当前位置:文档之家› 电力电子晶闸管

电力电子晶闸管

电力电子晶闸管
电力电子晶闸管

2.3 半控型器件—晶闸管

全称晶体闸流管,又称可控硅整流器(SCR)。

1、晶闸管的结构与工作原理

晶闸管结构图、双晶体管模型图、工作原理图和符号图如图1所示,晶闸管的管芯是P1N1P2N2四层半导体,形成3个PN结J1、J2和J3。可等效为PNP和NPN 两个三极管。

图1 晶闸管结构图、双晶体管模型图、工作原理图和符号图

晶闸管的工作原理是:门极电流I↑→I↑→I(I)↑→Ic↑→I↑,阳极A、阴极K饱Kb21b1c2G和导通。

2、晶闸管工作特点是:

(1)承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。

(2)承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。

(3)晶闸管一旦导通,门极就失去控制作用。

(4)要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。3、闸管静态特性

晶闸管静态V-I特性曲线图如图2所示。

图2 晶闸管静态V-I特性曲线图

(1)正向特性:I=0时,器件两端施加正向电压,只有很小的正向漏电流,为正向G阻断状态。正向电压超过正向转折电压U bo,则漏电流急剧增大,器件开

通。随着门极电流幅值的增大,正向转折电压降低。晶闸管本身的压降很小,在1V左右。

(2)反向特性:反向特性类似二极管的反向特性。反向阻断状态时,只有极小的反相漏电流流过。

4、动态特性

晶闸管的开通和关断过程波形如图3所示。

图3晶闸管的开通和关断过程波形

(1)开通过程:延迟时间t:0.5~1.5?s。上升时间t:0.5~3?s。开通时间t:以gtrd上两者之和,t=t+ t。rgtd(2)关断过程:反向阻断恢复时间t,正向阻断恢复时间t,关断时间t是以上两qrrgr者之和t=t+t。普通晶闸管的关断时间约几百微秒。grqrr5、晶闸管的主要参数

(1)电压定额

断态重复峰值电压U:在门极断路而结温为额定值时,允许重复加在器件上的DRM 正向峰值电压。

反向重复峰值电压U:在门极断路而结温为额定值时,允许重复加在器件上的RRM 反向峰值电压。

通态(峰值)电压U:晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰

值T电压。

(2)电流定额

通态平均电流I:在环境温度为40?C和规定的冷却状态下,稳定结温不超过额T(A V)定结温时所允许流过的最大工频正弦半波电流的平均值。标称其为额定电流参数。使用时应按有效值相等的原则来选取晶闸管。

维持电流I:使晶闸管维持导通所必需的最小电流。H擎住电流I:晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最L小电流。对同一晶闸管来说,通常I约为I的2~4倍。HL浪涌电流I:指由于电路异常情况引起的并使结温超过额定结温的不重复性最大TSM正向过载电流。

(3)动态参数

除开通时间t和关断时间t外,还有以下几个参数:qgt断态电压临界上升率

d u/d t:指在额定结温和门极开路的情况下,不导致晶闸管从断态到通态转换的外加电压最大上升率。电压上升率过大,使充电电流足够大,就会使晶闸管误导通。

通态电流临界上升率d i/d t:指在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。如果电流上升太快,可能造成局部过热而使晶闸管损坏。

6、晶闸管的触发电路

(1)触发电路要求

晶闸管的触发电路作用:产生符合要求的门极触发脉冲,保证晶闸管在需要的时刻由阻断转为导通。晶闸管触发电路应满足下列要求:

(a)脉冲的宽度应保证晶闸管可靠导通;触发脉冲应有足够的幅度。

(b)不超过门极电压、电流和功率定额,且在可靠触发区域之内。

(c)有良好的抗干扰性能、温度稳定性及与主电路的电气隔离。

理想的晶闸管触发脉冲电流波形如图4所示。

图4 理想的晶闸管触发脉冲电流波形

t~t?脉冲前沿上升时间(<1?s)。t~t?强脉宽度。I?强脉冲幅值(3I~5I)。GT11GT2 3 M

t1~t4 ?脉冲宽度。I ?脉冲平顶幅值(1.5I~2I)。GTGT(2)晶闸管触发电路

如图5所示。VT构成脉冲放大环节。脉冲变压器TM和附属电路构成脉冲输出环回流VD1导通时,通过脉冲变压器向晶闸管的门极和阴极之间输出触发脉冲。?VT节。.

(或续流)二极管;VD2整流(或检波)二极管;VD3是保护二极管,当脉冲变压器反相输出时,使加到门极和阴极反相电压小于0.7V。电路中电阻的作用是限流。电容的作用是加大初始电流以加速晶闸管导通,也称加速电容。

图5 常见的晶闸管触发电路

7、晶闸管的派生器件

(1)双向晶闸管:集成了两个反向并联晶闸管,共用一个门极,符号及特性见教材32页。

(2)逆导晶闸管:集成了晶闸管和反向并联二极管,正向触发导通,反向不控导页。32通,符号及特性见教材.

晶闸管二极管主要参数及其含义

晶闸管二极管主要参数及其含义 IEC标准中用来表征晶闸管二极管性能特点的参数有数十项但用户经常用到的有十项左右本文就晶闸管二极管的主要参数做一简单介绍 1、正向平均电流I F(AV) (整流 管) 通态平均电流I T(AV) (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大正弦半 波电流平均值此时器件的结温已达到其最高允许温度T jm 仪元公司产品手册中均 给出了相应通态电流对应的散热器温度T HS 或管壳温度 T C 值用户使用中应根据实 际通态电流和散热条件来选择合适型号的器件 2、正向方均根电流I FRMS (整流管) 通态方均根电流I TRMS (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大有效电 流值用户在使用中须保证在任何条件下流过器件的电流有效值不超过对应壳温下的方均根电流值 3、浪涌电流I FSM (整流管)I TSM (晶闸管) 表示工作在异常情况下器件能承受的瞬时最大过载电流值用10ms底宽正弦半波峰值表示仪元公司在产品手册中给出的浪涌电流值是在器件处于最高允许 结温下施加80% V RRM 条件下的测试值器件在寿命期内能承受浪涌电流的次数是有限的用户在使用中应尽量避免出现过载现象

4、断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压一般用单脉冲测试防止器件损坏用户在测试或使用中应禁止给器件施加该电压值以免损坏器件 5、断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时断态和反向所能承受的最大重复峰值电压一般取器件不重复电压的90%标注高压器件取不重复电压减100V标注用户在使用中须保证在任何情况下均不应让器件承受的实际电压超过其断态和反向重复峰值电压 6、断态重复峰值漏电流I DRM 反向重复峰值漏电流I RRM 为晶闸管在阻断状态下承受断态重复峰值电压V DRM 和反向重复峰值电压V RRM 时流过 元件的正反向峰值漏电流该参数在器件允许工作的最高结温Tjm下测出 7、通态峰值电压V TM (晶闸管) 正向峰值电压V FM (整流管)

电力电子题库含答案

1.一型号为KP10-7的晶闸管,U TN= 700V I T(A V)= 10A 。1 2.中间直流侧接有大电容滤波的逆变器是电压型逆变器,交流侧输出电压波形为矩形波。 3.晶闸管串联时,给每只管子并联相同阻值的电阻R是__均压______措施。4.在SPWM的调制中,载波比是载波频率和调制波频率的比值。5.考虑变压器漏抗的可控整流电路中,在换相过程期间,两个相邻的晶闸管同时导通,对应的电角度称为换相重叠角。 6.功率晶体管GTR从高电压小电流向低电压大电流跃变的现象称为二次击穿。7.三相半波可控整流电阻性负载电路中,控制角α的最大移相范围是150°。8.三相全控桥电路有 6 只晶闸管,应采用宽脉冲或双窄脉冲才能保证电路工作正常。电压连续时每个管导通120 度,每间隔60 度有一只晶闸管换流。接在同一桥臂上两个晶闸管触发脉冲之间的相位差为180°。 9.型号为KP100-8的晶闸管其额定参数为:额定电压800v,额定电流100 A 。10.考虑变压器漏抗的可控整流电路中,在换相过程期间,两个相邻的晶闸管同时导通,对应的电角度称为换相重叠角 11.抑制过电压的方法之一是用_电容__吸收可能产生过电压的能量,并用电阻将其消耗。而为抑制器件的du/dt和di/dt,减小器件的开关损耗,可采用接入缓冲电路的办法。 12.在交-直-交变频电路中,中间直流环节用大电容滤波,则称之为电压型逆变器,若用大电感滤波,则为电流型逆变器。 13.锯齿波触发电路由脉冲形成环节、锯齿波的形成和脉冲移相环节、同步环节、双窄脉冲形成环节构成。 14.若输入相电压为U2,单相桥式电路的脉冲间隔= 180 ,晶闸管最大导θ180 ,晶闸管承受的最大电压U dm= 0.9U2 , 整流电压脉动通= m a x 次数m= ; 三相半波电路的脉冲间隔= 120 , 晶闸管最大导通 θ150 ,晶闸管承受的最大电压U dm= 1.17U2 ,整流电压脉动次数= max m= ; 15.GTO、GTR、MOSFET、IGBT分别表示:可关断晶闸管、电力晶体管、电力场效应晶体管、绝缘栅双极晶体管 16.在三相半波可控整流电路中,电感性负载,当控制角大于30°时,输 出电压波形出现负值,因而常加续流二级管。 17.三相电压型逆变电路基本电路的工作方式是180°导电方式,设输入电压为U d,输出的交流电压波形为矩形,线电压宽度为180°其幅值为U d;相电压宽度为120°,幅值为2/3 U d。 二、判断题 1.各种电力半导体器件的额定电流,都是以平均电流表示的。(× ) 2.对于门极关断晶闸管,当门极上加正触发脉冲时可使晶闸管导通,而当门极

晶闸管

课堂教学安排 晶闸管的结构及性能特点 (一)普通晶闸管 普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G、图8-4是其电路图形符号。 普通晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP 晶闸管和一只NPN晶闸管组成的组合管,如图8-5所示。 当晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G所加电压是什么极性,晶闸管均处于阻断状态。当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G 加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K极之间压降约为1V。 普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,晶闸管将维持低阻导通状态。只有把阳极A电压撤除或阳极A、阴极K

之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。普通晶闸管一旦阻断,即使其阳极A与阴极K之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。 普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。 (二)双向晶闸管 双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和门极G。图8-6是双向晶闸管的结构和等效电路,图8-7是其电路图形符号。 双向晶闸管可以双向导通,即门极加上正或负的触发电压,均能触发双向晶闸管正、反两个方向导通。图8-8是其触发状态。

电力电子技术 复习题答案

第二章: 1.晶闸管的动态参数有断态电压临界上升率du/dt和通态电流临界上升率等,若 du/dt过大,就会使晶闸管出现_ 误导通_,若di/dt过大,会导致晶闸管_损坏__。 2.目前常用的具有自关断能力的电力电子元件有电力晶体管、可关断晶闸管、 功率场效应晶体管、绝缘栅双极型晶体管几种。简述晶闸管的正向伏安特性 答: 晶闸管的伏安特性 正向特性当IG=0时,如果在器件两端施加正向电压,则晶闸管处于正向阻断状态,只有很小的正向漏电流流过。 如果正向电压超过临界极限即正向转折电压Ubo,则漏电流急剧增大,器件开通。 随着门极电流幅值的增大,正向转折电压降低,晶闸管本身的压降很小,在1V左右。 如果门极电流为零,并且阳极电流降至接近于零的某一数值IH以下,则晶闸管又回到正向阻断状态,IH称为维持电流。 3.使晶闸管导通的条件是什么 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。 4.在如下器件:电力二极管(Power Diode)、晶闸管(SCR)、门极可关断晶闸管 (GTO)、电力晶体管(GTR)、电力场效应管(电力MOSFET)、绝缘栅双极型晶体管(IGBT)中,属于半控型器件的是 SCR 。 5.晶闸管的擎住电流I L 答:晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。 6.晶闸管通态平均电流I T(AV) 答:晶闸管在环境温度为40C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。标称其额定电流的参数。 7.晶闸管的控制角α(移相角) 答:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。

晶闸管及其应用讲解

晶闸管及其应用 课程目标 1 了解晶闸管结构,掌握晶闸管导通、关断条件 2 掌握可控整流电路的工作原理及分析 3 理解晶闸管的过压、过流保护 4 掌握晶闸管的测量、可控整流电路的调试和测量 课程内容 1 晶闸管的结构及特性 2 单相半波可控整流电路 3 单相半控桥式整流电路 4 晶闸管的保护 5 晶闸管的应用实例 6 晶闸管的测量、可控整流电路的调试和测量 学习方法 从了解晶闸管的结构、特性出发,掌握晶闸管的可控整流应用,掌握晶闸管的过压和过流保护方式,结合实物和实训掌握晶闸管管脚及好坏的判断,通过应用实例,了解晶闸管的典型应用。 课后思考 1晶闸管导通的条件是什么?导通时,其中电流的大小由什么决定?晶闸管阻断时,承受电压的大小由什么决定? 2为什么接电感性负载的可控整流电路的负载上会出现负电压?而接续流二极管后负载上就不出现负电压了,又是为什么? 3 如何用万用表判断晶闸管的好坏、管脚? 4 如何选用晶闸管?

晶闸管的结构及特性 一、晶闸管外形与符号: 图5.1.1 符号 图5.1.2 晶闸管导通实验电路图 为了说明晶闸管的导电原理,可按图5.1.2所示的电路做一个简单的实验。 (1)晶闸管阳极接直流电源的正端,阴极经灯泡接电源的负端,此时晶闸管承受正向电压。控制极电路中开关S断开(不加电压),如图5.1.2(a)所示,这时灯不亮,说明晶闸管不导通。 (2)晶闸管的阳极和阴极间加正向电压,控制极相对于阴极也加正向电压,如图5.1.2(b)所示.这时灯亮,说明晶闸管导通。 (3)晶闸管导通后,如果去掉控制极上的电压,即将图5.1.2(b)中的开关S断开,灯仍然亮,这表明晶闸管继续导通,即晶闸管一旦导通后,控制极就失去了控制作用。 (4)晶闸管的阳极和阴极间加反向电压如图5.1.2(C),无论控制极加不加电压,灯都不亮,晶闸管截止。 (5)如果控制极加反向电压,晶闸管阳极回路无论加正向电压还是反向电压,晶闸管都不导通。 从上述实验可以看出,晶闸管导通必须同时具备两个条件: (1) 晶闸管阳极电路加正向电压; (2) 控制极电路加适当的正向电压(实际工作中,控制极加正触发脉冲信号)。

电力电子第二讲晶闸管

2.3 半控型器件—晶闸管 全称晶体闸流管,又称可控硅整流器(SCR)。 1、晶闸管的结构与工作原理 晶闸管结构图、双晶体管模型图、工作原理图和符号图如图1所示,晶闸管的管芯是P1N1P2N2四层半导体,形成3个PN结J1、J2和J3。可等效为PNP和NPN两个三极管。 图1 晶闸管结构图、双晶体管模型图、工作原理图和符号图 晶闸管的工作原理是:门极电流I G↑→I b2↑→I c2(I b1)↑→Ic1↑→I K↑,阳极A、阴极K饱和导通。 2、晶闸管工作特点是: (1)承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。 (3)晶闸管一旦导通,门极就失去控制作用。 (4)要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。 3、闸管静态特性 晶闸管静态V-I特性曲线图如图2所示。 图2 晶闸管静态V-I特性曲线图 (1)正向特性:I G=0时,器件两端施加正向电压,只有很小的正向漏电流,为正向阻断状态。正向电压超过正向转折电压U bo,则漏电流急剧增大,器件开通。随着门极电流幅值的增大,正向转折电压降低。晶闸管本身的压降很小,在1V左右。 (2)反向特性:反向特性类似二极管的反向特性。反向阻断状态时,只有极小的反相漏电流流过。 4、动态特性 晶闸管的开通和关断过程波形如图3所示。 图3晶闸管的开通和关断过程波形 (1)开通过程:延迟时间t d:0.5~1.5?s。上升时间t r:0.5~3?s。开通时间t gt:以上两者之和,t gt=t d+ t r。 (2)关断过程:反向阻断恢复时间t rr,正向阻断恢复时间t gr,关断时间t q是以上两者之和t q=t rr+t gr。普通晶闸管的关断时间约几百微秒。 5、晶闸管的主要参数 (1)电压定额 断态重复峰值电压U DRM:在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。

晶闸管的结构以及工作基本知识

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。

图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。

图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。 三、晶闸管的静态特性 晶闸管共有3个PN 结,特性曲线可划分为(0~1)阻断区、(1~2)转折区、(2~3)负阻区及(3~4)导通区。如图5所示。

电力电子技术复习提纲

《电力电子技术》复习提纲 期末考试: 总成绩分配比例:平时10%+实验20%+期末70% 题型:填空、简答、计算、分析题(1308、1309) 第一章绪论 本章要点:1、电力电子技术概念。 2、电力变换的种类。 1电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。 2 电力变换的种类: (1)交流变直流AC-DC:整流 (2)直流变交流DC-AC:逆变 (3)直流变直流DC-DC:一般通过直流斩波电路实现 (4)交流变交流AC-AC:一般称作交流电力控制 3 电力电子技术分类:分为电力电子器件制造技术和变流技术 4.电力电子技术的诞生1957年美国通用电气公司研制出第一个晶闸管,1904年出现电子管,1947年美国著名贝尔实验室发明了晶体管。 5 电子技术分为信息电子技术与电力电子技术。信息电子技术主要用于信息处理,电力电子技术主要用于电力变换。 第2章电力电子器件 本章要点:1、电力电子器件的分类。 2、晶闸管的基本特性和主要参数(额定电流和额定电压的确定)。 3、全控型器件的电气符号。 复习参考:P42 2、3、4 1、电力电子器件一般工作在开关状态。 2、通常情况下,电力电子器件功率损耗主要为通态损耗,而当器件开关频率较高时,功率损耗主要为开关损耗。 3、电力电子器件组成的系统,一般由控制电路、驱动电路、主电路三部分组成,由于电路中存在电压和电流的过冲,往往需添加保护电路。 4、按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为单极型器件、双极型器件、复合型器件三类。 5、按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为电压驱动型和电流驱动型两类。 6、属于不可控器件的是电力二极管,属于半控型器件的是晶闸管,属于全控型器件的是GTO 、GTR 、电力MOSFET 、IGBT ;属于单极型电力电子器件的有电力MOSFET,属于双极型器件的有电力二极管、晶闸管、GTO 、GTR,属于复合型电力电子器件得有IGBT ;在可控的器件中,容量最大的是晶闸管,工作频

电力电子 填空

1、为减少自身损耗,提高效率,电力电子器件一般都工作在__开关_______状态。当器 件的工作频率较高时,_开关______损耗会成为主要的损耗。 2、在PWM控制电路中,载波频率与调制信号频率之比称为___载波比__________,当它 为常数时的调制方式称为_同步________调制。在逆变电路的输出频率范围划分成若干频段,每个频段内载波频率与调制信号频率之比为桓定的调制方式称为__分段同步调制__________调制。 3、面积等效原理指的是,_冲量________相等而__形状_____不同的窄脉冲加在具有惯性 的环节上时,其效果基本相同。 4、在GTR、GTO、IGBT与MOSFET中,开关速度最快的是__MOSFET_______,单管输出功 率最大的是_____________,应用最为广泛的是___IGBT________。 5、设三相电源的相电压为U2,三相半波可控整流电路接电阻负载时,晶闸管可能承受的最大反 向电压为电源线电压的峰值,即根号6 ,其承受的最大正向电压为根号2 。 6、逆变电路的负载如果接到电源,则称为有源逆变逆变,如果接到负载,则称 为无源逆变。 7、___GTR______存在二次击穿现象,____IGBT________存在擎住现象。 8、功率因数由和这两个因素共同决定 的。 9、晶闸管串联时,给每只管子并联相同阻值的电阻R是均压_ 措施。 10、同一晶闸管,维持电流I H 与掣住电流I L 在数值大小上有I L _(2~4)I H 。

11、电力变换通常可分 为:AC-DC 、AC-AC 、DC-DC 和DC-AC 。 12、在下图中,_V1______和__VD1______构成降压斩波电路使直流电动机电动运行,工作 于第1象限;V2___和__VD2_____构成升压斩波电路,把直流电动机的动能 转变成为电能反馈到电源,使电动机作再生制动运行,工作于_第2___象限。 13、请在正确的空格内标出下面元件的简称: 电力晶体管GTR ;可关断晶闸管GTO ;功率场效应晶体管 MOSFET ;绝缘栅双极型晶体管 IGBT ;IGBT 是MOSFET 和GTR 的复 合管。 14、晶闸管对触发脉冲的要求是要有足够的驱动功 率、触发前沿要陡幅值要 高和触发脉冲要与晶闸管阳极电压同 步。 15、多个晶闸管相并联时必须考虑均流的问题,解决的方是串专用均流电 抗器。

关于双向晶闸管常见问题

同学:老师,双向晶闸管看起来与单向晶闸管的外形差不多,也有三个电极(图 2 ),它的主要工作特性是什么呢? 教师:双向晶闸管相当于两个单向晶闸管的反向并联(图3 ),但只有一个控制极。这样,双向晶闸管在正、反两个方向上都能够控制导电,而单向晶闸管却是一种可控的单方向导电器件。给双向晶闸管的控制极加正的或负的触发脉冲,都能使管子触发导通。这样,触发电路的设计就具有很大的灵活性,可以采用多种不同的触发方式。此外,双向晶闸管的两个主电极不再分为阳极和阴极,而是称为第一电极T1 和第二电极T2 。双向晶闸管在电路中不能用作可控整流元件,主要用来进行交流调压、交流开关、可逆直流调速等等。 同学:双向晶闸管触发电路(图1 )中,使用了双向触发二极管,我们过去没有听说过这种管子,这是一种什么样的器件呢? 老师:双向触发二极管(图4 )从结构上来说,是一种没有控制极的晶闸管,我们可以把它看成是两个二极管的反向并联。这样,无论在双向触发二极管的两极之间外加什么极性的电压,只要电压的数值达到管子的转折电压值,就能使它导通。值得注意的是,双向触发二极管的转折电压较高,一般在20 ~40V 范围。

同学:老师,您给我们讲讲双向触发二极管组成的双向晶闸管触发电路的工作原理吧。 老师:调压器电路主要由阻容移相电路和双向晶闸管两部分组成。我们单独画出这两部分电路(图5 ),R5 、RP 和C5 构成阻容移相电路。合上电源开关S ,交流电源电压通过R5 、RP 向电容器C5 充电,当电容器C5 两端的电压上升到略高于双向触发二极管ST 的转折电压时,ST 和双向晶闸管VS 相继导通,负载RL 得电工作。当交流电源电压过零瞬间,双向晶闸管自行关断,接着C5 又被电源反向充电,重复上述过程。分析电路时,大家应该意识到,触发电路是工作在交流电路中的,交流电压的正、负半周分别会发出正、负触发脉冲送到双向晶闸管的控制极,使管子在正、负半周内对称地导通一次。改变R P 的阻值,就改变了C5 的充电速度,也就改变了双向晶闸管的导通角,相应地改变了负载RL 上的交流电压,实现了交流调压。 同学:您刚刚画出的电路图(图5 )是不是可以直接作交流调压器使用呢? 老师:可以。这就是一个简易型调压器,在要求不高的场合(如灯具调光)完全可以使用。这种调压器的缺点有两个:一是负载RL 上的电压不能从零伏起调,最低只能调到20V 。当RP 调到最大值时,C5 充电速度变得很慢,以致在交流电压的半个周期时间内,C5 上的电压还来不及上升到双向触发二极管的转折电压,双向晶闸管就不能导通。为了克服这一缺陷,增加了由R4 、C4 和R6 组成的另一条阻容移相电路(图 1 )。当RP 调到极限值以上时,C4 上的电压可经R6 向C5 充电,使C5 上的电压达到双向触发二极管的转折电压,以保证在低输出电压下双向晶闸管仍能导通。适当调节R4 ,就可以得到较低的起调电压。另一个缺点是双向晶闸管导通瞬间的突变电流形成的脉冲干扰,会影响调幅收音机和一些通信设备的正常工作,简易型调压器不能抑制这种脉冲干扰。 同学:怎么抑制晶闸管导通瞬间产生的电磁干扰呢? 老师:可以利用滤波电路。大家再看电路图(图1 )。电感L 串联在主电路上,对突变电流呈现很大的阻抗,起到了平滑滤波作用;R1 、C1 支路并联在电源线上,将高频干扰电流旁路。此外,与负载R L 并联的R2 、C3 支路进一步滤除了负载电流突变产生的脉冲干扰。这样,由于采用了双重滤波电路,起到了较强的抑制干扰的作用。

晶闸管(可控硅)的结构与工作原理

一、晶闸管的基本结构 晶闸管(Semi co ndu cto rC ont roll ed Re ctifier 简称SCR)是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K)和门极(G)。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V左右,特性曲线CD段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <, A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

《电力电子技术》第1章课后习题答案

《电力电子技术》第1章课 后习题答案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1.1 晶闸管导通的条件是什么由导通变为关断的条件是什么 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:u AK>0且u GK>0。 要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。 1.2晶闸管非正常导通方式有几种 1.3 (常见晶闸管导通方式有5种,见课本14页,正常导通方式有:门级加触 发电压和光触发) 答:非正常导通方式有: (1) Ig=0,阳极加较大电压。此时漏电流急剧增大形成雪崩效应,又通过正反馈放大漏电流,最终使晶闸管导通; (2) 阳极电压上率du/dt过高;产生位移电流,最终使晶闸管导通 (3) 结温过高;漏电流增大引起晶闸管导通。 1.3 试说明晶闸管有那些派生器件。 答:晶闸管派生器件有:(1)快速晶闸管,(2)双向晶闸管,(3)逆导晶闸管,(4)光控晶闸管 1.4 GTO和普通晶闸管同为PNPN结构,为什么GTO能够自关断,而普通晶闸管不能? 答:GTO和普通晶闸管同为 PNPN 结构,由 P1N1P2 和 N1P2N2 构成两个晶体管 V1、V2 分别具有共基极电流增益α1 和α2,由普通晶闸管的分析可得,α1 + α 2 = 1 是器件临界导通的条件。α1 + α 2>1 两个等效晶体管过饱和而导通;α1 + α 2<1 不能维持饱和导通而关断。 GTO 之所以能够自行关断,而普 通晶闸管不能,是因为 GTO 与普通晶闸管在设计和工艺方面有以下几点不同:

晶闸管的电路符号和图片识别

晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅。它是由PNPN四层半导体构成的元件,有三个电极、阳极A、阴极K和控制极G,晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性好.在调速、调光、调压、调温以及其他各种中都有它的身影. 可控硅分为单向的和双向的,符号也不同.单向可控硅有三个PN结,由最外层的P极和N极引出两个电极,分别称为阳极和阴极,由中间的P极引出一个控制极. 一、晶闸管的种类 晶闸管有多种分类方法。 (一)按关断、导通及控制方式分类 晶闸管按其关断、导通及控制方式可分为普通晶闸管、双向晶闸管、逆导晶闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。 (二)按引脚和极性分类 晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。 (三)按封装形式分类 晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封晶闸管又分为带散热片型和不带散热片型两种。 (四)按电流容量分类 晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。通常,大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或陶瓷封装。 (五)按关断速度分类

晶闸管按其关断速度可分为普通晶闸管和高频(快速)晶闸管。 二:晶闸管的工作条件: 1. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于关断状态。 2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。 3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。 4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。 三:晶闸管的电路符号

晶闸管的结构及性能特点

晶闸管的结构及性能特点 (一)普通晶闸管 普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G、图8-4是其电路图形符号。 普通晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP晶闸管和一只NPN晶闸管组成的组合管,如图8-5所示。 当晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G 所加电压是什么极性,晶闸管均处于阻断状态。当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K 极之间压降约为1V。 普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K 之间仍保持正向电压,晶闸管将维持低阻导通状态。只有把阳极A电压撤除或

阳极A、阴极K之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。普通晶闸管一旦阻断,即使其阳极A与阴极K 之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。 普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。 (二)双向晶闸管 双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和门极G。图8-6是双向晶闸管的结构和等效电路,图8-7是其电路图形符号。

双向晶闸管可以双向导通,即门极加上正或负的触发电压,均能触发双向晶闸管正、反两个方向导通。图8-8是其触发状态。

电力电子技术试卷答案

电力电子技术答案 一、填空题(每小题2分,共30分) 1.对同一晶闸管,维持电流I H与擎住电流I L在数值大小上有I L____>____I H。 2.功率集成电路PIC分为二大类,一类是高压集成电路,另一类是智能功率集成电路。 3.晶闸管断态不重复电压U DSM与转折电压U BO数值大小上应为,U DSM__<______U BO。 4.电阻性负载三相半波可控整流电路中,晶闸管所承受的最大正向电压U Fm等于__√2U2__,设U2 为相电压有效值。 5.三相半波可控整流电路中的三个晶闸管的触发脉冲相位按相序依次互差_1200___。 6.对于三相半波可控整流电路,换相重叠角的影响,将使用输出电压平均值_降低。 7.晶闸管串联时,给每只管子并联相同阻值的电阻R是均压措施。 8.三相全控桥式变流电路交流侧非线性压敏电阻过电压保护电路的连接方式有_△、Y二种方式。 9.抑制过电压的方法之一是用___RC_吸收可能产生过电压的能量,并用电阻将其消耗。 10.180°导电型电压源式三相桥式逆变电路,其换相是在同一桥臂的上、下二个开关元件之间进行。 11.当晶闸管承受反向阳极电压时,不论门极加何种极性触发电压,管子都将工作在阻断状态。 12.单相半波可控整流电阻性负载电路中,控制角α的最大移相范围是0-1800。 13.单相全控桥式整流大电感负载电路中,控制角α的移相范围是0-900。 14.三相半波可控整流电路的自然换相点是距相应相电压原点300。 15.电流型逆变器中间直流环节贮能元件是电感。 二、简答题(每小题6分,共30分) 1.双向晶闸管额定电流的定义和普通晶闸管额定电流的定义有什么不同?额定电流为100A的两只普通晶闸管反并联可用额定电流多大的双向晶闸管代替? 答:双向晶闸管额定电流用有效值定义,普通晶闸管额定电流平均值定义。额定电流为100A的两只普通晶闸管反并联可用额定电流222A双向晶闸管代替。 2.在三相全控桥式整流电路中,如共阴极组的一只晶闸管短路,则电路会发生什么现象?应如何保护晶闸管? 答:电路会发生短路现象。应对保护晶闸管进行过电流、过电压保护以及正向电压上升率和电流上升率抑制。 3.说明有源逆变和无源逆变的概念。

单向晶闸管的基本结构及工作原理

单向晶闸管的基本结构及工作原理 晶闸管有许多种类,下面以常用的普通晶闸管为例,介绍其基本结构及工作原理。 单向晶闸管内有三个PN 结,它们是由相互交叠的4 层P区和N区所构成的.如图17-1(a) 所示。晶闸管的三个电极是从P1引出阳极A,从N2引出阳极K ,从P2引出控制极G ,因此可以说它是一个四层三端 半导体器件。 为了便于说明.可以把图17-1 (a) 所示晶闸管看成是由两部分组成的[见图17-1(b)],这样可以把晶闸管等效为两只三极管组成的一对互补管.左下部分为NPN型管,在上部分为PNP 型管[见图17-1 (c)]。 当接上电源Ea后,VT1及VT2都处于放大状态,若在G 、K 极间加入一个正触发信号,就相当于在V T1基极与发射极回路中有一个控制电流IC,它就是VT1的基极电流IB1。经放大后,VT1产生集电极电流ICI。此电流流出VT2 的基极,成为VT2 的基极电流IB2。于是, VT2 产生了集电极电流IC2。IC2再流入VT1 的基极,再次得到放大。这样依次循环下去,一瞬间便可使VT1和VT2全部导通并达到饱和。所以,当晶闸管加上正电压后,一输入触发信号,它就会立即导通。晶闸管一经导通后,由于导致VT1基极上总是流过比控制极电流IG大得多的电流,所以即使触发信号消失后,晶闸管仍旧能保持导通状态。只有降低电源电压Ea,使VT1、VT2 集电极电流小于某一维持导通的 最小值,晶闸管才能转为关断状态。 如果把电源Ea反接,VT1 和VT2 都不具备放大工作条件,即使有触发信号,晶闸管也无法工作而处于关断状态。同样,在没有输入触发信号或触发信号极性相反时,即使晶闸管加上正向电压.它也无法导通。 上述的几种情况可参见图17-2 。

光耦MOC3041的接法例子

“MOC3041”的应用 图2是用双向可控硅的云台控制单路电路图。图中的光耦MOC3041是用来隔离可控硅上的交流高压和直流低压控制信号的。其输出用来触发双向可控硅,选用ST Microelectronics公司的T4系列,内部集成有缓冲续流电路,不用在双向可控硅两端并联RC吸收电路,可以直接触发,电路设计比较简单。 P1.0通过可控硅、交流接触器、过流保护器和断相保护器控制电机,图中仅给出带过零触发的双向晶闸管触发电路。MOC3041为光耦合双向可控硅驱动器,输入端驱动电流为15mA,适用于220V交流电路。 1、MOC3041的工作电流仅十余个毫安,直接驱动20瓦的功率非常勉强,不敢保证长时间工作不会烧坏,应该让3041驱动97A6的可控硅,再用可控硅驱动电磁阀。 2、实践证明,51单片机驱动PNP管的时候,在工作条件接近临界点的时候,会出现关不断的现象,其原因在于:(1)端口的高电平并不是严格的Vcc电压,而是比Vcc略低,这种略低的电压足以形成给Q1一个很小的偏置电压Vbe,虽然该电压远小于0.7V,但经过三极管放大后,却能够造成Q1集电极有极小的电流存在,尽管该电流不足以导致LED发出用肉眼

能看到的亮光,但是在密封的光耦合器内,却能够导致光耦合区工作;(2)PNP管要比NPN 极管有更大的穿透电流,即:在基极B完全断开的情况下,集电极仍然有极小的电流存在。 综合以上两点,该电路的设计是存在缺欠的,改进方法如下: 1、MOC3041与气阀之间加入一个可控硅(必须) 2、建议改用NPN管驱动,如果必须要用PNP管,就应该在B和E之间接一个10K左右的电阻;或者在发射极串入一个二极管,以起到钳位作用,即保证PNP管能可*关断;或者干脆将耦合器的1和2脚改接在发射极,并让集电极通过电阻接地。 1、不推荐用3041直接驱动电磁阀,加一个可控硅非常有必要。 2、用单片机直接驱动3041是可以的。 3、用2K电阻能可*驱动,因为内部的光耦合几乎是100%的耦合,只要微弱发光即可。 例2 交流接触器C 由双向晶闸管KS 驱动。光电耦合器MOC3041 的作用是触发双向晶闸管KS 以及隔离单片机系统和接触器系统。MOC3041 的输入端接7407,由单片机的P1.1端控制。P1.1输出低电平时,KS导通,接触器C吸合。P1.1输出高电平时,KS关断,接触器C释放。MOC3041内部带有过零控制电路,因此KS 工作在过零触发方式。 例3 单片机处理完数据后,发出控制信号控制外电路工作,开关型驱动接口中单片机控制输出的信号是开关量,有发光二极管驱动接口,光电耦合器驱动接口,液晶显示器驱动接口,晶闸管输出型驱动接口和继电器型驱动接口。控制扬声器采用的是晶闸管输出型光电耦合驱动接口。 电路如图2 所示。晶闸管输出型光电耦合器的输出端是光敏晶闸管。当光电耦合器的输入端有一定的电流流入时,晶闸管导通。采用4N 40单相晶闸管输出型光电耦合器,当输入端有15-30mA的电流时输出端的晶闸管导通。输出端的额定电压为400V ,额定电流有效值为300mA。4N 40的6脚是输出晶闸管的控制端,不使用此端时,可对阴极接一电阻。所以,当8031的P1.0为低电平时,二极管导通,发光,触发晶闸管使其导通,扬声器报警。自动通车接口电路设计 图2 光电耦合器驱动接口电路 8031与自动停车电路间用的是交流电磁式接触器的功率接口。具体电路如图3 所示。

最全电力电子技术试题及答案

最全电力电子技术试题及答案 1、请在空格内标出下面元件的简称:电力晶体管GTR;可关断晶闸管GTO ;功率场效应晶体管MOSFET;绝缘栅双极型晶体管IGBT;IGBT是MOSFET 和GTR 的复合管。 2、晶闸管对触发脉冲的要求是要有足够的驱动功率、触发脉冲前沿要陡幅值要高和触发脉冲要与晶闸管阳极电压同步。 3、多个晶闸管相并联时必须考虑均流的问题,解决的方法是串专用均流电抗器。。 4、在电流型逆变器中,输出电压波形为正弦波波,输出电流波形为方波波。 5、型号为KS100-8的元件表示双向晶闸管晶闸管、它的额定电压为800V伏、额定有效电流为100A安。 6、180°导电型三相桥式逆变电路,晶闸管换相是在_同一桥臂上的上、下二个元件之间进行;而120o导电型三相桥式逆变电路,晶闸管换相是在_不同桥臂上的元件之间进行的。 7、当温度降低时,晶闸管的触发电流会增加、、正反向漏电流会下降、;当温度升高时,晶闸管的触发电流会下降、、正反向漏电流会增加。 8、在有环流逆变系统中,环流指的是只流经两组变流器之间而 不流经负载的电流。环流可在电路中加电抗器来限制。为了减小环流一般采用控制角α= β的工作方式。 9、常用的过电流保护措施有快速熔断器、串进线电抗器、接入直流快速开关、控制快速移相使输出电压下降。(写出四种即可) 10、逆变器按直流侧提供的电源的性质来分,可分为电压型型逆变器 和电流型型逆变器,电压型逆变器直流侧是电压源,通常由可控整流输出在最靠近逆变桥侧用电容器进行滤波,电压型三

相桥式逆变电路的换流是在桥路的本桥元件之间元件之间换流,每只晶闸管导电的角度是180o度;而电流型逆变器直流侧是电流源,通常由可控整流输出在最靠近逆变桥侧是用电感滤波,电流型三相桥式逆变电路换流是在异桥元件之间元件之间换流,每只晶闸管导电的角度是120o 度。 11、直流斩波电路按照输入电压与输出电压的高低变化来分类有降压斩波电路;升压斩波电路;升降压斩波电路。 12、由晶闸管构成的逆变器换流方式有负载换流和强迫换流。 13、按逆变后能量馈送去向不同来分类,电力电子元件构成的逆变器可分为有源、逆变器与无源逆变器两大类。 14、有一晶闸管的型号为KK200-9,请说明KK快速晶闸管;200表 示表示200A,9表示900V。 15、单结晶体管产生的触发脉冲是尖脉冲脉冲;主要用于驱动 小功率的晶闸管;锯齿波同步触发电路产生的脉冲为强触发脉冲脉冲;可以触发大功率的晶闸管。 17、为了减小变流电路的开、关损耗,通常让元件工作在软开关状态,软 开关电路种类很多,但归纳起来可分为零电流开关与零电压开关两大类。 18、直流斩波电路在改变负载的直流电压时,常用的控制方式有等频调宽控制;等宽调频控制;脉宽与频率同时控制三种。 19、由波形系数可知,晶闸管在额定情况下的有效值电流为I Tn等于 1.57 倍I T(A V),如果I T(A V)=100安培,则它允许的有效电流为157安培。通常在选择晶闸管时还要留出 1.5—2倍的裕量。 20、通常变流电路实现换流的方式有器件换流,电网换流,负载换流,强迫换流四种。 21、在单相交流调压电路中,负载为电阻性时移相范围是π 0, →

晶闸管模块的应用

晶闸管智能模块发展史及后来的应用 摘要:富安时介绍晶闸管thyristor可控硅模块的接图,晶闸管功率控制器主要技术参数及其应用范围。电焊设备、激光电源、励磁电源、电镀电解电源、调功、调光、工业炉温控、固态动力开关、牵引、直流拖动、大吊车驱动、搅拌电源、电机软起动列出这种模块的控制方法及其电连接图。晶闸管调整器体积小,功能齐全,联线简单,控制方便,性能稳定可靠是这种模块的特点,而增大容量,扩大功能,降低成本,系列化晶闸管功率控制器模块今后发展趋势。 1概况 目前,富安时晶闸管的制造工艺和设计应用技术已相当成熟,正沿着大功率化和模块化二个方向前进:一是为高压真流输电(HVDC),静止无功补偿(SVC),超大功率高压变频调速以及几十万安培的直流电源领域用的125mm,8000V以上晶闸管的稳定生产而开

展研发工作;二是向着体积更小,重量更轻,结构更紧凑,可靠性更高,使用更方便,内部接线电路各异和功能不同的模块化开展技术改进工作。 晶闸管功率控制器模块和整流二极管模块自20世纪70年代初问世以来获得了蓬勃发展,目前已能大批量生产各种类型的电力半导体模块,并广泛应用于国民经济各部门,为工业发展,技术进步,节能、节电、节材发挥了极大作用。但是由于晶闸管是电流控制的电力半导体器件,所以需要较大的脉冲触发功率才能驱动晶闸管,而且它的触发系统电路复杂,体积大,安装调试较难,抗干扰和可靠性较差,制造成本也高,又因其触发系统易产生电磁干扰,难与微机接口,不易实现微机控制。多年来,世界各国围绕如何更加方便、可靠、高效地使用晶闸管取得二方面的进展:一是把分立器件芯片按一定电路联成后封装成一般模块,给用户带来一定的使用方便;二是将门极触发系统的部分分立元器件制成专用集成触发电路,简化了触发系统。但是所有这些并未摆脱将晶闸管主电路与门极触发系统分立制作的传统方式,也没有出现过把复杂庞大的触发系统、检测保护系统和大功率晶闸管主电路集成为一体,做成一个体积小,功能完整,并通过一个端口便能实现对三相电力进行调控的晶闸管智能模块(FUANSHI)。

相关主题
文本预览
相关文档 最新文档