当前位置:文档之家› 全国大学生数学建模竞赛常用建模方法总结概要

全国大学生数学建模竞赛常用建模方法总结概要

全国大学生数学建模竞赛常用建模方法总结概要
全国大学生数学建模竞赛常用建模方法总结概要

邯郸学院本科毕业论文

题目全国大学生数学建模竞赛常用建模方法探讨学生柴云飞

指导教师闫峰教授

年级2009级本科

专业数学与应用数学

二级学院数学系

(系、部)

邯郸学院数学系

2013年6月

郑重声明

本人的毕业论文是在指导教师闫峰的指导下独立撰写完成的.如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督.特此郑重声明.

论文经“中国知网”论文检测系统检测,总相似比为5.80%.

毕业论文作者(签名):

年月日

全国大学生数学建模竞赛常用建模方法探讨

摘要

全国大学生数学建模竞赛作为全国高校规模最大的基础性学科竞赛,越来越受到人们的重视,所以建模竞赛的方法也就变得尤为重要.随着竞赛的不断发展,赛题的开放性逐步增大,一道赛题可用多种解法,各种求解的算法有时会相互融合,同时也在向大规模数据处理方向发展,这就对选手的能力提出了更高的要求.由于建模方法种类众多,无法一一介绍,所以本文主要介绍了四种比较常用的数学建模竞赛方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论方法,并结合历年赛题加以说明.

关键词:数学建模竞赛统计学方法数学规划图论

Commonly Used Modeling Method of

China Undergraduate Mathematical Contest in Modeling

Chai yunfei Directed by Professor Yan feng

ABSTRACT

The China undergraduate mathematical contest in modeling has been attention by more and more people as a basic subject of the largest national college competition. The method of modeling competition has become more and more important. Open questions gradually increased with the development of competition. Most of the games can be solved by lots of solutions. Sometimes these methods can be used together. And there is also a lot of data which puts forward higher requirement on the ability of players. The modeling methods is too numerous to mention, so this article mainly four kinds Commonly used modeling method are introduced that differential and difference equations modeling method, Mathematical programming modeling method, Statistics modeling method, graph theory and interprets with calendar year’s test questions.

KEY WORDS:Mathematical contest in modeling Statistics method Mathematical programming Graph theory

目录

摘要.............................................................................................................................................. I 英文摘要........................................................................................................................................ II 前言 (1)

1微分方程与差分方程建模 (2)

1.1微分方程建模 (2)

1.1.1微分方程建模的原理和方法 (2)

1.1.2微分方程建模应用实例 (3)

1.2差分方程建模 (4)

1.2.1 差分方程建模的原理和方法 (4)

1.2.2 差分方程建模应用实例 (5)

2数学规划建模 (5)

2.1线性规划建模的一般理论 (6)

2.2线性规划建模应用实例 (7)

3统计学建模方法 (8)

3.1聚类分析 (8)

3.1.1 聚类分析的原理和方法 (8)

3.1.2 聚类分析应用实例 (9)

3.2回归分析 (9)

3.2.1 回归分析的原理与方法 (9)

3.2.2 回归分析应用实例 (10)

4图论建模方法 (10)

4.1两种常见图论方法介绍 (11)

4.1.1 模拟退火法的基本原理 (11)

4.1.2 最短路问题 (11)

4.2图论建模应用实例 (12)

5小结 (13)

参考文献 (14)

致谢 (15)

前言

全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛.参赛者需要根据题目要求,在三天时间内完成一篇包括模型假设、模型建立和求解、计算方法的设计和实现、模型结果的分析和检验、模型的改进等方面的论文.通过参加竞赛的训练和比赛,可以提高学生用数学方法解决实际问题的意识和能力,而且在培养团队精神和撰写科技论文等方面都会得到十分有益的锻炼.

竞赛题目的涉及面比较宽,有工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等.竞赛选手不一定预先掌握深入的专业知识,而只需要学过高等数学的相关课程即可,并且题目具有较大的灵活性,便于参赛者发挥其创造能力.近年来,竞赛题目包含的数据较多,手工计算一般不能实现,所以就对参赛者的计算机能力提出了更高的要求,如2003年B题,某些问题的解决需要使用计算机软件;2001年A题,问题的数据读取需要计算机技术,并且对于给出的图像,需要用图像处理的方法获得;再如2004年A题则需要利用数据库数据,数据库方法,统计软件包等等.竞赛题目的总体特点可大致归纳如下:(1)实用性不断加强,问题和数据来自于实际,解决方法需要切合实际,模型和结果可以应用于实际;(2)综合性不断加强,解法多样,方法融合,学科交叉;(3)数据结构越来越复杂,包括数据的真实性,数据的海量性,数据的不完备性,数据的冗余性等;(4)开放性也越来越突出,题意的开放性,思路的开放性,方法多样,结果不唯一等.总体来说,赛题向大规模数据处理方向发展,求解算法和各类现代算法相互融合.

纵观历年的赛题,主要用到的建模方法有:初等数学模型、微分与差分方程建模、组合概率、数据处理、统计学建模、计算方法建模、数学规划、图论方法、层次分析、插值与拟合、排队论、模糊数学、随机决策、多目标决策、随机模拟、计算机模拟法、灰色系统理论、时间序列等.

本文不一一列举竞赛题目中涉及的所有方法,只是重点讨论其中一些比较常用的方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论建模方法,并结合案例说明建模方法的原理及应用.

1 微分方程与差分方程建模

在很多竞赛题目中,常常会涉及很多变量之间的关系,找出它们之间的函数关系式具有重要意义.可在许多实际问题中,我们常常不能直接给出所需要的函数关系,但可以得到含有所求函数的导数(或微分)或差分(即增量)的方程,这样的方程称为微分方程或差分方程. 建立微分方程或差分方程的数学模型是一种重要的建模方法.

如1996年A 题“最优捕鱼策略”,1997年A 题“零件参数设计”,2003年A 题“SARS 的传播”,2007年A 题“中国人口增长预测”,2009年A 题“最优捕鱼策略”等赛题中,都用到了这种方法.

1.1 微分方程建模

1.1.1 微分方程建模的原理和方法

一般来说,任何时变问题中随时间变化而发生变化的量与其它一些量之间的关系经常以微分方程的形式来表现.

例1.1 有一容器装有某种浓度的溶液,以流量1v 注入该容器浓度为1c 的同样溶液,假定溶液立即被搅拌均匀,并以2v 的流量流出混合后的溶液,试建立反映容器内浓度变化的数学模型.

解 注意到溶液浓度=

溶液体积

溶液质量,因此,容器中溶液浓度会随溶质质量和溶液体积变化而发生变化.

不妨设t 时刻容器中溶质质量为()t s ,初始值为0s ,t 时刻容器中溶液体积为()t v ,初始值为0v ,则这段时间()t t t ?+,内有 ????-?=??-?=?t

v t v V t v c t v c s 212211, (1) 其中1c 表示单位时间内注入溶液的浓度,2c 表示单位时间内流出溶液的浓度,当t ?很小时,在()t t t ?+,内有

≈2c =)()(t V t s t

v v V t s )()(210-+. (2) 对式(1)两端同除以t ?,令0t ?→,则有

????

?????==-=-=00212

211)0(,)0(V V s s v v dt

dV v c v c dt ds . (3) 即所求问题的微分方程模型.虽然它是针对液体溶液变化建立的,但对气体和固体浓度变化同样适用.

实际应用中,许多时变问题都可取微小的时间段t ?去考察某些量之间的变化规律,从而建立问题的数学模型,这是数学建模中微分方程建模常用手段之一.

常用微分方程建模的方法主要有:

(1)按实验定律或规律建立微分方程模型.

此种建模方法充分依赖于各个学科领域中有关实验定律或规律以及某些重要的已知定理,这种方法要求建模者有宽广的知识视野,这样才能对具体问题采用某些熟知的实验定律.

(2)分析微元变化规律建立微分方程模型.

求解某些实际问题时,寻求一些微元之间的关系可以建立问题的数学模型.如例1.1中考察时间微元t ?,从而建立起反应溶液浓度随时间变化的模型.此建模方法的出发点是考察某一变量的微小变化,即微元分析,找出其他一些变量与该微元间的关系式,从微分定义出发建立问题的数学模型.

(3)近似模拟法.

在许多实际问题中,有些现象的规律性并非一目了然,或有所了解亦是复杂的,这类问题常用近似模拟方法来建立问题的数学模型.一般通过一定的模型假设近似模拟实际现象,将问题做某些规范化处理后建立微分方程模型,然后分析、求解,并与实际问题作比较,观察模型能否近似刻画实际现象.近似模拟法的建模思路就是建立能够近似刻画或反映实际现象的数学模型,因此在建模过程中经常做一些较合理的模型假设使问题简化,然后通过简化建立近似反映实际问题的数学模型.

1.1.2 微分方程建模应用实例

例1.2(2003年高教社杯全国大学生数学建模竞赛A 题) SARS 传播的预测. 2003年爆发的“SARS ”疾病得到了许多重要的经验和教训,使人们认识到研究传染

病的传播规律的重要性.题目给出了感病情况的三个附件,要求对SARS 的传播建立数学模型:(1)对SARS 的传播建立一个自己的模型,并说明模型的优缺点;(2)收集SARS 对经济某个方面影响的数据,建立相应的数学模型并进行预测.

问题求解过程分析 由于题目具有开放性,故选择文献[1]中的求解思路分析.

传染病的传播模式可近似分为自由传播阶段和控后阶段,然后将人群分为易感者S ,感病者I ,移出者R 三类.由三者之间的关系可得到下列微分方程:

???????????=++=-=-=N

R I S hI dt

dR hI kIS dt dI kIS

dt dS , 利用附件中给出的数据,可以将上述方程变形为

I hI kNI dt

dI λ=-=, 其中h kN -=λ,其解为

t e I t I λ-=0)(.

其中0I 为初始值.

但此模型只适用于病例数与总人口数具有可比性的情况,当病例数远小于总人口数时,感病人数将随时间以指数增长.这是按实验定律或规律建立的微分方程模型.

为进一步改进模型,用计算机跟踪病毒的个体传播情况,又建立计算机模拟模型.然后用计算机模拟北京5月10日之前SARS 的传播情况,并对5月10日以后的传播情况进行预测.但是得到的有效接触率与实际统计数据有所偏差,所以统计数据,为参数的确定寻求医学上的支持,并以随机模拟取代完全确定性的模拟,对原模型进行改进,建立随机模拟模型.通过计算机编程,产生正态分布的随机数,并对传染情况进行500次模拟,即可进行预测,并可得出对SARS 疫情控制提出的相应建议.

1.2 差分方程建模

1.2.1 差分方程建模的原理和方法

差分方程在数学建模竞赛中应用的频率极高,所以要对这种方法引起足够的重视.它针对要解决的目标,引入系统或过程中的离散变量.具体方法是:根据实际的规律性质、平衡关系等,建立离散变量所满足的关系式,从而建立差分方程模型.

差分方程可以分为不同的类型,如一阶和高阶差分方程,常系数和变系数差分方程,线性和非线性差分方程等等.

建立差分方程模型一般要注意以下问题:

(1)注意题中的离散变化量,对过程进行分析,尤其要注意形成变化运动过程的时间或距离的分化而得到离散变量;

(2)通过对具体变化过程的分析,列出满足题意的差分方程,其中入手点是找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程.

1.2.2差分方程建模应用实例

例1.3(2007年高教社杯全国大学生数学建模竞赛A题)中国人口增长预测.

题目要求从中国的实际情况和人口增长的特点出发,参考附录中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测,特别要指出模型中的优点与不足之处.

问题求解过程分析由于题目具有开放性,故选择文献[2]中的求解思路分析.

通过分析题中相关的数据,考虑到我国近年来人口发展的总趋势,因为涉及到人口的增长和变换,所以可以先用微分方程来建立模型,并对我国人口增长的中短期和长期趋势做出预测.

首先,根据灰色系统理论,使用灰色关联分析模型法对人口系统结构进行关联分析,找出影响人口增长的主要因素;其次使用年龄推算法进行短期预测.

在建立和求解长期预测模型时,根据人口阻滞增长模型(Logistic模型),可以考虑对中国人口老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素建立新的人口增长的差分方程模型.但是它仅给出了人口总数的变化规律,反映不出各类人口的详细信息,所以我们需要建立离散化的模型,并进一步可以得到全面系统地反应一个时期内人口数量状况的差分方程,可以用微分和差分方程理论来表现和模拟人口数量的变化规律.从而对人口分布的状况、变化趋势、总体特征等有更加详细和科学的了解.

在模型的求解过程中,用到了MATLAB软件,并做参数估计,利用所得结果和题目给出的近五年来的人口数据,对我国人口发展趋势进行了预测,得到了在老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素影响下,未来我国人口发展预测情况.

2 数学规划建模

数学规划是指在一系列条件限制下,寻求最优方案,使得目标达到最优的数学模型,它是运筹学的一个重要分支.数学规划的内容十分丰富,包括许多研究分支,如:线性规划、非线性规划、整数规划、二次规划、0-1规划、多目标规划、动态规划、参数规划、组合优化、随机规划、模糊规划、多层规划问题等.

在1993年A 题“非线性交调的频率设计”,1993年B 题“足球队排名”,1995年A 题“飞行管理问题”,1996年B 题“节水洗衣机”,1997年A 题“零件的参数设计”,1998年A 题“一类投资组合问题”,1999年B 题“钻井布局”,2001年B 题“公交车调度问题”,2002年A 题“车灯线光源的优化”,2006年A 题“出版社书号问题”,2007年B 题“城市公交线路选择问题”等赛题中,都用到了规划的方法.在此以线性规划为例,对规划的方法进行探讨.

2.1 线性规划建模的一般理论

线性规划建模方法主要用于解决生产实际中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法.

一般的优化问题是指用“最好”的方式,使用或分配有限的资源即劳动力、原材料、机器、资金等,使得费用最小或利润最大.

优化模型的一般形式为:

()max min 或 ()x f z = (4)

().0..≤x g t s ()m i ,,2,1 = (5)

()()

12,,T n x x x x = ,. 由(4)、(5)组成的模型属于约束优化.若只有(4)式就是无约束优化.()x f 称为目标函数,()0g x ≤称为约束条件.

在优化模型中,如果目标函数()x f 和约束条件中的()g x 都是线性函数,则该模型称为线性规划.

建立实际问题线性规划模型的步骤如下:

(1)设置要求解的决策变量.决策变量选取得当,不仅能顺利地建立模型而且能方便地求解,否则很可能事倍功半.

(2)找出所有的限制,即约束条件,并用决策变量的线性方程或线性不等式来表示.当限制条件多,背景比较复杂时,可以采用图示或表格形式列出所有的已知数据和

信息,从而避免“遗漏”或“重复”所造成的错误.

(3)明确目标要求,并用决策变量的线性函数来表示,标出对函数是取极大还是取极小的要求.

需要特别说明的是,要使用线性规划方法来处理一个实际问题,必须具备下面的条件:

(1)优化条件:问题的目标有极大化或极小化的要求,而且能用决策变量的线性函数来表示.

(2)选择条件:有多种可供选择的可行方案,以便从中选取最优方案.

(3)限制条件:达到目标的条件是有一定限制的(比如,资源的供应量有限度等),而且这些限制可以用决策变量的线性等式或线性不等式表示出来.

此外,描述问题的决策变量相互之间应有一定的联系,才有可能建立数学关系,这一点自然是不言而喻的.

线性规划模型的求解可用图解法或单纯形法.随着计算机的普及和大量数学软件的出现,可以利用现成的软件MATLAB或LINGO等求解,在此不再叙述.

2.2线性规划建模应用实例

例2.1(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.

题目给出了美国某艾滋病医疗试验机构公布的两组数据,数据涉及到了病人CD4和HIV的浓度含量的测试结果.根据所给的资料需要参赛者完成以下问题:(1)利用附件1的数据,预测继续治疗的效果,或者确定最佳治疗终止时间;(2)利用附件2的数据,评价4种疗法的优劣(仅以4

CD为标准),并对较优的疗法预测继续治疗的效果,或者确定最佳治疗终止时间;(3)如果病人需要考虑4种疗法的费用,对评价和预测有什么影响.

问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.

首先对题目所给数据进行分析,考虑到治疗的效果与患者的年龄有关,将患者按年龄分组,如25

35岁及45岁以上4组.每组中按照4种疗法和4个

25岁,45

~

~

14岁,35

~

治疗阶段(如10

20周,40

~

30周),构造16个决策单元.取4

~

~

10周,30

0周,20

~

种药品量为输入,治疗各个阶段末患者的4

CD值的比值为输出.

CD值与开始治疗时4

然后建立相应的数学模型,利用相对有效性评价方法,建立分式规划模型并经过变换,转化为线性规划模型求解,对各年龄组患者在各阶段的治疗效率进行评价.计算结果:对第1年龄组疗法2和4在整个治疗中效率较高,在第4阶段仍然有效;对第2年龄组疗法1在第1,2阶段有效;对第3年龄组疗法1,2,3在第1阶段有效;对第4年龄组疗法1,2在第1,2阶段有效.表明只有25

14岁的年4种轻患者,才能在治疗的最

~

后阶段仍然有有效的疗法.

随后,由线性规划模型的对偶形式建立预测模型,对各年龄组各种疗法下一阶段的疗效进行预测.若由某决策单元得到的实际输出大于预测输出,则该决策单元相对有效;反之,说明该种疗法对该组患者在治疗的未来阶段不再有效,应该转换疗法.

3 统计学建模方法

在数学建模竞赛中,常常会涉及到大量的数据,因此,我们就需要用统计学建模方法对这些数据进行处理.此类方法主要包括统计分析、计算机模拟、回归分析、聚类分析、数据分类、判别分析、主成分分析、因子分析、残差分析、典型相关分析、时间序列等.

如2004年A题“奥运会临时超市网点设计问题”,2004年B题“电力市场的输电阻塞管理问题”,2007年A题“人口增长预测问题”,2008年B题“大学学费问题”,2012年A题“葡萄酒的评价”等都用到了这种建模方法.在此选取其中两类方法进行阐述.

3.1聚类分析

3.1.1聚类分析的原理和方法

该方法说的通俗一点就是,将n个样本,通过适当的方法选取m聚类中心,通过研究各样本和各个聚类中心的距离,选择适当的聚类标准,通常利用最小距离法来聚类,从而可以得到聚类.结果利用sas 软件或者spss 软件来做聚类分析,就可以得到相应的动态聚类图.这种模型的的特点是直观,容易理解.

聚类分析的类型可分为:Q型聚类(即对样本聚类)和R型聚类(即对变量聚类).通常聚类中有相似系数法和距离法两种衡量标准.聚类方法种类多样,有可变类平均法、中间距离法、最长距离法、利差平均和法等.在应用时要注意,在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理.主要的方法步骤大致如下:

(1)首先把每个样本自成一类;

(2)选取适当的衡量标准,得到衡量矩阵;

(3)重新计算类间距离,得到衡量矩阵;

(4)重复第2步,直到只剩下一个类.

3.1.2聚类分析应用实例

例3.1(2012年高教社杯全国大学生数学建模竞赛A题)葡萄酒的评价.

题目的附件中给出了某一年份一些葡萄酒的评价结果,和该年份这些葡萄酒的和酿酒葡萄的成分数据.要求参赛者建立数学模型解决以下问题:(1)分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信;(2)根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级;(3)分析酿酒葡萄与葡萄酒的理化指标之间的联系;(4)分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量.

问题求解过程分析由于题目具有开放性,故选择文献[4]中的求解思路分析.

由于给定了酿酒葡萄的理化指标,首先可将附录2和附录3中的一些数据进行处理.并可以据此对各种酿酒葡萄进行聚类分析,但是,由于题目中所给的数据庞大,所以可通过主成分分析法,简化并提取大部分有效信息,再用聚类分析对酿酒葡萄进行分级.最后根据酿酒葡萄对应葡萄酒质量的平均值大小进行比较,排序分级.接下来针对问题中分析酿酒葡萄与葡萄酒理化指标之间的联系,及上面整理好的数据,采用回归分析原理,在SPSS中得到酿酒葡萄与葡萄酒的理化指标之间的联系.再通过相关分析,得出相应的相关系数,从而得到相应的判断结论.在分析酿酒葡萄与葡萄酒的理化指标之间的联系时,还用到了多元线性回归分析.

该模型用于生活实践中,也可以解决很多实际问题.

3.2回归分析

回归分析是利用数据统计原理,对大量数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程,并加以外推,用于预测今后的因变量的变化的分析方法.

3.2.1回归分析的原理与方法

回归分析是在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型;对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制.回归分析主要包括一元线性回归、多元线性回归、非线性回归.

回归分析的主要步骤为:

(1)根据自变量和因变量的关系,建立回归方程.

(2)解出回归系数.

(3)对其进行相关性检验,确定相关系数.

(4)当符合相关性要求后,便可与具体条件结合,确定预测值的置信区间.

需要注意的是,要尽可能定性判断自变量的可能种类和个数,并定性判断回归方程的可能类型.另外,最好应用高质量的统计数据,再运用数学工具和相关软件定量定性判断.

3.2.2回归分析应用实例

例3.2(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.

题目同例2.1.

问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.

问题2的解决就用到回归模型.首先分析数据知,应建立时间的一次与二次函数模型,并经过统计分析比较,确定哪种较好.所以可建立一个统一的回归模型,也可对每种疗法分别建立一个模型.

以总体回归模型为例,分别用一次与二次时间函数模型进行比较,可知疗法3

1用

~

一次模型较优,且一次项系数为负,即4

CD在减少,从数值看疗法3优于疗法2和1;疗法4用二次模型较优,即4

t左右达到最大.可以通过4条回归

CD先增后减,在20

曲线进行比较,显示疗法4在30周之前明显优于其它.最后再用检验法作比较,结果是疗法1与2无显著性差异,而疗法1与3,2与3,3与4均有显著性差异.

4 图论建模方法

图论建模方法在建模竞赛中也经常涉及,应用十分广泛,并且解法巧妙,方法灵活多变.如1990年B题“扫雪问题”,1991年B题“寻找最优Steiner树”,1992年B题“紧急修复系统的研制”,1993年B题“足球队排名”,1994年A题“逢山开路问题”,1994年B题“锁具装箱问题”,1995年B题“天车与冶炼炉的作业调度”,1997年B题“截断切割的最优排列”,1998年B题“灾情巡视最佳路线”,1999年B题“钻井布局”,2007年B题“城市公交线路选择问题”等都应用到了图论的方法.

图论近几年来发展十分迅速,在物理、化学、生物学、地理学、计算机科学、信息论、控制论、社会科学、军事科学以及计算机管理等方面都有着广泛的应用.因此图论越来越受到了全世界数学界和工程技术界乃至经营决策管理者的重视.同时也成为了数学建模中一种十分重要的方法.图论问题算法很多,包括最短路、最大流、最小生成树、二分匹配、floyd、frim等.

4.1 两种常见图论方法介绍

图论中的图是由平面上的一些点及这些点之间的连线(称为边)构成的.图中的点表示要研究的离散对象,边表示对象之间的关系.用这些点和边建立的离散对象来建立模型,通过这种办法许多难题都可以被巧妙地解决.所以图论方法成为研究离散问题的一种重要手段.由于图论方法所包含的概念和定义较多,无法全部列举.在这里只就其中的两种方法作介绍.

4.1.1 模拟退火法的基本原理

模拟退火法是模拟热力学中系统的降温过程,当孤立粒子系统的温度以足够慢的速度下降时,系统近似处于热力学平衡状态,最后系统将达到本身的最低能量状态,即基态,这相当于能量函数的全局极小点.其步骤如下(也称为Metropolis 过程):

(1)给定初始温度0T ,及初始点,计算该点的函数值()x f ;

(2)随机产生扰动x ?,得到新点x x x ?+='计算新点函数值()x f ',及函数值差

()()x f x f f -'=?;

(3)若0≤?f ,则接受新点,作为下一次模拟的初始点;

(4)若0>?f ,则计算新点接受概率:

()??

? ????-=?T K f f p exp , 产生[]1,0区间上均匀分布的伪随机数r ,[]1,0∈r ,如果()r f p ≥?,则接受新点作为下一次模拟的初始点;否则放弃新点,仍取原来的点作为下一次模拟的初始点.

4.1.2 最短路问题

最短路问题是一个有着广泛应用价值的问题,例如各种管道的铺设,线路的安排,输送网络费用等问题,都可以用到最短路求法.

在解决实际问题时,我们问题中的“边权”可以有着各种不同的解释.例如在运输网络中,从v 运送一批货物到u ,若“边权”视为通常意义下的路程,则最短路问题就是

使运输总路程最短的路线,若“边权”表示运输时间,则最短路就是运输总时间最短的路线,“边权”也可以代表费用,这时相应的就是总费用最省的的路线.

4.2 图论建模应用实例

例4.2(2007年高教社杯全国大学生数学建模竞赛B 题) 城市公交线路选择问题. 在2007年B 题中,涉及到了北京公交车的换乘问题,为了使乘客利益最大化,需要设计一个“公交线路选择自主查询系统”,其核心是线路选择的模型,该模型必须考虑实际情况,满足查询者的各种不同需求.要求解决如下问题:(1)仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的一般数学模型与算法. (2)同时考虑公汽与地铁线路,解决以上问题.(3)假设又知道所有站点之间的步行时间,请你给出任意两站点之间线路选择问题的数学模型.

问题求解过程分析 由于题目具有开放性,故选择文献[5]中的求解思路进行分析. 由于在现实情况下,乘客一般不能乘坐一辆公交车就到达终点,可能会换乘,但要是频繁倒车,会给乘客造成不便,也会增加车费.所以可针对城市公交线路选择问题建立模型.为了使问题简单化,我们分别以乘车时间、乘车费用以及换乘次数为目标函数,得到各自的较优线路,再通过对比,有效地处理这些线路,最终得出查询系统给出的结果.

首先固定换乘次数n ,通过集合论的相关知识把确定换乘点的具体位置, 转化成确定一些集合间的交集,从而建立集合寻线算法,再根据集合相关公式,得到所有可行线路;进一步考虑时间和费用等因素,对可行线路进行处理比较,得出最佳线路.

图论模型中,通过图论的知识将整个北京市交通线路构建出一个有向图,每个站点与有向图的顶点一一对应,同一线路上的相邻站点对应为有向边,通过不同目标(时间、费用)给有向图进行不同的赋权,分别将不同目标转化为赋权有向图寻找最短有向路,根据最短路径算法,得到最佳线路.最后综合评价了两个模型的优缺点.

以每个站点为顶点,若站点A 到站点B 有公交线路并且A 与B 为相邻站点,则连一条A 到B 有向边,根据所给的站点与线路我们建立一个得到一个有重边的有向图()E V D ,一条公交线路就是()E V D ,的一条有向路.则任意两公汽站点之间线路最少时间选择问题就转化为求()W E V D ,,的对应两顶点的最短有向路问题.

由图论模型所得的查询系统,是以图论知识中的最短路有向图为基础,对不同线路经过同一站点时,假设多个假想点,并将各不同站点之间所需时间作为权,对各线路站点赋权,分别确定以时间、费用、换乘为目标转化为寻找有向的完全图,并根据实际情况,建立出动态赋权有向图,得出最佳线路.

5 小结

建模竞赛的方法种类众多,本文主要对其中四中常用的方法进行了阐述、总结和探讨.在每一章的开头,都列出了近几年来应用到此方法的赛题.在四种方法中,微分与差分方程是比较基础的一种方法,在解决变量问题时经常会用到.第二种规划方法则是一种应用广泛的方法,很多赛题都会涉及到.第三种是统计学方法,从近些年的赛题变化趋势来看,赛题题目中所给的数据越来越多,越来越复杂化,这就需要用统计学方法对这些数据进行分类处理,并最终得到相关结论.最后一种是图论方法,这种方法灵活多变,应用巧妙,可以使很多复杂问题简单化.当然还有很多常用方法,本文不再一一列举,希望本文能够对读者有所帮助.

参考文献

[1] 李小华,刘纽. SARS传播的数学模型及对经济的影响[J].http://wenku.baidu. com/view/98d4726b1eb91a37f1115c98.html,2013.5

[2] 李译,李志坤,殷婷.中国人口增长预测[J]. https://www.doczj.com/doc/976188977.html,/view/

ff3ea8a40029bd64783e2cf6.html,2013.5

[3] 周利庭,张洪雷,杨丽娜.艾滋病疗法的评价及疗法的预测[J]. http://wenku. https://www.doczj.com/doc/976188977.html,/view/24c67b7302768e9951e738ce.html,2013.5

[4] 未知作者.葡萄酒的评价[J]. https://www.doczj.com/doc/976188977.html,/view/6fccfd6f7e21af 45b307a896.html,2013.5

[5] 未知作者.城市公交路线选择优化模型[J].https://www.doczj.com/doc/976188977.html,/view/76206e 297375a417866f8f1e.html,2013.5

[6] 华罗庚,王元编著.数学模型选谈[M].湖南:湖南教育出版社,1991.7

[7] Saaty TL. The Analytic Hierarchy Process [M].Mcgraw 2 Hill,1980.4

[8] 杨学桢.数学建模方法[M].保定:河北大学出版社,2000.8

[9] 王高雄,周之铭,朱思铭,王寿松.常微分方程[M].北京:高等教育出版社,1983.8

[10] 王兴宇,樊恺.数学模型方法[M].武汉:华中理工大学出版社,1996.8

致谢

四年的大学生活转眼就要说再见了,当大学的最后一项任务即将完成的时候,终于长长地吁出一口气时,这时也突然意识到,原来四年马上就要过去了,到了该告别的时候了.仔细想想,竟有些恍惚,四年的时光就这样过去了,猛然有了那么多的不舍.可是终归真的要毕业了.大学四年,读的是一所普普通通的二流大学,而且处在一个大学生泛滥的时代,面对着父母的期待,有时候真的会很茫然,甚至不知所措.但是我依然踏踏实实的过完了这四年.从开始的新奇,到后来的迷茫,再到后来的坚定和努力.我无愧于这四年的大学生活,在即将给它画上句号的时候,我还是会带着微笑去回忆,这四年我成长了许多,从那么的稚嫩、懵懂变得成熟稳重.我会始终带着感恩去铭记这里,去铭记我的恩师们,你们辛苦了.

特别感谢闫峰老师,在她细心的指导下,我才得以完成这篇论文,从开题、资料查找、修改到最后定稿,承载了她太多的心血,她的涓涓教诲,我会永远铭记心田.我很自豪有这样一位老师,她值得我感激和尊敬.

同时还要感谢数学系的全体授课老师,以及实习学校的许爱英老师,侯东校老师,你们使我终身受益.感谢所有关心、鼓励、支持我的家人、亲戚和朋友.

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

大学生数学建模竞赛组队方案

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):成都纺织高等专科学校 参赛队员(打印并签名) :1. XXX(机电XXX) 2. XXX国贸XXX) 3. XXX(电商XXX) 指导教师或指导教师组负责人(打印并签名): 日期: 2014 年 06 月 06 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

目录 一、问题的重述 (1) 1.1 背景资料与条件 (1) 1.2 需要解决的问题 (1) 二、问题的分析 (2) 2.1 问题的重要性分析 (2) 2.2问题的思路分析 (3) 三、模型的假设 (4) 四、符号及变量说明 (4) 五、模型的建立与求解 (4) 5.1建立层次结构模型 (4) 5.2构造成对比较矩阵 (5) 5.3成对比较矩阵的最大特征根和特征向量的实用算法 (6) 5.4一致性检验 (7) 5.5层次分析模型的求解与分析 (8) 5.5.1 构造成对比较矩阵 (8) 5.5.2计算25优秀大学生的综合得 (9) 六、模型的应用与推广 (11) 七、模型的评价与改进 (12) 7.1模型的优点分析 (12) 7.2模型的缺点分析 (12) 7.3模型的进一步改进 (12) 八、参考文献 (13) 附件一 (14) 附件二 (16)

大学生数学建模竞赛的由来与发展

大学生数学建模竞赛的由来和发展 自古以来,各种竞赛方式历来是各行各业培养、锻炼和选拔人才的重要手段。凡竞赛实际上都有准备阶段、临场发挥和赛后总结、提高三个阶段。参赛者通过这三个阶段来接受挑战并锻炼提高自己。当然,也不是参加竞赛的人都能成为人才,获得优胜的选手参赛者如果不善于总结自己的长处和缺点,不断提高的话,也未必能发展成为优秀人才。诚然,如果太强调竞赛的功利性,也可能产生各种各样的弊病,副作用会大过正作用,使竞赛变了味,也就可能失去了培养、锻炼和选拔人才的功能。 就培养选拔科技人才而言,各种学科的竞赛也起到了很大的作用。就数学科学来说,很多国家都有面向中学生或大学生的数学竞赛,甚至还有国际或地区性的数学竞赛。例如,就后者而言,有从1959年开始举办的中学生国际奥林匹克数学竞赛(The International Mathematical Olympiad (IMO), 有兴趣的读者可以访问网址http://www.imo.math.ca/), 有从1994年开始举办的国际大学生数学竞赛(International Mathematics Competition for Universtiy Students, IMC, 有兴趣的读者可以访问网址https://www.doczj.com/doc/976188977.html,/ ), 北美(美国和加拿大)普特南大学生数学竞赛(The William Lowell Putnam Mathematical Competition, 有兴趣的读者可以访问网址https://www.doczj.com/doc/976188977.html,/或https://www.doczj.com/doc/976188977.html,/ )。 因为大学生数学建模竞赛诞生于美国,而且其源起与普特南数学竞赛有关,加之这个竞赛是培养出许多优秀数学家和科学家的竞赛,所以在本章,我们从普特南数学竞赛谈起。 本章包括普特南(Putnam)数学竞赛、大学生数学建模竞赛、为什么要参加大学生数学建模竞赛和怎样参加大学生数学建模竞赛四节。 1 普特南(Putnam)数学竞赛 普特南和他的想法 W. L. 普特南(William Lowell Putnam, 1861 ~ 1924, 美国律师和银行家), 1882年毕业于哈佛大学。他深信在正规大学的学习中组队竞赛的价值. 他在哈佛毕业生杂志1921年12月那期上写了一篇文章中阐述了大学间智力竞赛的价值和优点。在他去世后,他的遗霜Elizabeth Lowell Putnam (1862-1935)于1927年建立了“普特南大学间对抗纪念基金(William Lowell Putnam Intercollegiate Memorial Fund)”。第一个由该基金资助的是校际英语竞赛。由该基金资助的第二次试验性竞赛是于1933年举行的10名哈佛大学的学生和10名西点军校的学生间一次数学竞赛。由于那次竞赛十分成功,于是就产生了举行所有感兴趣的大学和学院都可以参加的类似的年度竞赛的想法。但是直到1935年Elizabeth去世都没有举行过这样的竞赛。到了1938年才决定由美国数学协会来管理这个基金和组织了第一次正式的竞赛。 普特南数学竞赛 现在普特南数学竞赛的时间是每年12 月第一周的星期六,共进行两试,每试3 小时、6道题,每题10分。该竞赛是彻底闭卷的考试, 在限定的时间内主要测试参赛者思维敏捷、推理和计算的能力。竞赛分个人和团体(组队),一个学校可以组织一个由三名学生组成队,名列前茅者有奖金奖励。竞赛前几年,团体前三名的奖金分别为$500、$300 和$200,个人前五名每人可获奖金$50,并成为Putnam 会员(Putnam fellow)。近年来,奖励团体前五名的大学的数学系的奖金分别为$25000(每个队员可得到$1000奖金)、$20000(每个队员可得到$800奖金)、$15000(每个队员可得到$600奖金)、$10000(每个队员可得到$400奖金) 和$5000(每个队员可得到$200奖金)。个人前五名每人可获奖金$2500,并成为Putnam 会员。5-15名每人可获奖金$1000,16-26名每人可获奖金$250。当然更重要的不是金钱奖励,而是

四年级简便运算

四年级下册简便计算归类总结简便计算 84x101 (300+6)x12 504x25 25x(4+8) 78x102 125x(35+8) 25x204 (13+24)x8 99x64 99X13+13 99x16 25+199X25 638x99 32X16+14X32 999x99 78X4+78X3+78X3 125X32X8 3600÷25÷4 25X32X12 5 8100÷4÷75 88X125 3000÷125÷8 72X125 1250÷25÷5 2 273-73-27

847-527-273 278+463+22+37 732+580+2 68 1034+780320+102 425+14+186 214-(86+1 4) 787-(87-29) 365-(65+118) 455-(155+23 0) 576-285+85 825-657+57 690-177+77 755-287+87 871-299 157-99 363-199 968-599 178X101-178 83X1 02-83X2 17X23-23X7 35X127-35X16-11X35 64÷(8X2)

1000÷(125X4) 375X(109-9) 456X(99+1) 容易出错类型(共五种类型) 600-60÷1520X4÷20 X4 736-35X20 25X4÷25X4 98-18X5+2 5 56X8÷56X8 280-80÷ 412X6÷12X6 175-75÷25 25X8÷25 80-20X2+6 0 36X9÷36X9 36-36÷6-6 25X8÷(25X 8) 100+45-100+45

数学建模专题汇总-离散模型

离散模型 § 1 离散回归模型 一、离散变量 如果我们用0,1,2,3,4,?说明企业每年的专利申请数,申请数是一个离散的变量,但是它是间隔尺度变量,该变量类型不在本章的讨论的被解释变量中。但离散变量0和1可以用来说明企业每年是否申请专利的事项,类似表示状态的变量才在本章的讨论中。在专利申请数的问题中,离散变量0,1,2,3 和4 等数字具 有具体的经济含义,不能随意更改;而在是否申请专利的两个选择对象的选择问题中,数字0和1只是用于区别两种不同的选择,是表示一种状态。本专题讨论有序尺度变量和名义尺度变量的被解释变量。 、离散因变量

在讨论家庭是否购房的问题中,可将家庭购买住房的决策用数字1 表示,而将家庭不购买住房的决策用数字0 表示。 1 yes x 0 no 如果x 作为说明某种具体经济问题的自变量,则应用以前介绍虚拟变量知识就足够了。如果现在考虑某个家庭在一定的条件下是否购买住房问题时,则表示状态的虚拟变量就不再是自变量,而是作为一个被说明对象的因变量出现在经济模型中。因此,需要对以前讨论虚拟变量的分析方法进行扩展,以便使其能够适应分析类似家庭是否购房的问题。因为在家庭是否购房问题中,虚拟因变量的具体取值仅是为了区别不同的状态,所以将通过虚拟因变量讨论备择对象选择的回归模型称为离散选择模型。 三、线性概率模型 现在约定备择对象的0 和1 两项选择模型中,下标i 表示各不同的经济主体,取值

0或l的因变量 y i表示经济主体的具体选择结果,而影响经济主体进行选择的自变量 x i 。如果选择响应YES 的概率为 p(y i 1/ x i ) ,则经济主体选择响应NO 的概率为 1 p(y i 1/ x i), 则E(y i /x i) 1 p(y i 1/x i) 0 p(y i 0/x i)= p(y i 1/x i)。根据经典线性回归,我们知道其总体回归方程是条件期望建立的,这使我们想象可以构造线性概率模型 p(y i 1/ x i) E(y i / x i) x iβ 0 1 x i1 L k x ik u i 描述两个响应水平的线性概率回归模型可推知,根据统计数据得到的回归结果并不一定能够保证回归模型的因变量拟合值界于[0,1]。如果通过回归模型式得到的因变量拟合值完全偏离0或l两个数值,则描述两项选择的回归模型的实际用途就受到很大的限制。为避免出现回归模型的因变量预测值偏离0或1的情形,需要限制因变量的取值范围并对回归模型式进行必要的修正。由于要对其进行修正,那么其模型就会改变,模型改变会导致似然函

全国大学生数学建模竞赛的准备方法

全国大学生数学建模竞赛的准备方法 全国大学生数学建模竞赛于每年9月上旬(今年是9月7日)举行。但是在此之前,需要做好哪些准备,让各个参赛队员在竞赛中做到有备无患呢?在总结过去多年培训指导各种数学建模竞赛的基础上,仅就个人观点,介绍一些关于如何准备数学建模竞赛的经验和体会,仅供参考。在这里主要向大家介绍竞赛的基本情况,包括如何组队、如何选题以及在竞赛中如何合理分配时间。通过本次学习,希望大家能够了解数学建模竞赛的基本情况,为全国大学生数学建模竞赛以及其他各类数学建模竞赛做好准备。 一、如何组建优秀数学建模队伍 进入大学阶段参加各种科技竞赛,可以体会到一种和中学竞赛不同的感受,这种感受来自团队合作。以前的各项赛事都是以个人为单位参加竞赛,它们都是考查个人的能力。但是在大学中,由于难度和任务量的加重以及对团队合作精神的关注,因此大部分的赛事都是以团队为单位参加的。竞赛在考查个人能力的同时,还考查团队成员的合作精神。在数学建模竞赛中,团队合作精神是能否取得好成绩的最重要的因素,一队三个人要分工合作、相互支持、相互鼓励。从历年的统计数据可以看出,竞赛成绩优秀的队员往往并不是每个人在各个方面都特别擅长的队伍,而是团队相处得最融洽的队伍。从这一点也可以看出团队合作的重要性。 在竞赛的过程中,切勿自己只管自己的那一部分,一定要记住这是一个集体的竞赛。很多时候,往往一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚。因此无论做任何事情,三个人一定要齐心才行,只靠一个人

的力量,要在3天之内写出一篇高水平的论文几乎是不可能的。让三人一组参赛一方面是为了培养合作精神,其实更为重要的原因是这项工作确实需要多人合作,因为一个人的能力是有限的,知识掌握也往往是不全面的。一个人做题,经常会走向极端,得不到正确的解决方案。而三个人相互讨论、取长补短,可以弥补一个人所带来的不足。 在队伍组建的时候,需要强调“队长”这个名词概念。虽然在全国大学生数学建模竞赛中并没有设立队长,作为队长在获得的证书上也没有特别标注。但是在队内设立“队长”是非常有必要的。因为在比赛中可能会碰到各种突发状况,队长是很重要的,他的作用就相当于计算机中的CPU,是全队的核心。如果一个队的队长不得力,往往影响一个队的正常发挥。竞赛是非常残酷的,在3天3夜(72h)的比赛中,大家睡眠时间都得不到保障,怎样合理安排团队时间就是队长需要做的事情。在比赛过程中,由于睡眠不足,大家脾气都会很急躁。在这种情况,往往会为了一些小事而发生争吵,如果没有适当的处理,有些队伍将会放弃比赛,而队长就应该在这个时候担起责任。 在明确“队长”这个概念后,接下去谈谈怎样科学选择队友。在数学建模竞赛中,题目要求完成的工作量是很大的,因此这项任务是必须分工完成的,各有侧重、相互帮助,这样才能获得好成绩。而科学地选择队友则显得非常重要,也是走向成功的第一步。一般情况下选择队友可以从以下几个方面考虑着手: 1. 在组队的时候需要考虑队伍成员的多元化,尽量和不同专业、不同特长的同学组队。因为同系同专业甚至同班的话大家的专业知识一样,如果碰上专业知识以外的背景那会比较麻烦的。所以如果是不同专业组队则有利的多。因为数学建模题有可能出现在各个领域,这也是数学建模适合各个专业学生参加的原因所在,也是数学建模竞赛赛事的魅力所在。

美国大学生数学建模竞赛翻译必备知识

A absolute value 绝对值accept 接受 acceptable region 接受域additivity 可加性 adjusted 调整的alternative hypothesis 对立假设 analysis 分析 analysis of covariance 协方差分析 analysis of variance 方差分析 arithmetic mean 算术平均值association 相关性assumption 假设assumption checking 假设检验 availability 有效度average 均值 B balanced 平衡的 band 带宽 bar chart 条形图 beta-distribution 贝塔分布between groups 组间的bias 偏倚 binomial distribution 二项分布 binomial test 二项检验 C calculate 计算 case 个案 category 类别 center of gravity 重心central tendency 中心趋势chi-square distribution 卡方分布 chi-square test 卡方检验classify 分类 cluster analysis 聚类分析coefficient 系数 coefficient of correlation 相关系数collinearity 共线性 column 列 compare 比较 comparison 对照 components 构成,分量 compound 复合的 confidence interval 置信区 间 consistency 一致性 constant 常数 continuous variable 连续变 量 control charts 控制图 correlation 相关 covariance 协方差 covariance matrix 协方差矩 阵 critical point 临界点 critical value 临界值 crosstab 列联表 cubic 三次的,立方的 cubic term 三次项 cumulative distribution function 累加分布函数 curve estimation 曲线估计 D data 数据 default 默认的 definition 定义 deleted residual 剔除残差 density function 密度函数 dependent variable 因变量 description 描述 design of experiment 试验 设计 deviations 差异 df.(degree of freedom) 自由 度 diagnostic 诊断 dimension 维 discrete variable 离散变量 discriminant function 判别 函数 discriminatory analysis 判 别分析 distance 距离 distribution 分布 D-optimal design D-优化设 计 E eaqual 相等 effects of interaction 交互效 应 efficiency 有效性 eigenvalue 特征值 equal size 等含量 equation 方程 error 误差 estimate 估计 estimation of parameters 参数估计 estimations 估计量 evaluate 衡量 exact value 精确值 expectation 期望 expected value 期望值 exponential 指数的 exponential distributon 指 数分布 extreme value 极值 F factor 因素,因子 factor analysis 因子分析 factor score 因子得分 factorial designs 析因设计 factorial experiment 析因试 验 fit 拟合 fitted line 拟合线 fitted value 拟合值 fixed model 固定模型 fixed variable 固定变量 fractional factorial design 部分析因设计 frequency 频数 F-test F检验 full factorial design 完全析 因设计

简便方法计算方法总结

简便方法计算方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

(一)“凑整巧算”——运用加法的交换律、结合律进行计算。要求学生善于观察题目,同时要有凑整意识。 【评注】凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。 1、加法交换律 定义:两个数交换位置和不变, 公式:A+B =B+A, 例如:6+18+4=6+4+18 2、加法结合律 定义:先把前两个数相加,或者先把后两个数相加,和不变。 公式:(A+B)+C=A+(B+C), 例如:(6+18)+2=6+(18+2) 3、引申——凑整 例如:1.999+19.99+199.9+1999 =2+20+200+2000-0.001-0.01-0.1-1 =2222-1.111 =2220.889 【评注】所谓的凑整,就是两个或三个数结合相加,刚好凑成整十整百,譬如此题,“1.999”刚好与“2”相差0.001,因此我们就可以先把它读成“2”来进行计算。但是,一定要记住刚才“多加的”要“减掉”。“多减的”要“加上”! (二)运用乘法的交换律、结合律进行简算。 1、乘法交换律 定义:两个因数交换位置,积不变. 公式:A×B=B×A 例如:125×12×8=125×8×12 2、乘法结合律 定义:先乘前两个因数,或者先乘后两个因数,积不变。 公式:A×B×C=A×(B×C), 例如:30×25×4=30×(25×4) (三)运用减法的性质进行简算,同时注意逆进行。 1、减法 定义:一个数连续减去两个数,可以先把后两个数相加,再相减。 公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的运用】 例如:20-8-2=20-(8+2) (四)运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。 1、除法 定义:一个数连续除去两个数,可以先把后两个数相乘,再相除。 公式:A÷B÷C=A÷(B×C), 例如:20÷8÷1.25=20÷(8×1.25)

(完整word版)数学建模四大模型总结,推荐文档

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城

市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。 TSP 问题是VRP 问题的特例。 ● 车间作业调度问题(JSP) 车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。如何求得从第一个操作开始到最后一个操作结束的最小时间间隔。 2 分类模型 判别分析是在已知研究对象分成若干类型并已经取得各种类型的一批已知样本的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析。 聚类分析则是给定的一批样品,要划分的类型实现并不知道,正需要通过局内分析来给以确定类型的。 2.1 判别分析 ● 距离判别法 基本思想:首先根据已知分类的数据,分别计算各类的重心即分组(类)的均值,判别准则是对任给的一次观测,若它与第i 类的重心距离最近,就认为它来自第i 类。 至于距离的测定,可以根据实际需要采用欧氏距离、马氏距离、明科夫距离等。 ● Fisher 判别法 基本思想:从两个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个判别函数或称判别式1p i i i y c x ==∑。其中系数i c 确定的原则是使两 组间的区别最大,而使每个组内部的离差最小。 对于一个新的样品,将它的p 个指标值代人判别式中求出 y 值,然后与判别临界值(或称分界点(后面给出)进行比较,就可以判别它应属于哪一个总体。在两个总体先验概率相等的假设下,判别临界值一般取: (1)(2)1 2012n y n y y n n +=+

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

数学建模

黑龙江建筑职业技术学院第四届大学生数学建模竞赛 承诺书 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 所属二级学院(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 负责人(打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期:年月日学院评阅编号(由学院组委会评阅前进行编号):

黑龙江建筑职业技术学院第四届大学生数学建模竞赛 编号专用页 赛区评阅编号(由学院组委会评阅前进行编号):

传奇教练的选择问题探究 摘要 本文是通过建立数学模型来分析传奇教练的选择的问题,使得对于教练的历史和如何挑选出上个世纪中的传奇大学教练。我们通过对某一项运动中大学联赛教练数据的细致分析,选举出在该联赛一个世纪(1913-2013)的历史中的最佳教练,并由此得到一个能在不同比赛项目中通用的评价标准。 本文根据题目要求,逐层分析针对关于教练的传奇性和对执教生涯的系统分析,达到选择出最佳的传奇教练和对于传奇教练的一生的重大影响,最大可能让大家去了解。 解决问题时,由于本题数据教练较多,于是根据不同的体育项目和对于不同年龄的教练的需求赋予不同的权重,利用“层次分析”的思想求得最优,层次最为清晰的分析方法。体育画刊是美国的主要体育活动组织,各个大学积极参与体育画刊举办的各类体育联赛。美国全国上下对体育画刊的热情以及关注程度之高无法想像。体育画刊兴盛是美国大学文化的一种缩影,形成了崇尚体育的精神。体育画刊的存在培养了学生的体格、以及他们的荣誉感、团队能力,不仅如此,体育画刊更是众多美国的职业联赛(例如NBA、NFL、NHL)明星的诞生地! 首先,将不同的体育项目进行分类,分层次的进行研究的调查。在本文中,我们试图建立一个数学模型来通过在相关杂志,资料,文献中能查找到的数据分析并评选出最杰出的教练。而这种评价方式下,我们力求以客观的方式,将数据所体现出的一个教练的能力全方位的展现,也就是说,我们大体沿用美国“标准本位的教练员评价”中的八项标准,但需要将其中主观的评价方式尽可能的客观化,数据化。 第二个问题,我将分为篮球,橄榄球,曲棍球进行层次式分析争取达到最高效的方法,通过模型的建立执教年龄,总执教场次,胜,负,胜率,等进行多角度的分析,以达到最终的找到传奇的教练。 通过以上问题的解决我们将找出传奇的教练并在模型的建立中,客观的表现出传奇教练的重大意义和历史贡献,由于体育画刊的明星教练与众多职业联赛不同,在职业联赛中球星的地位或许比教练还高,但在体育画刊中一个优秀的教练是胜利的保证。因此我们应当向这些伟大的教练们致敬! 同时在建立模型时我们优先考虑到不同时代的明星教练和不同性别教练的影响,运用群体决策打分体制,层次分析法,一致性检验及单一准则下元素相对权重的计算和因子的分析方法,达到最终的目的。

数学建模专题方法总结

最短路问题、公路连接问题、指派问题、中国邮递员问题、推销员问题、旅行商问题、运输问题 上述问题有两个共同的特点: 一是它们的目的都是从若干可能的安排或方案中寻求某种意义下的最优安排或方案,数学上把这种问题称为最优化或优化问题; 二是它们都易于用图形的形式直观地描述和表达,数学上把这种与图相关的结构称为网络。 与图和网络相关的最优化问题就是网络最优化或称网络优化问题。所以上面例子中介绍的问题都是网络优化问题。

离散数据的处理可用插值、拟合。 插值:已知某些离散点的函数值,构造一个简单的函数通过所有离散点,可求离散点区域内其他中间点的值。若要求所求曲线(面)通过所给所有数据点,就是插值问题。 拟合:不要求通过所有数据点,可预测以前的值。若不要求曲线(面)通过所有数据点,而是要求它反映对象整体的变化趋势,这就是数据拟合,又称曲线拟合或曲面拟合。 函数插值与曲线拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者在数学方法上是完全不同的。

元法建模3用模拟近似法建模。 微分方程数值解求近似解。 有限差分法--------偏微分方程的一种数值解法

非线性------曲线线性-------直线

预测方法总结:1回归拟合预测------最小二乘法(数据较多、不能太多也不能太少、适合中 等数据量的问题) 2灰色预测(小样本的预测,数据量少)需做数据预处理 3模糊数学预测

模糊数学是研究和揭示模糊现象的定量处理方法。 分类、识别、评判、预测、控制、排序、选择 模糊聚类分析--------对所研究的事物按一定标准进行分类。对客观事物按一定的标准进行分类的数学方法称为聚类分析,它是多元统计的一种分类方法。 模糊模式识别------已知某类事物的若干标准模型,给出一个具体的对象,确定把它归于哪一类模型。 模糊综合评判------从某一事物的多个方面进行综合评价 模糊线性规划-----将线性规划的约束条件或目标函数模糊化,引入隶属函数,从而导出一个新的线性规划问题, 其最优解称为原问题的模糊最优解。

数学建模竞赛论文

论文题目: 关于商店三类产品的进货策略问题 姓名:黄文学号:01512505 专业:12输配电1班 姓名:杨震宇学号:01512515 专业:12输配电1班 姓名:袁国平学号:01512533 专业:12输配电1班 2013年5月21日

目录 摘要 (1) 一、问题重述 (2) 二、问题分析 (2) 三、模型假设 (2) 四、定义与符号说明 (2) 五、模型的建立与求解 (3) 第一部分、准备工作 (3) 第二部分、问题的解答............................................................(3-5) (一)问题一的解答 (3) (二)问题二的解答 (4) (三)问题三的解答 (4) (四)问题四的解答 (5) 六、对模型的评价与推广 (5) 七、附录…………………………………………………………………………(6-8)

关于商店三类产品的进货策略问题 摘要 本文解决的是商店三类产品的进货策略问题,商店的目的是盈利,但是在经营过程中,由于得不到科学的指导,往往无法使盈利最大化,甚至会导致亏损。为使盈利最大化,减少不必要的亏损,我们针对进货策略这一方面建立了以下几个模型。 对于问题一:我们结合图表及附表数据进行概率统计分析。简要地得出结论。 对于问题二:计算各商品在销售总量中占有的份额,结合问题一中的相关数据,通过比较,分析各商品的市场需求。 对于问题三:假设其符合泊松分布,并进行检验通过计算各商品的期望,预测计算在缺货时间内的损失。 对于问题四:根据6SQ统计软件,分别计算A,B,C三类产品的每天销售量,进而根据商家进货策略,分析A,B,C三类商品未来的进货规律。 关键字:日销售量进货策略泊松分布概率统计卡方拟合检验

数学建模学习心得体会

数学建模学习心得体会 【1】数学建模学习心得体会 数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生 与选择的过程。它给学生再现了一种“微型科研”的过程。数学建 模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感 体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学 模型的构建意识与能力,才能指导和要求学生通过主动思维,自主 构建有效的数学模型,从而使数学课堂彰显科学的魅力。 为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些 实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代 替而进行相应的实验,实验本身也是实际操作的一种理论替代。1. 只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从 而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是 学生学习数学的重要方式。学生的数学学习活动应当是一个主动、 活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导 学生自主探索、合作交流,对学习过程、学习材料、学习发现主动 归纳、提升,力求建构出人人都能理解的数学模型。 教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。 询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、 优劣,鼓励学生有创造性的想法和作法。 2.数学建模对教师、对学生都有一个逐步的学习和适应的过程。教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,

为什么要参加大学生数学建模竞赛

为什么要参加大学生数学建模竞赛 大学生数学建模竞赛是培养学生创新能力和竞争能力的极好的、具体的载体。 1.对于学校的领导(校长、教务处长等)来说,全心全意把学校搞好(高质量的教学、高百分比的就业率、高水平的教师队伍以及提高知名度等)肯定是他们追求的办学目标而且会采取各种措施。但是就选派学生参加大学生数学建模竞赛来说,不少领导(甚至数学教师)会非常犹豫:我们数学课时少,教学任务重,即使参加了,拿不到奖的话,不但不能提高学校的知名度,甚至会招致一些负面的议论等等。实际上,领导们有三个问题考虑不够,它们是: ⑴对数学的极端重要性要有充分的认识。学生将来的发展和成就是和他们坚实的数学基础密切相关的。但是现在的数学教学确实有许多不足之处有待改革,特别是怎么做到不仅教知识,而且要教知识是怎样用来解决实际问题的能力是有待加强的。让部分师生参加到数学建模活动,特别是大学生数学建模竞赛肯定是有利于推动教学改革的。 ⑵ 办好学校的关键之一是提高教师的教学水平。怎样提高呢?鼓励教师组织学生参加大学生数学建模竞赛等数学建模活动,既可以帮助教师进一步了解怎样用数学来解决实际问题,更有助于数学教师到其他专业系科了解他们要用什么样的数学以及怎样用这些数学,互相学习,进行切磋,从而对怎样提高自己的教学水平,数学教学怎样更好为其他专业后继课,甚至对专业课题研究服务产生具体的想法,提出切实可行的措施,最终能够提高教师的专业水平和教学水平,从而也就提高了学校的水平。 ⑶ 学生要求参加大学生数学建模竞赛的积极性是很高的,关键是怎样组织好,培训好。实际上,即使是高职高专院校,也一定有一部分学生的数学基础是相当坚实的,他们之间又有一部分对数学,特别是用数学来解决实际问题有强烈的兴趣。为什么不组织他们参赛呢?培养一些数学基础好对应用又有能力的高职高专院校的学生,今后他们在工作中做出好成绩的可能性肯定会比较大。毕业生事业有成者多也标志了学校办得好、有水平。此外,对于怎样贯彻因材施教也会产生一些很好的想法。 2.对于数学教师来说,组织、指导学生参加大学生数学建模竞赛对自己也会有极大的好处。

附录:全国大学生数学建模竞赛简介

全国大学生数学建模竞赛简介 全国大学生数学建模竞赛(China Undergraduate Mathematical Contest in Modeling,简称CUMCM)是由国家教育部高等教育司和中国工业与应用数学学会联合举办的,在全国高校中规模最大的课外科技活动之一. 其竞赛宗旨是:创新意识、团队精神、重在参与、公平竞争. 本竞赛每年9月(一般在中旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加).同学们可以向本校教务部门咨询,如有必要也可直接与全国竞赛组委会或各省(市、自治区)赛区组委会联系. 全国大学生数学建模竞赛章程(2008年)第一条总则 全国大学生数学建模竞赛(以下简称竞赛)是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革. 第二条竞赛内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程.题目有较大的灵活性供参赛者发挥其创造能力.参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷).竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准. 第三条竞赛形式、规则和纪律 1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行. 2.竞赛每年举办一次,一般在某个周末前后的三天内举行. 3.大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限.竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加.每队可设一名指导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参赛队员,不得进行指导或参与讨论,否则按违反纪律处理. 4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,

小学简便计算方法总结

卓立教育-小学数学简便计算方法总结 一、拆分法:为了方便计算或能使计算变得简便,在进行计算时,会将某些数字拆分开来再进行重新组 合,这样的方法叫拆分法。 例题1:101+75=(100+1)+75=100+75+1=176 例题2:125×32=125×8×4=1000×4=4000 例题3:999×999+1999 =999×999+(1000+999)【将1999拆分】 =999×999+999+1000 去括号,并使用交换律交换位置 =999×999+999×1+1000 为使用乘法分配律,故将原式变形,给拆分出来的999乘以1 =999(999+1)+1000 使用乘法分配律,提取999 =999000+1000 =1000000 例题4:33333×66666+99999×77778 此题数字中最为特殊的是77778,我们发现这个数字加上22222正好等于100000,所以最好能从其他数字中拆分出来22222。经过观察,我们发现只有66666可以拆出,所以将66666拆分成22222×3。 原式=33333×3×22222+99999×77778 =99999×22222+99999×77778 =99999(22222+77778) =9999900000 例题5:13000÷125=13×1000÷125=13×8=104 例题6:19881988÷20002000 = 1988×10001÷2000×10001 =1998÷2000,即 二、归零法:为了方便计算或能使计算变得简便,在进行计算时,要在计算式中加上一个数再减去同一 个数的方法叫归零法。(即等于加了个“0”,所以叫归零法) 例题1:++++++ =+++++++- 在上式中,我们加了一个又减去了一个,等于没加没减。这样一来,除最后一项之外,每一项与前一项相加就会等于前一项。则: =1- 三、凑整法:为了方便计算或能使计算变得简便,在进行计算时,要通过“凑”的方式让计算式中出现 整百、整千、整万等数字。 例题:99999+9999+999+99+9 =(99999+1)+(9999+1)+(999+1)+(99+1)+(9+1)- (加了5个1,所以减去5) =100000+10000+1000+100+10-5 =111110—5 =111105 四、代入法:为了方便计算或能使计算变得简便,在进行计算时,把一些相同项用字母代替的方法。例题:﹙++﹚×﹙++﹚-﹙+++﹚×﹙+﹚

相关主题
文本预览
相关文档 最新文档