传播过程中,遇到障碍物,并且障碍物的线度和光的波长可以比拟时,就会出现偏离原来直线传播的路径,在障碍物背后本该出现阴影的地方出现亮纹,而在本该亮的地方出现暗纹的现象,才有了今天的光的衍射并加以研究。 关键词:费涅尔,惠更斯原理,惠更斯—费涅尔原理,柏松亮点,夫琅和费单缝衍射。 一、常见衍射实验的分析。 最常见的光的衍射实验就是单缝衍射和圆孔衍射两种。 单缝衍射即是用一束平行光射到单缝上,在紧贴单缝后放一面凸透镜,注意单缝要很窄,因为要保证光波的波长与狭缝的宽度可比拟,然后在透镜的焦点出放一白板,则可以看到明暗相间的的条纹。这就是光的衍射。 圆孔衍射就是将单缝换成圆孔,当然一样要保证圆孔的直径大小与光的波长可比拟,则可以在物板上看到中间是亮斑而周围是亮环的图形。 上面两个实验我们在高中的就接触过,但没有在单缝或是圆孔后面加一个透镜,而现在,将圆孔后的透镜移走,则可以看到明暗相间的同心圆。 而如果把圆孔换成圆板,当圆板的大小远远大于光的波长时,只能看见物屏上的圆形阴影,而渐渐减小圆环的大小,则可以在圆板大小与光波波长可比拟时看到“柏松亮点”,即在圆形阴影中心的亮点,而圆形的阴影周围是明暗相间的同心圆。 总结以上实验可知:光波在哪个方向受限制,就往哪个方向衍射;当障碍物的大小与光波的波长可比拟时,光的衍射现象最明显;光具有波动性(类比声波)。 如果说上述的实验是光的衍射实验的入门,那么夫琅和费单缝衍射则是光的衍射实验中最常见的仪器。它与之前用的仪器最大的不同就是光源和衍射场到物屏的距离都是无限远,听起来向无法实现似的,但这实质上只是想把入射的光线看成是平行光且在无限远处相干叠加兵形成衍射。其实验装置是一束平行光射在小圆孔s上,再经凸透镜变成,垂直于单缝的光线,光线射到单缝上,根据惠更斯—费涅尔原理,单缝上每一个点都是子波波源,发出衍射波,它们相干叠加形成明暗相间的衍射图样,也

《光学基础学习知识原理与应用》之双折射基础学习知识原理及其应用

双折射原理及应用 双折射(birefringence)是光束入射到各向异性的晶体,分解为两束光而沿不同方向折射的现象。它们为振动方向互相垂直的线偏振光。当光射入各向异性晶体(如方解石晶体)后,可以观察到有两束折射光,这种现象称为光的双折射现象。两束折射线中的一束始终遵守折射定律这一束折射光称为寻常光,通常用o表示,简称o光;另一束折射光不遵守普通的折射定律这束光通常称为非常光,用e表示,简称e光。晶体内存在着一个特殊方向,光沿这个方向传播时不产生双折射,即o光和e光重合,在该方向o光和e光的折射率相等,光的传播速度相等。这个特殊的方向称为晶体的光轴。光轴”不是指一条直线,而是强调其“方向”。晶体中某条光线与晶体的光轴所组成的平面称为该光线的主平面。o光的主平面,e光的光振动在e光的主平面内。 如何解释双折射呢?惠更斯有这样的解释。1.寻常光(o光)和非常光(e光)一束光线进入方解石晶体(碳酸钙的天然晶体)后,分裂成两束光能,它们沿不同方向折射,这现象称为双折射,这是由晶体的各向异性造成的。除立方系晶体(例如岩盐)外,光线进入一般晶体时,都将产生双折射现象。显然,晶体愈厚,射出的光束分得愈开。当改变入射角i时,o光恒遵守通常的折射定律,e光不符合折射定律。2.光轴及主平面。改变入射光的方向时,我们将发现,在方解石这类晶体内部有一确定的方向,光沿这个方向传播时,寻常光和非常光不再分开,不产生双折现象,这一方向称为晶体的光轴。

天然的方解石晶体,是六面棱体,有八个顶点,其中有两个特殊的顶点A和D,相交于A、D两点的棱边之间的夹角,各为102°的钝角.它的光轴方向可以这样来确定,从三个钝角相会合的任一顶点(A或D)引出一条直线,使它和晶体各邻边成等角,这一直线便是光轴方向。当然,在晶体内任何一条与上述光轴方向平行的直线都是光轴。晶体中仅具有一个光轴方向的,称为单轴晶体(例如方解石、石英等)。有些晶体具有两个光轴方向,称为双轴晶体(例如云母、硫磺等)。在晶体中,我们把包含光轴和任一已知光线所组成的平面称为晶体中该光线的主平面,就是o光的主平面;由e光和光轴所组成的平面,就是e光的主平面。 下面通过离子来说明。取一块冰洲石(方解石的一种,化学成分是CaCO3),放在一张有字的纸上,我们将看到双重的像。平常我们把一块厚玻璃砖在字纸上,我们只看到一个像,这个像好象比实际的物体浮起了一点,这是因为光的折射引起的,折射率越大,像浮起来的高度越大,我们可以看到,在冰洲石内的两个像浮起的高度是不同的,这表明,光在这种晶体内成了两束,它们的折射程度不同。这种现象叫做双折射。 下面我们通过一系列实验来说明双折射现象的特点和规律。 1、o光和e光: 如下图,让一束平等的自然光束正入射在冰洲石晶体的一个表面上,我们就会发现光束分解成两束。按照光的折射定律,正入射时光线不应偏折。而上述两束折射光中的一束确实在晶体中沿原方向传

浅谈反证法的原理及应用

摘要 反证法是一种重要的证明方法,它不仅对数学科学体系自身的完善有促进作用,而且对人的思维能力的培养和提高也有极其重要的作用.如果能恰当的使用反证法,就能达到化繁为简,化难为易,化不能为可能的目的.反证法的逻辑思维强,数学语言准确性高,对培养学生严谨的逻辑思维能力,阅读能力,树立正确的数学观具有重要的意义. 本论文主要研究的内容有反证法的由来;具体阐述了反证法的定义,即反证法的概念、分类和作用;反证法具有广泛应用的科学根据;并且着重介绍了反证法的应用,包括反证法在初等数学和高等数学的应用,并提出应用反证法应注意的问题;针对各种问题提出一些具体的教学建议,从而为改进反证法教学提供参考. 关键词:反证法,否定,矛盾,应用

Principle and application of the reduction to absurdity ABSTRACT:Reduction to absurdity is an important method, it not only to improve its own system of mathematical science have stimulative effect, but also has an extremely important role in cultivating and improving the people's thinking ability. If you use apagoge properly, can be simplified, the difficult easy, words can not be as likely to. The logical thinking of reduction to absurdity, the language of mathematics of high accuracy, to cultivate students' rigorouslogical thinking ability, reading ability, is of great significance to establish a correct conception of mathematics. The origin of the main content of the paper is the reduction to absurdity;expounds the definition of absurdity, and concept, apagoge classification; the reduction to absurdity has wide application of scientific basis; and introducesthe application of reduction to absurdity, including the application of reduction to absurdity in elementary mathematics and higher mathematics, and proposed should note that the application of reduction to absurdity problems;to solve these problems and puts forward some specific suggestions for teaching, so as to provide reference for the improvement of the teaching of reduction to absurdity. Keywords: reduction to absurdity, negation, contradiction, application

光的介绍

光的介绍 狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X 射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。 光学的发展简史 光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。 人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。 自《墨经)开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。 1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。 牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。 牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。 惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。 19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝干涉现象。菲涅耳于1818年以杨氏干涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的干涉和衍射现象,也能解释光的直线传播。 在进一步的研究中,观察到了光的偏振和偏振光的干涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。 1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。 1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。 然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解

第二章第三节 惠更斯原理及其应用

第三节惠更斯原理及其应用 教学目标: 1.了解惠更斯原理,以及学会利用惠更斯原理求波阵面 2.了解波的反射现象,知道波的反射定律,并学会利用反射定律解释生活中的的相关现象 3.了解波的折射现象,学会应用惠更斯原理解释波的折射现象。 教学重难点: 重点:知道惠更斯原理,掌握博得反射定律,知道并理解波的折射 难点:应用惠更斯原理求波阵面,应用惠更斯原理解释波的折射。 教学过程: 引言:波在各向同性的均匀介质中传播时,波速、波振面形状、波的传播方向等均保持不变。但是,如果波在传播过程中遇到障碍物或传到不同介质的界面时,则波速、波振面形状、以及波的传播方向等都要发生变化,产生反射、折射、衍射、散射等现象。在这种情况下,要通过求解波动方程来预言波的行为就比较复杂了。惠更斯原理提供了一种定性的几何作图方法,在很广泛的范围内解决了波的传播方向等问题。 一、惠更斯原理 惠更斯(Christian Huygens,1629—1695) 惠更斯的力学研究成果很多。1656年制成了第一座机械钟。1673 年推算出了向心力定律。1678年他完成《光论》,提出了光的波动说, 建立了著名的惠更斯原理。惠更斯原理可以预料光的衍射现象的存在。 在数学方面:发表过关于计算圆周长、椭圆弧及双曲线的著作。 在天文学方面:研制和改进光学仪器上。他1665年发现了土星的 光环和木星的卫星(木卫六)。 1.前提条件 当波在弹性介质中传播时,介质中任一点P的振动,将直 接引起其邻近质点的振动。就P点引起邻近质点的振动而言, P点和波源并没有本质上的区别,即P点也可以看作新的波源。 例如,水面波传播时,遇到障碍物,当障碍物上小孔的大小与 波长相差不多时,就会看到穿过小孔后的波振面是圆弧形的, 与原来的波振面无关,就象以小孔为波源产生的波动一样。 2.惠更斯原理——是关于波面传播的理论 在总结这类现象的基础上,荷兰物理学家惠更斯于1678 年首先提出:介质中任一波面上的各点,都可看成是产生球面子波(或称为次波)的波源;在其后的任一时刻,这些子波的包络面就是新的波面。 3.用惠更斯原理来解释波动的传播方向 不论对机械波还是电磁波,也不论波动所 经过的介质是均匀的还是非均匀的,是各向同 性的还是各向异性的,惠更斯原理都是适用 的。只要知道某一时刻的波面与波速,就可以 根据惠更斯原理,用几何作图方法决定下一时 刻的波面,从而确定波的传播方向。

反证法在几何问题中的应用

反证法在几何问题中的应用 反证法是一种非常重要的数学方法,它在几何的应用极为广泛,在平面几何、立体几何、解析几何都有应用,本文选择几个有代表性的应用,举例加以介绍。 一、证明几何量之间的关系 例1:已知:四边形ABCD 中,E 、F 分别是AD 、BC 的中点,)(2 1CD AB EF +=。 求证:CD AB //。 证明:假设AB 不平行于CD 。如图,连结AC ,取AC 的中点G ,连结EG 、FG 。 ∵E 、F 、G 分别是AD 、BC 、AC 的中点, ∴CD GE //,CD GE 21=;AB GF //,AB GF 2 1=。 ∵AB 不平行于CD , ∴GE 和GF 不共线,GE 、GF 、EF 组成一个三角形。 ∴EF GF GE >+ ① 但EF CD AB GF GE =+=+)(2 1 ② ①与②矛盾。 ∴CD AB // 例2:直线PO 与平面α相交于O ,过点O 在平面α内引直线OA 、OB 、OC ,POC POB POA ∠=∠=∠。 求证:α⊥PO 。 证明:假设PO 不垂直平面α。 作α⊥PH 并与平面α相交于H ,此时H 、O 不重合,连结OH 。 由P 作OA PE ⊥于E ,OB PF ⊥于F , 根据三垂线定理可知,OA HE ⊥,OB HF ⊥。 ∵POB POA ∠=∠,PO 是公共边, ∴POF Rt POE Rt ??? ∴OF OE = 又OH OH = ∴OEH Rt OFH Rt ??? ∴EOH FOH ∠=∠ 因此,OH 是AOB ∠的平分线。 同理可证,OH 是AOC ∠的平分线。 但是,OB 和OC 是两条不重合的直线,OH 不可能同时是AOB ∠和AOC ∠的平分线,产生矛盾。 ∴α⊥PO 。 例3:已知A 、B 、C 、D 是空间的四个点,AB 、CD 是异面直线。 B C D E F G a O P A B C E F H

质谱技术原理与方法简介

质谱技术原理与方法 质谱方法(Mass Spectroscope,MS)是通过正确测定蛋白质分子的质量而进行蛋白质分子鉴定、蛋白质分子的修饰和蛋白质分子相互作用的研究。质谱仪通过测定离子化生物分子的质荷比便可得到相关分子的质量。但长期以来,质谱方法仅限于小分子和中等分子的研究,因为要将质谱应用于生物大分子需要将之制备成气相带电分子,然后在真空中物理分解成离子。但如何使蛋白分子经受住离子化过程转成气相带电的离子而又不丧失其结构形状是个难题。20世纪70年代,解吸技术的出现成功地将蛋白分子转化成气相离子。尔后快原子轰击与其紧密相关的溶液基质二次离子质谱法使得具有极性的、热不稳定的蛋白分子可经受住电离过程。但这些方法仅限于10kD以下蛋白分子的研究。80年代电喷雾电离(ESI)和软激光解吸(SLD)电离技术的发展则使得质谱方法应用于高分子量蛋白分子的研究。 电喷雾电离(ESI)原理可按电荷残留模型予以描述,带电液滴蒸发,液滴变小,液滴表面相斥的静电荷密度增大。当液滴蒸发到某一程度,液滴表面的库仑斥力使液滴爆炸。产生的小带电液滴继续此过程。随着液滴的水分子逐渐蒸发,就可获得自由徘徊的质子化和去质子化的蛋白分子。针对电喷雾电离所产生的多电荷状态,Fenn将多电荷状态理解为对分子质量进行多次独立的测量,并基于联立方程解的平均方法,获得对分子质量的正确估量,解决了多电荷离子信息的问题,使蛋白分子质量测量精度获得极大的提高,并于1988年首次成功地测量了分子量为40 kD的蛋白质分子,精确度达到99.99%。 软激光解吸(SLD)是指从激光脉冲中获得能量后,样品分子以完整的低电荷分子离子释放,然后由电场加速。运用激光解吸电离蛋白分子时,激光的能量和波长、化学/物理基质的吸收和热传递特性,与基质中分析物的分子结构之间需要作合理的选择调配。Tanaka选用了低能量氮激光和含有胶状颗粒的甘油作基质,成功地测定了高分子量的糜蛋白酶原、梭肤酶-A以及细胞色素。由于Tanaka成功的开创性工作,SLD技术迅速发展。目前占主导的方法是基质辅助激

相关主题
文本预览
相关文档 最新文档