当前位置:文档之家› 第二章函数的概念与基本初等函数教材分析

第二章函数的概念与基本初等函数教材分析

第二章函数的概念与基本初等函数教材分析
第二章函数的概念与基本初等函数教材分析

必修一第二章《函数的概念与基本初等函数》教材分析

学校:华罗庚中学姓名:丁艳尤解祥时间:2009-9-21

(一)教材分析

1

2、本章节在整个教材体系和高考中的地位和作用

函数是中学数学中的一个重要概念,学生学习函数的知识将经历四个阶段。第一个阶段是在初中,学生接受了初步的函数知识,掌握了一些简单函数的表示法、性质、图像。本章是第二个阶段(数学1),第三个阶段将学习三角函数(数学4)、数列(数学5),第四个阶段安排在选修课程中,如导数及其应用(选修系列1和2)、概率(选修系列2)、参数方程(选修系列4)等都涉及函数知识的再认识,是对函数及其应用研究的深化和提高。本章在学生学习函数知识的过程中是一个重要的环节,起到承上启下的作用,这里应该在初中学习的基础上,系统学习函数的知识,培养学生应用函数知识的意识。

函数是中学数学重要的基础知识,应用十分广泛,函数的思想方法贯穿于整个高中数学,对分析和解决各种数学问题和实际应用题具有重要作用,在历年的高考试题中函数的内容都保持较高的比例。试题有容易题、中档题,也经常出现难题,难度较大的试题通常是考查函数与方程、不等式、数列、解析几何、导数等知识的综合运用;考查函数知识的试题几乎都涉及到中学数学里所有的思想方法,如数形结合、函数与方程、分类讨论、化归等思想方法;近几年还加大了对数学语言和实际应用能力的考查力度。

3、本章教学目标、数学思想、数学方法

函数是本章的核心概念,也是中学数学中的基本概念。高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,函数的思想方法将贯穿整个高中数学课程。

(1)了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表达、刻画事物的变化规律。

(2)理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图像和性质;理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质;了解幂函数的概念和性质。知道指数函数、对数函数、幂函数是描述客观世界变化规律的重要数学模型。

(3)了解函数与方程之间的关系,会利用二分法求一些简单方程的近似解;了解函数模型及其意义,能准确、清晰、有条理地表述问题,会利用函数知识分析问题、解决问题,使学生明白函数与方程是研究事物变化的重要工具。

(4)培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力,创新意识与探究能力,数学建模能力以及数学交流的能力。

(5)通过现代信息技术的合理应用,让学生体会到现代信息技术是认识世界的有效手段

和工具

(6)体验数学的文化价值,使学生感受数学的美,培养学生利用运动变化的观点观察事物,进一步树立科学的人生观、价值观和辩证唯物主义世界观。

本章涉及的数学思想可以分为两个层次:一是一般科学方法,如观察、实验、比较、分析、综合、归纳、类比、抽象等;二是数学中常用的数学思想方法,如函数与方程、数形结合、符号化与形式化、分类讨论、化归等思想方法。

4、本章节的教学重点、教学难点、教学特点

(1)函数的性质(定义域、值域、单调性、奇偶性)

(2)基本初等函数(指数函数、对数函数、幂函数)的概念、图像和性质

(3)函数的应用(函数与方程的关系、函数的实际应用等)

5

(二)学情分析

1、师生双边活动设计

为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本章采用“突出主题,螺旋上升,反复应用”的方式,以实际问题为主线,在不同的场合考察问题的不同侧面,由浅入深,将函数的知识串联起来,既体现了知识体系的完整性,系统性,又体现了知识之间的有机联系和一以贯之的研究手段。

函数引入中的三个问题——我国从1949年到1999年的人口数据表、自由落体运动中物体下落的距离与时间关系式、某城市一天24小时内的气温变化图,既与初中时学习的函数内容相联系,又蕴含了函数的三种表示方法——列表法、解析法、图像法,起到了承上启下的作用。这三个实际问题背景,既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。例如:某城市一天24小时内的气温变化将

函数概念、函数的图像、函数的单调性、函数的零点有机的贯通。

为了让所有学生都能够参与到数学学习中来,激发每一个学生的学习热情和学习兴

趣,培养学生的实践能力、观察能力、判断能力,教材设置了旁白、思考、探究、实验、阅读、链接等内容,为学生主动探究数学知识的产生和发展提供了空间,从而促使教学方式和学习方式的改变。

为了适应学生个性发展的需要,教材在练习的基础上,将习题分为“感受、理解”“思考、运用”“探究、拓展”三个部分。“感受、理解”面向全体学生,体现了本章的基本要求,即要求初步理解函数知识,并用来解决一些简单的问题;“思考、运用”面向多数学生,深化对函数概念的理解,并能运用函数知识解决一些较复杂的问题;“拓展、研究”为学生提供一些富有挑战性的问题,以激发学习兴趣,拓宽视野,提高数学素养。

2、 课堂教学学生学法指导

为了使学生掌握函数的基本研究方法,本章多次设计了让学生观察、思考、判断的情境。如在函数的单调性、奇偶性的学习过程中,引导学生观察函数的图像,由图像的直观性理解数学的本质,培养学生的观判断、抽象、概括能力。在基本初等函数(指数函数、对数函数、幂函数)的性质、方程的解与函数的零点的关系、二分法求方程的近似解等知识点,也多次为学生提供了探索的空间。

在学生能力的培养上,本章也进行了整体设计。通过函数知识的运用,培养学生的理性思维能力;通过探究、思考,培养学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养学生的辩证思维能力;通过实际问题的解决,培养学生分析问题、解决问题的能力和表达交流的能力; 通过案例研究,培养学生的创新意识与探究能力;通过实习作业,培养学生的数学建模能力和实践能力。

3、学习本章节的教学建议和教学要求

教材通过具体实例引入函数概念,让学生体会函数是数集之间的一种特殊的对应关系,要从实际背景和定义两个方面帮助学生理解函数的本质。教学应从学生已有的函数只是入手,引导学生联系自己的生活经历和实际问题,尝试列举各种各样的变化,在集合的基础上,构建函数的一般概念。

形式化和符号化是数学的重要特征。如所有的函数关系都可以用一个抽象的符号)(x f y =来表示,这种表示不仅形式简单,而且也可以加深对函数概念本质的理解。又如在说明单调增函数时,符号语言“当)()(,2121x f x f x x <<都有时”是对自然语言“随着x 的增大,)(x f 也增大”的精确刻画。这样,学生在证明函数的单调性时,就有了一个形式化的模式,表述简洁明了。教学时应将这两种描述进行对比,使学生体会到使用符号语言的优点和美感,养成运用符号语言的习惯。

根式、分数指数幂、对数是学习指数函数、幂函数、对数函数的基础,要掌握它们的概念与运算性质。指数函数、对数函数、幂函数的图像时它们性质的直观体现,对了解和掌握函数的性质具有形象直观的优势,应教会学生画它们的图像,学会观察它们的图像,借助函数的图像来研究函数性质并解决相关问题。

数学的发展引起了计算工具的改革和进步,反过来,计算工具的广泛应用,又促进了数学的发展,为了帮助学生体会函数是刻画现实世界中变量之间依赖关系的数学模型,充分利用现代信息技术体现数学的应用功能,教学中,教师应有意识地运用适当的信息技术辅助教学。

在教学过程中,应突出本章的核心概念----函数,其本质是两个变量之间的相互依赖关系,体现函数对应法则是我“输入”、“输出”功能,函数的性质只是对应法则在函数定义域上的表现,离开了函数的定义域谈函数的性质是没有意义的。应重视问题提出的背景,充分发挥这些问题的载体作用,体现它们的数学价值。

为了体现数学文化,除了引导学生学习阅读栏目中提供的有关对数发展史的材料外,还应指导学生查阅有关资料、书籍、网站,多了解一些数学文化方面的知识,激发学生学习数学的兴趣和欲望。

(三)教学手段、数学思想和数学方法

多媒体、小黑板、实物投影等教学手段在这里都适用,利用启发式、发现式、比较式,师生互动等教学方法都可以完成教学

数学思想可以分为两个层次:一是一般科学方法,如观察、实验、比较、分析、综合、归纳、类比、抽象等;二是数学中常用的数学思想方法,如函数与方程、数形结合、符号化与形式化、分类讨论、化归等思想方法。

(四)典型例题剖析

例1、设函数R x x x x f ∈--+=,12)(2

(1)判断函数)(x f 的奇偶性;

(2)求函数)(x f 的最小值

分析:将)(x f 改写为分段函数,借助其函数图像,直观地把握其特性

解:(1)由题意)2()2(),2()2(,7)2(,3)2(f f f f f f -≠-≠-=-=且故,所以)(x f 既不是奇函数,也不是偶函数。

(2),2,12,3)(22?????<+-≥-+=x x x x x x x f 当2≥x 时,,4

13)21()(2-+=x x f 则当2=x 时,)(x f 的最小值为3;当2

,43)21(1)(22+-=+-=x x x x f 则当2

1=x 时,)(x f 的最小值为4

3,所以)(x f 在R 上的最小值为4

3。

例2、讨论关于x 的方程m x x =--322解的个数

分析:先解方程m x x =--322,再根据它与原方程的关系,求原方程的解。但由于本体只需要确定方程解的个数,因此可以不解出方程,而根据函数与方程的联系,借助图像直观判断解的个数 解:方程m x x =--322的解的个数即为函数 32)(2--==x x x f y 的图像与函数m y =的交点的个数。分别做出这两个函数的图像如下:

由图像可知:

(1)当4-

(2)当3,4->-=m m 或时,图像由两个交点,即方程的解的个数为2

(3)当34-<<-m 时,图像有4个交点,方程的解的个数为4

(4)当3-=m 时,图像有3个交点,方程的解的分数为3

例3、设)(x f y =是定义在R 上的函数,且对于任意R y x ∈,,恒有)()()(y f x f y x f +=+,且当2)1(,0)(0-=<>f x f x 时,,

(1)判断)(x f 的单调性;(2)求当]3,3[-∈x 时,)(x f 的最大值以及最小值

分析:利用赋值法求出)(x f 得奇偶性,再利用单调性定义证明单调性

解:(1)令,0==y x 则有,0)0(),0()0()0(=∴+=f f f f

令),()()(,x f x f x x f x y -+=--=则)()(x f x f -=-∴,)(x f ∴为奇函数

当0>x 时,设210x x <<,则)()()()()(121212x x f x f x f x f x f -=-+=-,

)()(,0)(,0,012121212x f x f x x f x x x x <∴<-∴>-∴>> ,

),0()(+∞∴在x f 上为减函数

又)(x f 为奇函数,∴)(x f 在R 上单调递减

(2)6)1()1()1()1()2()12()3(-=++=+=+=f f f f f f f

6)3()3(=-=-∴f f ,]3,3[)(-∴在x f 上的最大值为6,最小值为-6

例4、用水清洗一堆蔬菜上残留的农药,对一定量的水清洗1次的效果作如下假定:用1个单位量的水可以洗掉蔬菜上残留农药量的2

1,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上,设用x 个单位量的水清洗1次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数)(x f

(1)试规定)0(f 的值,并解释其实际意义;

(2)试根据假定写出函数)(x f 应满足的条件和具有的性质;

(3)设,1

1)(2+=x x f 现有)0(>a a 的水,可以清洗1次,也可以把水平均分成两份后清洗两次,试问哪种方案清洗后蔬菜上残留的农药量比较少,并说明理由。

分析:)0(f 应规定为用0单位量的水清洗1次(即没有用水清洗)后,蔬菜上残留的农药量与本次清洗前残留的农药量之比。由于)(x f 是一个比值,且用水越多,残留的农药量越少,)(x f 越小,因此)(x f 应是定义域上的减函数。(3)中比较两种方案清洗的效果,只需要计算出残留的农药量即可

解:(1)规定,1)0(=f 表示没有用水清洗时,蔬菜上的农药量将保持原样

(2))(x f 应满足的条件和具有的性质:),0[,21)1(,1)0(+∞=

=在f f 上)(x f 为减函数,且1)(0≤

(3)仅用)0(>a a 个单位的水清洗1次后,蔬菜残留的农药量,1121+=

a f 清洗两次后残留的农药量为22222)4(16]1)2(1

[a a f +=+=, ∴)

4)(1()22)(22()4)(1()8()4(1611222222222221a a a a a a a a a a a f f ++-+=++-=+-+=- ∴当22>a 时,21f f >;当22=a 时,21f f =;当220<a 时,清洗两次后残留的农药量较少;当22=a 时,两种清洗方案具有同样效果;当220<

例5、设1,0≠>a a 且,如果函数122-+=x x a a y 在]1,1[-上的最大值为14,那么a 的值是多少?

分析:该函数是指数函数与二次函数的复合,对于a 分类讨论即可

解:2)1(1222-+=-+=x x x a a a y

(1)当1>a 时,],1

[a a

a x ∈,在1,==x a a x 即时,y 取最大值,142)1(2=-+a 解得3=a

(2)当]1,[10a a a a x ∈<<时,,在1,1-==

x a a x 即时,y 取得最大值,142)11(2=-+a 解得3

1=a 综上所述:3

1=

a 或3=a

第二章:函数单元目标测试题

一:填空题

1.函数1

42

--=x x y 的定义域为__________.[)(]2,11,2 - 2.函数12

++-=x x y 的值域为____________.??????25,0 3.函数12++=x x y 的值域为___________.[)+∞-,1

4.已知32)121(+=-x x f ,且6)((=m f ,则.__________=m 41-

5.函数x

x x f 1)(+=的单调增区间为___________.(][)+∞-∞-,1,1, 6.已知)(x f 是R 上的减函数,记)1(),(2-==a f n a f m ,则n m ,的大小关系是

__________.n m <

7.若关于x 的不等式032<++-m mx x 对任意)4,2(∈x 恒成立,则实数m 的取值范围是________.[)+∞,7

8.若313)2

5()52

(-->x x ,则x 的取值范围是________.)1,(-∞ 9.已知)1(log )(222++

+=x x x x f ,若m f =)5.0(,则.____)5.0(=-f

m -5.0 10.若)42(log )(2+-=ax x x f a 在[)+∞,a 上为增函数, 则实数a 的取值范围是

___________.21<

11.若)2lg()(2

a x ax x f +-=的值域为R , 则实数a 的取值范围是________.[]1,0 12.当)2,1(∈x 时,不等式x x a log )1(2≤-恒成立, 则实数a 的取值范围是________(]2,1

13.设c b a c b a 221log )2

1(,log )21(,21log 2===,则的大小关系是______.c b a <<

14.已知函数b ax x x f +-=2)(2.给出下列命题:(1))(x f 必是偶函数;(2))

2()0(f f =时, )(x f 的图象必关于直线1=x 对称;(3)若02≤-b a ,则)(x f 在区间[)+∞,0上是增函

数;(4) )(x f 有最大值b a -2.

其中正确的命题的序号是___________.(3)

二:解答题

15.记函数132)(++-=

x x x f 的定义域为A ,[])1()2)(1(lg )(<---=a x a a x x g 的定义域为B 。

(1)求B A ,; (2)若A B A = ,求实数a 的取值范围。

【解析】(1)由0132≥++-x x 得:11,01

1≥-<∴≥+-x x x x 或,{}1,1≥-<=∴x x x A 或。 由0)2)(1(>---x a a x 得:

0)2)(1(<---a x a x ,12,1+<∴

{}12+<<=a x a x B 。

(2)由A B A = 得:A B ?,所以1211≥-≤+a a 或, 故.12

12<≤-≤a a 或 16. 设函数ab a x b ax x f ---+=)8()(2的两个零点分别是-3和2。

(1)求)(x f ; (2)当函数)(x f 的定义域是[]1,0时,求函数)(x f 的值域。

【解析】(1)因为)(x f 的两个零点分别是-3和2,所以???=---+=----0

)8(240)8(39ab a b a ab a b a ,解

得???=-=5

3b a ,所以1833)(2+--=x x x f , (2)因为4

67)21

(3)(2+

+-=x x f ,又[]1,0∈x ,所以值域为[]18,12 17. 定义在)1,1(-上的奇函数)(x f 又为减函数,且0)1()1(2<-+-a f a f ,求实数a 的

取值范围。

【解析】因为)(x f 为奇函数,所以由已知得)1()1(2a f a f -<-,又)(x f 在)1,1(-上为

减函数,所以.101111111122

<

???<-<-<-<-->-a a a a a

18.已知函数x x x f )21(2)(-=在定义域[]a a 2,623--上具有奇偶性。

(1)判断它的奇偶性; (2)求出此函数的值域。

【解析】(1)因为02222)()(=-+-=-+--x x x x x f x f ,

所以)()(x f x f -=-,所以)(x f 为奇函数。

(2)由02623=+--a a 得082622=+?-a a ,解得21==a a 或,

当1=a 时,定义域为[]2,2-,又)(x f 为增函数,所以值域为??

????-415,415 当2=a 时,定义域为[]4,4-,又)(x f 为增函数,所以值域为??????-

16255,16255 19.已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为)3,1(。

(1)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式;

(2)若)(x f 的最大值为正数,求实数a 的取值范围。

【解析】 (1)由题意设,)3)(1()(--=x x a x f ,且0

则09)24(6)(2=++-=+a x a ax a x f 有等根,所以,5

1

1-==a a 或 因为0

=x x x f 。 (2)a

a a a a x a a x a ax x f 14)21(3)21(2)(222++-+-=++-=, 由0

a a 解得:.03232<<+---

a a a x f 2112)(-+=,常数0>a 。 (1)设0>mn ,证明:函数)(x f 在[]n m ,上单调递增;

(2)设n m <<0且)(x f 的定义域和值域都是[]n m ,,求实数a 的取值范围。

【解析】(1)设[]n m x x ,,21∈,且21x x <,则有21212211)()(x x x x a x f x f -=-, []n m x x ,,21∈,且21x x <,0,02121<->∴x x x x ,0)()(21<-x f x f ,故函数)(x f 在[]n m ,上单调递增。

(2)由(1)知)(x f 在[]n m ,上是增函数,所以???==n

n f m m f )()(,所以n m ,为方程

x x

a a a =-+2112的两个不等的正根,即01)2(222=++-x a a x a 有两个不等的正根,所以??

?>+>?02202a , 所以.21>a

考研---基本初等函数知识汇总-必看

一、三角公式总表 ⒈L 弧长=αR=n πR 180 S 扇=21L R=21R 2 α=3602R n ?π ⒉正弦定理: A a sin =B b sin =C c sin = 2R (R 为三角形外接圆半径) ⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= ⒋S ⊿=21a a h ?=21ab C sin =21bc A sin =21ac B sin = R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) ⒌同角关系: ⑴商的关系:①θtg =x y = θ θ cos sin =θθsec sin ? ②θθθθθcsc cos sin cos ?== =y x ctg ③θθθtg r y ?==cos sin ④θθθθcsc cos 1sec ?== =tg x r ⑤θθθctg r x ?== sin cos ⑥θθθθsec sin 1csc ?== =ctg y r ⑵倒数关系:1sec cos csc sin =?=?=?θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22?θθθ++=+b a b a (其中辅助角?与点(a,b )在同一象限,且 a b tg = ?) ⒍函数y=++?)sin(?ωx A k 的图象及性质:(0,0>>A ω) 振幅A ,周期T= ω π 2, 频率f=T 1, 相位?ω+?x ,初相? ⒎五点作图法:令?ω+x 依次为ππ ππ 2,2 3,,2 0 求出x 与y , 依点()y x ,作图 ⒏诱导公试

高一初等函数定义域值域

函数 例1、 已知函数f (x )=3+x + 21+x , (1) 求函数的定义域; (2) 求f (-3),f (32)的值; (3) 当a>0时,求f (a ),f (a-1)的值。 例2、中哪个与函数y=x 相等( )x 3 A 、y=(x )2 B 、y=33 x C 、y=2x D 、y=x x 2 例3、求下列函数的定义域 (1)f (x )= 741+x (2)f(x)=x -1+ 3+x -1 例4、已知函数f (x )=x 2+2x (1) 求f (2),f (-2),f (2)+f (-2)的值 (2) 求f (a ),f (-a ),f (a )+f (-a )的值 例5、某种笔记本的单价是5元,买x (x ∈{1,2,3,4,5})个笔记

本需要y元,试用函数的三种表示法表示函数y=f(x)。 例6、画出函数y=|x|的函数图象。 例7、如图,把截面半径为25cm的圆形木头锯成矩形木材,如果矩形木材的一边长为xcm,面积为ycm2,把y表示为x的函数。

1、求下列函数的定义域 (1)f (x )= 43-x x (2)f (x )=2x (3)f (x )= 2 362+-x x (4)f (x )=14--x x 2、下列那组中的函数f (x )与g (x )相等 (1)f (x )=x-1,g (x )=x x 2 -1; (2)f (x )=x 2,,g (x )=(x )4 (3)f (x )=x 2,g (x )=36x 3、已知函数f (x )=3x 2-5x+2,求f (-2),f (-a ),f (a+3),f (a )+f (3)的值. 4、已知函数f (x )=6 2-+x x (1)点(3,14)在f (x )的图象上吗 (2)当x=4时,求f (x )的值; (3)当f (x )=2,求x 的值。

函数教材分析解读

《函数》教材分析 1、哪儿发生变化,哪没变?从教材内容,(或添加、删减),内容 没变,但是呈现方式发生改变,体现的理念变化,为什么这么 变?实际上是要学有用的数学,身边的数学,应用数学,学是 为了用,设计思想,体现的理念。做数学,让学生参与。 2、新教材的重点和难点要分析出来,要将知识串起来。 3、变化的内容引起呈现方式的变化,技术所起的作用。技术的使用,引起学习方式的改变,怎么用?明确指出需要用技术的地方,形与数要结合。使用技术到非用不可,举例说明。重点! “函数是描述客观世界变化规律的重要数学模型。高中阶段用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学的始终。学生将学习指数函数、对数函数等具体的基本初等函数,结合实际问题,感受运用函数概念建立模型的过程与方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社

会中的简单问题。” 二、内容安排: 函数这章教材共分个大节:第一大节是函数的概念及函数的一般性质;第二大节是指数与指数函数;第三大节是对数与对数函数;第四大节是函数的应用举例和实习作业。 1、函数是中学数学中最重要的基本概念之一。中学的函数教学大致为三个阶段,初中初步探讨函数的概念、函数关系的表示法、函数图象,并具体学习正比例、反比例、一次函数、二次函数等,使学生获得感性知识;本章及三角函数的学习是函数教学的第二阶段,是对函数概念的再认识阶段,用集合、映射的思想理解函数的一般定义,通过指数函数、对数函数以及后续的三角函数,使学生获得较为系统的函数知识,并初步培养函数的应用意识。第三阶段在选修部分,极限、导数与微分、积分是函数及其应用的深化与提高。 高中的函数知识是在初中的基础上学习的,主要讲函数的概念、函数关系的表示法、并学习函数的一般性质。从映射的概念看,函数是集合A到集合B的映射(A、B是非空数集),映射是特殊的对应,函数是特殊的映射,反函数也是映射。 2、学生在初中的基础上学习有理指数幂及其运算法则是不困难的。指数函数及其图象和性质是这一节的重点,要通过具体实例了解指数函数模型的实际背景,通过具体函数的图象来观察、归纳函数的性质,反之,函数性质又直观反映在图象上,指导准确作出函数图象。

函数的基本概念练习

第 1 页 共 1 页 函数的基本概念 一、知识归纳: 1、映射: 2、函数的定义: 3、函数的三要素: 4、函数的表示: 二、题型归纳: 1、有关映射概念的考察; 2、求函数的定义域; 3、求函数的解析式: 4、求函数的值域。 三、练习: 1、设B A f →:是集合A 到集合B 的映射,则下列命题正确的是( ) A 、A 中的每一个元素在B 中必有象 B 、B 中的每一个元素在A 中必有原象 C 、B 中的每一个元素在A 中的原象是唯一的 D 、A 中的不同元素的象不同 3、已知A={1、2、3、 4、5},对应法则f :1)3(2 +-→x x ,设B 为A 中元素在f 作用下的象集,则B = 。 4、设函数f(x)=132 +-x x ,则f(a)-f(-a)= 。 5、设(x ,y )在映射f 下的象是(x +y ,x -y ),则象(1,2)的原象是 ( ) A .(3,1) B .)21,23 (- C .(-1,3) D .)2 3,21(- 6、已知函数 =???>+-≤+=)]25([,) 1(3)1(1)(f f x x x x x f 则 . 7、函数y =f(x)的图像与直线x =4的交点个数为 ( ) (A )至多一个(B )至少一个(C )必有一个(4)一个、两个或无穷多个 8、由函数1)(2++= mx mx x f 的定义域是一切实数,则m 的取值范围是 ( ) A .(0,4] B .[0,1] C .[0,4] D .[4,+∞) 9、下列各组中,函数f (x )和g(x )的图象相同的是 ( ) A .f (x )=x ,g(x )=(x )2 B .f (x )=1,g(x )=x 0 C .f (x )=|x |,g(x )=2 x D .f (x )=|x |,g(x )=? ??-∞∈-+∞∈)0,(,) ,0(,x x x x 10、函数y =1122---x x 的定义域为 ( ) A .{x |-1≤x ≤1} B .{x |x ≤-1或x ≥1} C .{x |0≤x ≤1} D .{-1,1} 3、已知函数f (x )的定义域为[0,1],则f (x 2)的定义域为 ( ) A .(-1,0) B .[-1,1] C .(0,1) D .[0,1] 6、已知y=f(x)的定义域为R ,f(x+2)=-f(x),f(1)=10,则f(9)的值为( ) A .10 B .-1 C .0 D .不确定 7、设f (x -1)=3x -1,则f (x )=__ _______. 8、已知函数f ( 2x + 1 )的定义域为(0,1),则f ( x ) 的定义域为 。 9、函数)1(-x f 的定义域是[0,2],则)2(+x f 的定义域是 。 11、已知f ( x ) = 2 21x x +,那么f ( 1 ) + f ( 2) + f (2 1) + f ( 3 ) + f( 31 ) + f ( 4 ) + f ( 4 1 ) = 。 13、 14、 ). ()1(x f x x x f ,求已知函数满足+=+的解析式。,求已知函数)(1 2)1(2 x f x x x f +=

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在 总是有定义的,且都经过(1,1)点。当时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。高等数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。与互为反函数。当时的对数函数称为自然对数,当时,称为常用对数。 以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。

函数-在一点的连续概念

第2章 连续函数 §2.1 连续函数的概念 【导语】 连续是客观世界中最常见的现象,如岁月的流逝、植物的生长、物体的运动等都是连续的.函数的连续性反映了函数在一点的值与这点附近的函数值之间的关系,是函数在一点的性质.如何刻画函数的连续性,连续函数具有什么性质,这就是第2章要解决的问题.本讲主要介绍函数在一点连续的定义。 【正文】 一、函数在一点连续的概念 定义1 设函数()f x 在0x 的某邻域内有定义,如果0 0lim ()()x x f x f x →=成立,那么就称函 数()f x 在0x 处连续,0x 称为函数()f x 的连续点. 一般地,0x x x ?=-称为自变量的改变量,0000()()()()()f x f x f x f x x f x ?=-=+?-称为函数()f x 在0x 处的改变量.函数()f x 在0x 连续指的是:当0x ?→时,有0()0f x ?→,即00 lim ()0x f x ?→?=. 也就是说,函数()f x 在0x 连续指的是:对任意的正数ε,都存在正数δ,使得当x δ?<时,就有0()f x ε?<成立. 从定义可以看出,连续性是函数的一种点性质.函数()f x 在0x 处是否连续与它在其他点是否连续没有关系. 例如对于函数 ,, (),,x x f x x x ∈?=? -?? Q Q 因为0 lim ()0x f x →=,且(0)0f =,所以()f x 在0x =处连 续.由于在00x ≠时极限0 lim ()x x f x →不存在,所以()f x 也 x 0 x 0y=x y x O

只有0x =这一个连续点. 从运算的角度看,连续性保证了函数求值运算与极限运算满足交换律,即 0lim ()()(lim )x x x x f x f x f x →→==. 例1 若函数21 ,1,()1,1x x f x x a x ?-≠-? =+??=-? 在1x =-处连续,求a 的值. 解 因为()f x 在1x =-处连续,所以 1 lim ()(1)x f x f →-=-. 又因为 2111 1lim ()lim lim(1)21x x x x f x x x →-→-→--==-=-+,(1)f a -=, 所以 2a =-. 例2 利用定义证明:若函数()f x 在0x 处连续,则函数()f x 在0x 处连续. 证 对任意的正数ε,因为函数()f x 在0x 处连续,所以存在正数δ,当0||x x δ-<时,有 0()()f x f x ε-<。 又因为00()()()()f x f x f x f x --≤,所以当0||x x δ-<时,有0()()f x f x ε-<。 所以函数()f x 在0x 处连续. Remark:1,, ()1,.x f x x ∈?=?-?? Q Q 例3 利用定义证明函数()e x f x =在任意点0x 处连续. 证 对任意实数0x 和x ,000e e e (e 1)x x x x x --=-. 对任意正数ε,不妨设0e x ε<.要使 0e e x x ε-<, 即要使 00e (e 1)x x x ε--<, 即 0001e e 1e x x x x εε----<<+,

《函数》教材分析

第三章《函数》教材分析 本章为函数,共6节,内容如下映射、函数、作函数图像的描点法、函数的性质、反函数、函数的应用举例. 本章共需17课时,具体分配如下: 3.1映射约1课时 3.2 函数约3课时 3.3作函数图像的描点法约2课时 3.4函数的性质约3课时 3.5 反函数约2课时 3.6 函数的应用举例约2课时 小结与复习约4课时 一、内容与要求 函数是数学的重要的基础概念之一进一步学习的数学分析,包括极限理论、微分学、 积分学、微分方程乃至泛函分析等高等学校开设的数学基础课程,无一不是以函数作为基本 概念和研究对象的其他学科如物理学等学科也是以函数的基础知识作为研究问题和解决问题的工具函数的教学内容蕴涵着极其丰富的辩证思想,是对学生进行辩证唯物主义观点教育的好素材函数的思想方法也广泛地诊透到中学数学的全过程和其他学科中 函数是中学数学的主体内容它与中学数学很多内容都密切相关,初中代数中的“函数及其图象”就属于函数的内容,高中数学中的指数函数、对数函数、三角函数是函数内容的主体,通过这些函数的研究,能够认识函数的性质、图象及其初步的应用后续内容的极限、微积分初步知识等都是函数的内容数列可以看作整标函数,等差数列的通项反映的点对(n,an)都分布在直线y=kx+b的图象上,等差数列的前n项和公式也可以看作关于n(n∈N)的二次函 数关系式,等比数列的内容也都属于指数函数类型的整标函数中学的其他数学内容也都与函数内容有关 函数在中学教材中是分三个阶段安排的第一阶段是在初中代数课本内初步讨论了函数的概念、函数的表示方法以及函数图象的绘制等,并具体地讨论正比例函数、反比例函数、一 次函数、二次函数等最简单的函数,通过计算函数值、研究正比例函数、反比例函数、一次 函数、二次函数的慨念和性质,理解函数的概念,并用描点法可以绘制相应函数图象 及第四章三角函数的内容是中学函数教学的第二阶段,也就是函数概念的再认识阶段,即用 集合、映射的思想理解函数的一般定义,加深对函数概念的理解,在此基础上研究了指数函数、对数函数、三角函数等基本初等函数的概念、图象和性质,从而使学生在第二阶段函数 的学习中获得较为系统的函数知识,并初步培养了学生的函数的应用意识,为今后学习打下 良好的基础第二阶段的主要内容在本章教学中完成 学的限定选修课中安排的,选修Ⅰ的内容有极限与导数,选修Ⅱ的内容有极限、导数、积分,这些内容是函数及其应用研究的深化和提高,也是进一步学习和参加工农业生产需要具备的 基础知识 (一)内容安排 本章的函数是用初中代数中的“对应”来描述的函数概念,这两个函数定义反映了函数概念发展的不同阶段高一学生的数学知识较少,接受能力有限,用原始概念“对应”一词来描述函数定义是合适的而且有利于初中和高中知识的自然过渡和衔接 映射是在学习完集合与函数的基本概念之后学习的它是两个集合的元素与元素的对应关系的一个基本概念学习集合的映射概念的目的主要为了进一步理解函数的定义 的“原象的集合A”“象的集合B”以及“从集合A到集合B的对应法则f”可以更广泛的理解集合A、B不仅仅是数集,还可以是点集、向量的集合等,本章主要是指数的集合随 - 1 -

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

一次函数:教材分析

浙教版八年级(上)第七章 《一次函数》教材分析 一、内容定位 (一)注重函数建模过程,降低函数抽象图形分析的难度,融合方程、不等式、函数的统一 (二)本章教材设计,体现了“问题情景——建立数学模型——概念、规律应用与拓展”的模式。 通过大量的贴近学生生活的实例,让学生 ①体会了常变量之间关系的普遍性。 ②感受了学习变量关系的必要性。 ③明确了函数的三种表示方式:解析式法、图象法、列表法。 ④研究了具体的、简单的一次函数的性质。 我们希望通过本章学习一次函数,使学生了解一次函数的有关性质,并初步形成利用函数的观点认识现实世界的意识与能力。这样为以后学习有关函数问题提供了研究的方法和起到了示范作用。 二、教学目标: 1、经历常量与变量、函数、一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展学生的抽象思维能力,经历一次函数的图象及其性质的探索过程,在合作交流活动中发展学生的意识与能力。 2、经历一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别与应用过程,发展学生的形象思维能力。 3、初步理解函数的概念;理解一次函数及其图象的有关性质;初步体会方程和函数的关系。 4、能根据所给的信息确定一次函数表达式,会作一次函数的图象,并利用它们解决简单的实际问题。 下面谈谈每一节的教学设计: 第一节:常量与变量 【教学目标】 在具体情境中理解什么是变量、常量,并能举出常量、变量之间关系的例子,获得探索常量、变量之间关系的体验。 重点:认识常量与变量。

难点:理解变量的概念。 【教材分析】 通过长途客车从杭州驶向上海,引出问题:什么量不变,什么量在变,再根据合作学习,探讨了圆的面积公式、钟点工的工资额相关运算问题,在运算的过程中,让学生感觉变与不变,从而深刻理解常量与变量的概念。 第二节:认识函数 【教学目标】 (1)初步了解函数的概念,明确函数中两个变量之间的关系。 (2)了解函数常用的三种表示方法,会列简单实际问题的函数解析式;会求函数值和简单函数的自变量的取值范围。 重点:建立函数观念,掌握求函数解析式。 难点:函数概念的理解,函数解析式的应用 【教材分析】 本节课共两课时, ●第一课时以大学生暑期打工的时间与报酬的关系图,跳远运动员的跳远的距离与 助跑的速度的经验公式呈现了两个生活化的场景,使学生明确“给定其中某一个 变量的值,相应地就确定了另一个变量的值”这一共性,从而归纳出函数的概念, 同时也明确了函数的三种表示方式,对于函数的概念,只要学生能结合具体情境, 体会到函数的概念即可,不必作不必要的拓展和加深,也不要作判断函数关系的抽 象训练.建议把P154骑车时热量消耗W(焦)与身体质量x(千克)之间的函数 关系图象,并设置问题情境,放入合作学习中,作为第三个问题。 ●第二课时是两个求函数解析式及其应用的简单例子,通过几何(等腰三角形)与 代数应用(游泳池换水)问题,使学生初步了解如何求函数关系式、自变量的取 值范围,想一想提出的问题很及时,让学生感受到实际问题的限制条件。探究活 动给了学生一个思维的空间,又一次让学生感受数学中的“数形结合”思想。 第三节:一次函数 【教学目标】 (1)使学生初步理解一次函数与正比例函数的概念,能够说出一次函数与正比例函数之间的关系。 (2)会求正比例函数、一次函数的解析式。 (3)会求一次函数的值,会根据已知一次函数的值求对应的自变量的值。

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 三、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质

(整理)函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2, n x x n ≠=,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A +- →→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ? ?? ?? ? ? ? +? -?? () 2 11c o s ~2(1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ?φ≤≤(,且 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

基本初等函数(整理)

1.1 初等函数图象及性质 1.1.1 幂函数 1函数(μ是常数)叫做幂函数。 2幂函数的定义域,要看μ是什么数而定。 但不论μ取什么值,幂函数在(0,+ ∞ )内总有定义。 3最常见的幂函数图象如下图所示:[如图] 4 2 -551015 -2 -4 -6 4①α>0时,图像都过(0,0)、(1,1 注意α>1与0<α<1的图像与性质的区别. ②α<0时,图像都过(1,1)点,在区间(0 上无限接近y轴,向右无限接近x轴. ③当x>1时,指数大的图像在上方. 1.1.2 指数函数与对数函数

1.指数函数 1函数 (a 是常数且a>0,a ≠ 1)叫做指数函数,它的定义域是区间(-∞ ,+∞ )。 2因为对于任何实数值x ,总有,又,所以指数函数的图形,总在x 轴的上方, 且通过点(0,1)。 若a>1,指数函数是单调增加的。若0

2.对数函数 由此可知,今后常用关系式,如: 指数函数的反函数,记作(a是常数且a>0,≠ a1),叫做对数函数。它的定义域是区间(0,+∞ )。 对数函数的图形与指数函数的图形关于直线y = x对称(图1-22)。 的图形总在y轴上方,且通过点(1,0)。 若a>1,对数函数是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞ )内函数值为正。 若01 0

高中数学基本初等函数涉及定义域值域、性质、零点问题

各类基本初等函数涉及定义域值域、性质、零点问题等梳理 (一)单调性与值域问题 (1)一次函数型 例题1 若函数 ()2f x a x b =-+在[)0,+∞上为增函数,则实数a b 、的范围是 【解析】 2,()22,ax ab x b f x a x b ax ab x b -+≥?=-+=? -++?< ∵函数 ()2f x a x b =-+在[)0,+∞上为增函数,∴00a b ≤且> 【小结】亦可对a 的符号进行分类讨论,一一排除。 (2)二次函数型 例题2 函数 ()23f x x x m x =-+-在R 上单调递增,求实数m 的取值范围 【解析】 22(2)3,()23(2)3,x m x x m f x x x m x x m x x m ?+--≥?=-+-=?-++-??< ∵函数 ()23f x x x m x =-+-在R 上单调递增 ∴22 2222 m m m m m -?-≤???-≤≤? +?≥?? 变式1 函数()y f x =在[2,)+∞上单调递增,且()(4)f x f x =-恒成立,则关于x 的不等式2(3)(22)f x f x +>+的解集为________ 【解析】 ()(4)f x f x =-恒成立,∴函数关于2x =对称, 函数()y f x =在[2,)+∞上单调递增,∴函数在(],2-∞单调递减, 关于x 的不等式2(3)(22)f x f x +>+,∴2 32222x x +->+-, 解得2 12x x +>,即22110x x x ?<+?+≥?或()22110 x x x ?<-+?+

函数连续性

第四章 函数的连续性 §1 连续性概念 Ⅰ. 教学目的与要求 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. Ⅱ. 教学重点与难点: 重点: 函数连续性的概念. 难点: 函数连续性的概念. Ⅲ. 讲授内容 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说,连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我 们不能满足于这种直观的认识,而应给出函数连续性的精确定义,并由此出发研究连续函数 的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一 函数在一点的连续性 定义1 设函数f 在某U ()0x 内有定义.若()x f x x 0 lim →=()0x f , 则称f 在点0x 连续. 例如,函数连续()x f 12+=x 在点2=x 连续,因为 2lim →x ()x f =2 lim →x ()()2512f x ==+ 又如,函数()x f ???=0 ,00,1sin =≠x x x x ,在点0=x 连续,因为 ()()001sin lim lim 00f x x x f x x ===→→ 为引入函数()x f y =在点0x 连续的另一种表述,记0x x x -=?,称为自变量x (在点 0x )的增量或改变量.设()00x f y =,相应的函数y (在点0x )的增量记为: ()()()()0000y y x f x x f x f x f y -=-?+=-=? 注 自变量的增量x ?或函数的增量y ?可以是正数,也可以是0或负数.引进了增 量的概念之后,易见“函数()x f y =在点0x 连续”等价于0lim 0 =?→?y x . 由于函数在一点的连续性是通过极限来定义的,因而也可直接用δε-方式来叙述, 即:若对任给的0>ε,存在0>δ,使得当δ<-0x x 时有 ()()ε<-0x f x f (2) 则称函数f 在点0x 连续.

(完整版)基本初等函数讲义(全)

一、一次函数 二、二次函数 (1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

图像 定义域() , -∞+∞ 对称轴 2 b x a =- 顶点坐标 2 4 , 24 b a c b a a ?? - - ? ?? 值域 2 4 , 4 ac b a ?? - +∞ ? ?? 2 4 , 4 ac b a ?? - -∞ ? ??单调区间 , 2 b a ?? -∞- ? ?? 递减 , 2 b a ?? -+∞ ? ?? 递增 , 2 b a ?? -∞- ? ?? 递增 , 2 b a ?? -+∞ ? ?? 递减 ①.二次函数2 ()(0) f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为 , 2 b x a =-顶点坐标是 2 4 (,) 24 b a c b a a - - ②当0 a>时,抛物线开口向上,函数在(,] 2 b a -∞-上递减,在[,) 2 b a -+∞上递增, 当 2 b x a =-时, 2 min 4 () 4 ac b f x a - =;当0 a<时,抛物线开口向下,函数在(,] 2 b a -∞- 上递增,在[,) 2 b a -+∞上递减,当 2 b x a =-时, 2 max 4 () 4 ac b f x a - =. 三、幂函数 (1)幂函数的定义 一般地,函数y xα =叫做幂函数,其中x为自变量,α是常数. (2)幂函数的图象

高中数学_函数的奇偶性教学设计学情分析教材分析课后反思

2.1.4《函数的奇偶性》 一、教材分析 (一)教材所处的地位和作用 函数的奇偶性是普通高中标准实验教科书数学必修一B版第二章函数的第4小节,函数的奇偶性是函数的一条重要性质,教材从学生熟知的函数入手,结合初中学生已经学习过的轴对称和中心对称感受奇函数和偶函数的图像特征,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地学习函数的奇偶性。从知识结构上,奇偶性既是函数概念的拓展和深化,又是后续研究基本初等函数的基础。起着承上启下的作用。 (二)学情分析 从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。 从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题. (三)教学目标 基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标: 【知识与技能】 1.理解函数奇偶性的概念和图象特征。 2.能判断一些简单函数的奇偶性。

【过程与方法】 经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。 【情感、态度与价值观】 通过自主探索,体会数形结合的思想,感受数学的对称美。通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。 (四)教学重点和难点 重点:函数奇偶性的概念及其建立过程,判断函数的奇偶性。 “函数奇偶性”这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验f(-x)=f(x)及f(-x)=-f(x) 成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把“函数的奇偶性概念”设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。 难点:对函数奇偶性概念理解与认识。 二、教法与学法分析 (一)教法 根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主

(完整版)基本初等函数知识点

指数函数及其性质 一、指数与指数幂的运算 (一)根式的概念 1、如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. 2 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. 3、根式的性质 :n a =;当n 为奇数时 , a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. 2 、正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质 (0,,)r s r s a a a a r s R +?=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈ 5、0的正分数指数幂等于0,0的负分数指数幂无意义。 二、指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:○ 1 指数函数的定义是一个形式定义; ○ 2 注意指数函数的底数的取值范围不能是负数、零和1.

相关主题
文本预览
相关文档 最新文档