当前位置:文档之家› 电子计算机X射线断层扫描技术(CT)简介

电子计算机X射线断层扫描技术(CT)简介

电子计算机X射线断层扫描技术(CT)简介
电子计算机X射线断层扫描技术(CT)简介

电子计算机X射线断层扫描技术(CT)简介我院投资引进的美国GE-16排螺旋CT机,该机采用高效,低耗,环保的快速扫描和全景无失真成像技术,真正实现低耗低剂量成像。其检查手段涵盖了循环系统、呼吸系统、消化系统、神经系统等各种器质性病变以及恶性肿瘤等目前高发病谱。

CT检查适应症有:

1.神经系统病变:对于颅脑外伤、脑梗塞、脑肿瘤、炎症、变性病、先天畸形等,特别是创伤性颅脑急症诊断可以做到常规化,而且可清楚显示脑挫裂伤、急性脑内血肿、硬膜外及硬膜下血肿、颅面骨骨折、颅内金属异物等,对诊断急性脑血管疾病如高血压脑出血、蛛网膜下腔出血、脑动脉瘤及动静脉畸形破裂出血、脑梗塞等都具有很高价值。

2.心血管系统:可用于心脏常见病谱的诊断,对急性主动脉夹层具有一定的诊断意义。

3.胸部病变:对肺部创伤、感染性病变、肿瘤等均有很高的诊断价值。对于纵隔内的肿物、淋巴结以及胸膜病变等的图像显示也比较具有优势。

4.腹部器官:由于该机对实质性器官肝脏、脾脏、胰腺、肾脏、肾上腺等器官的图像显示清晰度高,提高了对这些脏疾病诊断的准确率,如对原发性肝癌或转移性肝癌的形态、轮廓、坏死、出血及生长方式等都可以清晰显示,同时对于其他脏器的肿瘤、

感染及创伤也能清晰的显示其部位、病变程度和病变分期等,对临床制定治疗方案提供了帮助。

5.盆腔脏器:盆腔器官之间有丰富的脂肪间隔,该机能准确地显示肿瘤对邻近组织的侵犯,特别是对卵巢、宫颈和子宫、膀胱、精囊、前列腺和直肠肿瘤的诊断,对临床分期治疗和放射治疗设计具有重要指导意义。

6.骨与关节:脊椎、人体各大关节、关节面细小骨折、软组织脓肿、髓内骨肿瘤造成的骨皮质破坏,如破坏区内的死骨、钙化、骨化以及破坏区周围骨质增生、软组织脓肿、肿物等诊断具有一定的可靠性。

计算机断层扫描成像(CT)

1引言 自七十年代初第一台电子计算机断层扫描装置问世以来,成像技术发展异常迅速,设备不断更新。以医学成像为例,已实现了三大飞跃,即脏器清晰图像的获得,把生化病理研究推向分子结构的水平和直接提供有关成像组织的化学成分的信息,步入了断层显像的新时代。计算机断层扫描和图像重建技术,是在不破坏物体情况下,将物体每一个断层面上的结构和组份的分布情况显示出来的一种实验方法,都是利用计算机图像重建的方法来得到物体内部的信息。 人们对射线成像的最早认识是从x 光机开始的。医用x 光机成像技术的发展和应用已有近百年的历史,它是利用x 射线的物理性能和生物效应,来对人体器官组织进行检查。由于普通x 光机只能把人体内部形态投影在二维平面上,因此会引起成像器官和骨骼等的前后重叠,造成影像模糊。为了克服这一缺点,英国ENI 公司的工程师豪恩斯菲尔德(G.N.Hounsfield)运用了美国物理学家科马克(Cormack)于1963年发表的图像重建数学模型,推出了第一台x 射线计算机断层图像重建技术(X-CT )装置,并1977年9月在英国Ackinson Morleg 医院投入运行。1979年该技术的发明者Hounsfield 和Cormack 为此获得了诺贝尔医学奖。 X-CT 的出现是X 射线成像技术的一个重大突破。经过多代的发展,X-CT 已获得广泛的应用。在医学上,目前已可用来诊断脊柱和头部损伤,颅内肿病,脑中血凝块,及肌体软组织损伤,胃肠疾病,腰部和骨盆恶性病变等等。目前X-CT 除了广泛应用于临床诊断、生命科学和材料科学以外,还在工业和交通等方面也有重要的应用,例如,在线实时无损检测工业CT 等。 2CT 成像实验原理 2.1概述 数学上可以证明,通过对物体进行多次投影就可得到该物体的几何形状。CT 的基本思想是:让一束γ射线投射在物体上,通过物体对γ射线的吸收(多次投影)便可获得物体内部的物质分布信息。 当强度为0I 的一个窄束γ射线穿过吸收系数为μ的物体时,其强度满足指数衰减关系 0ut I I e -= (1) 式中t 为射线所穿过物质层厚度。在实际情况中,所研究的物体往往不是由单一成分组成的,当物体由若干个不同成分组成时,物体内部各处的μ也将可能不同。在这样的物质中,束穿过整个物件后的强度为 0()()L I L I Exp u dt ?? =- ??? ?r (2) 式中()u r 为r 处的吸收率。CT 系统通过改变一组射线路径L ,记录下对应出射强度()I L 的变化来分析物体内部()u r 的分布。

CT-计算机断层扫描成像实验

第二章CT-计算机断层扫描成像实验(系列实验二) 射线成像实验室 July 9, 2019 目录 0引言 (2) 1CT成像实验原理 (2) 1.1 概述 (2) 1.2 投影定理 (3) 1.3 卷积反投影重建算法 (4) 1.4 一种实际算法 (5) 1.4.1推导与描述 (5) 1.4.2框图 (7) 2实验方案 (8) 2.1 概述 (8) 2.2 实验环境 (9) 2.2.1硬件环境 (9) 2.2.2软件环境 (10) 2.3 实验步骤 (10) 2.3.1概述 (10) 2.3.2具体步骤 (11) 2.3.2.1扫描 (11) 2.3.2.2数据处理 (12) 2.4 FAQ & Tips (12) 2.4.1工作目录是啥? (12) 2.4.2如何确定样品的起始位置和水平扫描的长度? (12) 2.4.3为什么扫描完成后要保存数据? (13) 2.4.4为什么图像多出一条横贯全图的线? (13) 3附录:CTS YSTEM软件使用说明书 (13) 3.1 概述 (13) 3.2 界面介绍 (13) 3.2.1新建扫描项目 (13) 3.2.2转台位置调整 (14) 3.2.3调整能谱敏感区域 (14) 3.2.4扫描属性 (15)

3.2.5扫描 (16) 3.2.6投影变换窗口 (17) 3.3 投影变换的输出 (18) 4参考文献 (21) 0引言 自七十年代初第一台电子计算机断层扫描装置问世以来,成像技术发展异常迅速,设备不断更新。以医学成像为例,已实现了三大飞跃,即脏器清晰图像的获得,把生化病理研究推向分子结构的水平和直接提供有关成像组织的化学成分的信息,步入了断层显像的新时代。计算机断层扫描和图像重建技术,是在不破坏物体情况下,将物体每一个断层面上的结构和组份的分布情况显示出来的一种实验方法,都是利用计算机图像重建的方法来得到物体内部的信息。 人们对射线成像的最早认识是从x光机开始的。医用x光机成像技术的发展和应用已有近百年的历史,它是利用x射线的物理性能和生物效应,来对人体器官组织进行检查。由于普通x光机只能把人体内部形态投影在二维平面上,因此会引起成像器官和骨骼等的前后重叠,造成影像模糊。为了克服这一缺点,英国ENI公司的工程师豪恩斯菲尔德(G.N.Hounsfield)运用了美国物理学家科马克(Cormack)于1963年发表的图像重建数学模型,推出了第一台x 射线计算机断层图像重建技术(X-CT)装置,并1977年9月在英国Ackinson Morleg医院投入运行。1979年该技术的发明者Hounsfield和Cormack为此获得了诺贝尔医学奖。 X-CT 的出现是X射线成像技术的一个重大突破。经过多代的发展,X-CT已获得广泛的应用。在医学上,目前已可用来诊断脊柱和头部损伤,颅内肿病,脑中血凝块,及肌体软组织损伤,胃肠疾病,腰部和骨盆恶性病变等等。目前X-CT除了广泛应用于临床诊断、生命科学和材料科学以外,还在工业和交通等方面也有重要的应用,例如,在线实时无损检测工业CT 等。 1CT成像实验原理 1.1概述 数学上可以证明,通过对物体进行多次投影就可得到该物体的几何形状。CT的基本思想是:让一束γ射线投射在物体上,通过物体对γ射线的吸收(多次投影)便可获得物体内部的物质分布信息。 当强度为 I的一个窄束γ射线穿过吸收系数为μ的物体时,其强度满足指数衰减关系 0ut I I e- =(1)

CT——电子计算机X射线断层扫描技术

CT——电子计算机X射线断层扫描技术

CT——电子计算机X射线断层扫描技术 CT是英语缩写,可以表示的意思有:宝石的重量单位克拉、电子计算机X射线断层扫描技术、凝血时间、电力系统中的电流互感器、建筑水电安装、十字绣布、分辨率等。 化学试剂 1.邻苯二酚的缩写,分子式C6H6O2 2.建筑CT 3.宝石的重量单位 克拉[1](符号:CT)1克拉=0.2克(200毫克) 克拉作为宝石的计量单位,在现行的国际标准中作为法定的计量单位它的换算公式为:1克拉=200毫克=0.2克。 古到今,在长达几百年的世界宝石贸易中,各国的珠宝商们都已习惯用克拉作为称量的标准。克拉一词最早起源于古希腊文,它是根据地中海东岸的一种树的名字翻译过来的。在人们没有精密的天平以前,便一直用这种很均匀而又

英文全称:Computed Tomography 利用计算机技术对被测物体断层扫描图像进行重建获得三维断层图像的扫描方式。该扫描方式是通过单一轴面的射线穿透被测物体,根据被测物体各部分对射线的吸收与透过率不同,由计算机采集透过射线并通过三维重构成像。分类 根据所采用的射线不同可分为:X射线CT(X-CT)以及γ射线CT(γ-CT)。 用途 CT的主要用途如下: 1.医学检测:自从CT被发明后,CT已经变成一个医学影像重要的工具,虽然价格昂贵,医用X-CT至今依然是诊断多种疾病的黄金准则。 2.工业检测:现代工业的发展,使得CT在无损检测和逆向工程中发挥重大的作用。 3.安保检测。

4.航空运输、运输港湾,大型货物集装箱案件装置。 优点及危害 首先,计算机断层扫描为我们提供被测物品的完整三维信息;第二,由于电脑断层的高分辨率,不同物体对射线的吸收和透过率不同,即使是小于1%的密度差异也可以区分出来;第三,由于断层成像技术提供三维图像,依需要不同,可以看到轴切面,冠状面,矢切面的影像。除此之外,任意切面的图像均可通过插值技术产生。这给医学诊断、工业检测和科研带来了极大的便利。 但是CT扫描带来的危害也必须引起重视。CT主要的危害来自于射线源,高能射线源能对人体组织及环境造成不可逆转的破坏,即使是医用的X射线CT,多次的累积使用,X射线依然会对患者被照组织产生一定的影响。 断层扫描技术 英文全称:electronic computer X-ray tomography technique CT是一种功能齐全的病情探测仪器,它是电子计算机X射线断层扫描技术简称。

CT-电子计算机X射线断层扫描技术

电子计算机X射线断层扫描技术 英文全称:electronic computer X-ray CT 简称。 CT X线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就 CT机 可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。 1、CT的发明 自从X射线发现后,医学上就开始用它来探测人体疾病。但是,由于人体内有些器官对X X射线对那些前后重叠 X1963年,美国物理学 X线的透过率有所不同,在研究中还得 CT的应用奠定了理论基 础。1967 然后制作了一台能加强X射线放射源的简单的扫描装置,即后来的CT,用于对人的头部进行实验性扫描测量。后来,他又用这种装置去测量全 1971年9月,亨斯费尔德又与一位神经放射学 部检查。 况下朝天仰卧,X线管装在患者的上方,绕检查部位转动,同时在患者下方装一计数器,使人体各部位对X线吸收的多少反映在计数器上,再经过电子计算机的处理,使人体各部位的图像从荧屏上显示出来。这次试验非常成功。1972年4月,亨斯费尔德在英国放射学年会上首次公布了这一结果,正式宣告了CT的诞生。这一消息引起科技界的极大震

动,CT X 1979 CT已广泛运用于医疗诊断上。 CT原理 2、CT的成像基本原理 CT 拟/数字转换器(analog/digital converter 体素(voxel),见图1-2-1X线 digital matrix), /模拟转换器(digital/analog converter 即象素(pixel),并按矩阵排列,即构成CT图像。所以,CT图像是重建图像。每个体素的X线吸收系数可以通过不同的数学方法算出。 3、CT设备 X线管、探测器和扫描架 1个发展到现在的多达4800个。扫描方式也从平移/旋转、旋转/旋转、旋转/固定,发展到新近开发的螺旋CT扫描(spiral CT scan)。计算机容量大、运算快,可达到立即重建图像。由于扫描时间短,可避免运动产生的伪影,例如, CT血管造影(Ct angiography,CTA

X线电子计算机断层扫描血管 成像技术

X线电子计算机断层扫描血管成像技术 X线电子计算机断层扫描血管成像(CT angiography,CTA),是一种新的微创血管成像技术,经周围静脉高速注入碘对比剂后,在靶血管内对比剂充盈的高峰期,对其进行快速容积扫描,然后由计算机后处理软件重建靶血管立体影像的一种血管成像技术。适用于诊断血管本身的疾病,例如动脉瘤、动静脉畸形、大动脉炎导致的血管狭窄、肺动脉血栓或瘤栓、先天性或动脉硬化性动脉狭窄(例如肾动脉狭窄)等。也适合显示其他病变对血管的影响,例如肿瘤对血管的包绕、推移和侵犯。CT只能在每一层图像上断续显示血管,无法全程显示血管的走行和血管的外形,不利于诊断血管的狭窄、扩张、畸形、栓塞、走行异常等病理改变。CTA以二维或三维的形式整体显示血管的走行与外部形态,可以单独显示血管,也可以与其邻近的解剖结构同时显示;可以根据对比剂充盈的时间差,单独显示动脉血管,也可以动静脉血管同时显示;并且能从不同角度观察,对于诊断各种血管疾病具有较大的优越性。螺旋CT血管成像操作简便,安全可靠,可作为常规扫描;而常规X线血管造影技术需要动脉插管,创伤较大,接受X 线辐射多,有一定危险性,病人不易接受。目前,由于CTA的图像质量越来越高,许多血管疾病的诊断性检查CTA已经逐步替代X线血管造影术。原来被认为在诊断上是高难度的冠状动脉疾病,CTA也正在取代DSA作为首选检查方法应用于临床。当然,无法进行血管内治疗是目前CTA的不足,小于3毫米的动脉瘤显示能力尚不如DSA,有待于进一步的改进。 可以用于进行CTA检查的CT机器主要有两种:电子束CT(EBCT)和螺旋CT(SCT)。EBCT的时间分辨力较高,每层的扫描速度可达50ms,可以消除心脏搏动和呼吸运动的伪影,适用于心脏大血管的CTA检查。近几年螺旋CT得到了飞速发展,多层螺旋CT的出现,使其扫描速度达到甚至超过EBCT,尤其是64层螺旋CT,其单层扫描速度仅有37ms。多层螺旋CT不仅具有较高的时间分辨力,而且具有较高的空间和密度分辨力,为血管疾病的诊断开辟了新的领域。由于多层螺旋CT的应用较EBCT广泛,现仅介绍多层螺旋CTA(MSCTA)。 CTA常用的三维重建方法有三种:VR、MIP和SSD。 1.最大强度投影(maximum intensity projection; MIP)

计算机X线断层扫描

成像原理 CT机CT是用X射线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X射线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器(analog/digital converter)转为数字,输入计算机处理。图像形成的处理有如对选定层面分成若干个体积相同的长方体,称之为体素(voxel)。 扫描所得信息经计算而获得每个体素的X射线衰减系数或吸收系数,再排列成矩阵,即数字矩阵(digital matrix),数字矩阵可存贮于磁盘或光盘中。经数字/模拟转换器(digital/analog converter)把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即像素(pixel),并按矩阵排列,即构成CT图像。所以,CT图像是重建图像。每个体素的X射线吸收系数可以通过不同的数学方法算出。 CT的工作程序是这样的:它根据人体不同组织对X线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。 折叠编辑本段发展历史 CT原理自从X射线发现后,医学上就开始用它来探测人体疾病。但是,由于人体内有些器官对X线的吸收差别极小,因此X射线对那些前后重叠的组织的

病变就难以发现。于是,美国与英国的科学家开始了寻找一种新的东西来弥补用X线技术检查人体病变的不足。 1963年,美国物理学家科马克发现人体不同的组织对X线的透过率有所不同,在研究中还得出了一些有关的计算公式,这些公式为后来CT的应用奠定了理论基础。 1967年,英国电子工程师亨斯菲尔德(Hounsfield)在并不知道科马克研究成果的情况下,也开始了研制一种新技术的工作。首先研究了模式的识别,然后制作了一台能加强X 射线放射源的简单的扫描装置,即后来的CT,用于对人的头部进行实验性扫描测量。后来,他又用这种装置去测量全身,获得了同样的效果。 1971年9月,亨斯菲尔德又与一位神经放射学家合作,在伦敦郊外一家医院安装了他设计制造的这种装置,开始了头部检查。10月4日,医院用它检查了第一个病人。患者在完全清醒的情况下朝天仰卧,X线管装在患者的上方,绕检查部位转动,同时在患者下方装一计数器,使人体各部位对X线吸收的多少反映在计数器上,再经过电子计算机的处理,使人体各部位的图像从荧屏上显示出来。这次试验非常成功。 1972年第一台CT诞生,仅用于颅脑检查,4月,亨斯菲尔德在英国放射学年会上首次公布了这一结果,正式宣告了CT的诞生。 1974年制成全身CT,检查范围扩大到胸、腹、脊柱及四肢。 第一代CT机采取旋转/平移方式(rotate/translate mode)进行扫描和收集信息。由于采用笔形X线束和只有1~ 2个探测器,所采数据少,所需时间长,图像质量差。 第二代CT机扫描方式跟上一代没有变化,只是将X线束改为扇形,探测器增至30个,扩大了扫描范围,增加了采集数据,图像质量有所提高,但仍不能避免因患者生理运动所引起的伪影(Artifact)。 第三代CT机的控测器激增至300~ 800个,并与相对的X线管只作旋转运动 (rotate/rotate mode),收集更多的数据,扫描时间在5s以内,伪影大为减少,图像质量明显提高。 第四代CT机控测器增加到1000~ 2400个,并环状排列而固定不动,只有X线管围绕患者旋转,即旋转/固定式(rotate/stationary mode),扫描速度快,图像质量高。 第五代CT机将扫描时间缩短到50ms,解决了心脏扫描,是一个电子枪产生的电子束(electron beam)射向一个环形钨靶,环形排列的探测器收集信息。推出的64层CT,仅用0.33s即可获得病人的身体64层的图像,空间分辨率小于0.4mm,提高了图像质量,尤其是对搏动的心脏进行的成像。

热断层扫描系统产品技术要求贝亿

热断层扫描系统 适用范围:本产品是以被动接受人体的热辐射进行诊断,以功能影像为主的医学影像设备,用于为肿瘤的鉴别诊断、心脑血管疾病及炎症的诊断提供参考依据。 1.1 产品型号:TSI-2000。 1.2 产品型号划分说明 2.1 工作环境条件 2.1.1 环境条件 a) 环境温度:10℃~30℃; b) 相对湿度:≤70%; c) 大气压力:860hPa~1060hPa; d) 周围无强电磁场; e) 预热时间:不小于20min。 2.1.2 电源条件:电压AC110/220V;频率50/60Hz。 2.2 扫描头性能 2.2.1 扫描聚焦范围 0.9m~3.0m,连续可调。 2.2.2 扫描热辐射窗温度 测量精度不超过±0.1℃。 2.2.3 扫描成像时间 不大于0.22秒/帧。

2.2.4 扫描图像空间分辨率 在距扫描头中心距离1m处,水平和垂直图像分辨率不大于5mm。 2.2.5热断层功能检验深度的误差 不大于3mm。 2.3 扫描头机械性能 2.3.1 扫描头旋转角度 a) 俯仰:不小于±15°; b) 水平:不小于±20°。 2.3.2 扫描头升降范围 a) 扫描头中心离地面最低高度不大于0.70m; b) 扫描头中心离地面最高不小于1.60m。 2.3.3 扫描头升降速度 以扫描头升降1m距离所需的时间来表示: a) 上升时间不大于35s; b) 下降时间不大于30s。 2.4 扫描床性能 2.4.1 水平距离 扫描床中心距扫描头窗口水平距离为: a) 最小距离不大于0.9m; b) 最大距离不小于3.0m。 2.4.2 运动速度

扫描床沿轨道由电机驱动作直线运动,其最大速度为4 (1± 10%)m/min。 2.4.3 扫描床载荷 描床在承载135kg情况下能正常工作。 2.4.4 病人旋转台 扫描床的病人旋转台可正反方向360°旋转。 2.4.5 扶手载荷 扫描床的每个扶手在30kg载荷情况下能正常工作。 2.4.6 吊带长度 扫描床的每个扶手的吊带长度可调节,伸缩长度不小于600mm。 2.5 噪声 系统工作时的最大噪声应不大于60dB。 2.6 软件要求 2.6.1 功能概述 TTM系统软件是TSI系列热断层扫描系统的图像采集及信息处理软件。该软件通过“文件”、“视图”、“扫描”、“数据管理”菜单和工具条实现数据采集、测量、分析、数据管理功能。 数据采集功能可以控制系统扫描头的调焦机构实现电动调焦,通过扫描头摄取并保存被测目标的图像,并可以做断层处理。TTM系统软件可对扫描后的图像进行测量、热断层分析,并对扫描数据进行管理。 2.6.2 软件功能 ①数据采集功能:

CT-电子计算机断层扫描

C T CT(Computed Tomography),即电子计算机断层扫描,它是利用精确准直的X线束、γ射线、超声波等,与灵敏度极高的探测器一同围绕人体的某一部位作一个接一个的断面扫描,具有扫描时间快,图像清晰等特点,可用于多种疾病的检查;根据所采用的射线不同可分为:X射线CT(X-CT)、超声CT(UCT)以及γ射线CT(γ-CT)等。 成像原理 CT是用X射线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X 射线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器(analog/digital converter)转为数字,输入计算机处理。图像形成的处理有如对选定层面分成若干个体积相同的长方体,称之为体素(voxel)。 扫描所得信息经计算而获得每个体素的X射线衰减系数或吸收系数,再排列成矩阵,即数字矩阵(digital matrix),数字矩阵可存贮于磁盘或光盘中。经数字/模拟转换器(digital/analog converter)把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即像素(pixel),并按矩阵排列,即构成CT图像。所以,CT图像是重建图像。每个体素的X射线吸收系数可以通过不同的数学方法算出。 CT的工作程序是这样的:它根据人体不同组织对X线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。 设备组成 CT设备主要有以下三部分: 1.扫描部分由X线管、探测器和扫描架组成; 2.计算机系统,将扫描收集到的信息数据进行贮存运算; 3.图像显示和存储系统,将经计算机处理、重建的图像显示在电视屏上或用多幅照相机或激光照相机将图像摄下。探测器从原始的1个发展到多达4800个。扫描方式也从平移/旋转、旋转/旋转、旋转/固定,发展到新近开发的螺旋CT扫描(spiral CT scan)。计算机容量大、运算快,可达到立即重建图像。由于扫描时间短,可避免运动产生的伪影,例如,呼吸运动的干扰,可提高图像质量;层面是连续的,所以不致于漏掉病变,而且可行三维重建,注射造影剂作血管造影可得CT血管造影(Ct angiography,CTA)。 超高速CT扫描所用扫描方式与前者完全不同。扫描时间可短到40ms以下,每秒可获得多帧图像。由于扫描时间很短,可摄得电影图像,能避免运动所造成的伪影,因此,适用于心血管造影检查以及小儿和急性创伤等不能很好的合作的患者检查。 图像特点 CT图像是由一定数目由黑到白不同灰度的像素按矩阵排列所构成。这些像素反映的是相应体素的X线吸收系数。不同CT装置所得图像的像素大小及数目不同。大小可以是 1.0×1.0mm,0.5×0.5mm不等;数目可以是256×256,即65536个,或512×512,即262144个不等。显然,像素越小,数目越多,构成图像越细致,即空间分辨力(spatial resolution)高。CT图像的空间分辨力不如X线图像高。

CT——电子计算机X射线断层扫描技术

CT——电子计算机X射线断层扫描技术 CT是英语缩写,可以表示的意思有:宝石的重量单位克拉、电子计算机X射线断层扫描技术、凝血时间、电力系统中的电流互感器、建筑水电安装、十字绣布、分辨率等。 化学试剂 1.邻苯二酚的缩写,分子式C6H6O2 2.建筑CT 3.宝石的重量单位 克拉[1](符号:CT)1克拉=0.2克(200毫克) 克拉作为宝石的计量单位,在现行的国际标准中作为法定的计量单位它的换算公式为:1克拉=200毫克=0.2克。 古到今,在长达几百年的世界宝石贸易中,各国的珠宝商们都已习惯用克拉作为称量的标准。克拉一词最早起源于古希腊文,它是根据地中海东岸的一种树的名字翻译过来的。在人们没有精密的天平以前,便一直用这种很均匀而又

不容易得到的树种子作为称宝石的砝码,1粒种子1克拉,1颗宝石与多少粒种子的重量相等就有多少克拉。随着世界上精密天平的发明和使用,各国纷纷把克拉定义为标准重量。最初克拉的重量在各国是不一样的,有的国家将210毫克定为1克拉,也有的以180毫克为1克拉,而英、法等国家规定1克拉是205毫克。后来,为了便于公式换算,在1907年将1克拉改定为200毫克,因此被人们称为公制克拉。 克拉的数值是确定一颗宝石价值多少的重要的因素。所以说,如果宝石的克拉值越高,它的价值就越大。在1905年的南非发现了一颗钻石,这是人类在世界上有史以来发现的最大的一颗钻石。在中国目前保存的最大的一颗钻石于1977年发现于山东,名叫常林钻石,现在被作为国宝收藏在中国的中国人民银行。 钻石重量以克拉(又称卡)计算。1克拉=200毫克=0.2克。一克拉分为一百份,每一份称为一分。0.75克拉又称75分,0.02克拉为2分。在其他条件近似的情况下,随着钻石的增大,其价值则呈几何级数增长;重量相同的钻石,会因色泽,净度,切工的不同而价值相差甚远。 计算机断层扫描

X线计算机断层成像技术 CT

X线计算机断层成像技术 一、 CT的诞生 1914年,俄国学者K.Maenep氏,依照运动产生模糊的理论,首先提出体层摄影的理论,即用一种特殊装置,使想观察的人体某层组织影像较清楚地显示,而该层组织以外的则模糊不清,以获取较大的空间分辨力。1930年意大利的Vallebona氏开始将体层摄影的有关理论和它的使用方法应用于临床并取得了很好的临床效果。 随着机械工业的发展,1947年Vallebona率先获取了以人体为模型的横断面影像,这种技术后来又发展成回转人体横断面体层技术。 1961年美国神经内科医生Ooldendor提出了电子计算机X线体层技术的理论,1968年英国工程师Hounsfild氏与神经放射学家Ambrose氏共同协作设计,于1972由英国EMI公司成功制造了用于头部扫描的电子计算机x线体层装置并在英国放射学会学术会议上公诸于世,称EMI扫描仪。这种影像学检查技术与传统X线摄影相比,图像无重叠、密度分辨力高、解剖关系清楚,病变检出率和诊断的准确率均较高而又安全、迅速、简便、无创性,是医学影像学的一项重大革新,促进了医学影像诊断学的发展。 1974年在蒙特利尔(Montreal)召开的第一次国际专题讨论会上正式将这种检查方法称作电子计算机体层摄影(computer tomography,简称CT)。 二、CT的发展 CT的应用还不到30年,但发展迅速。从只能扫描头部的第一二代平移/旋转扫描方式的CT机,至1974年旋转扫描方式的体部CT机;以及1989年在旋转扫描的基础上采用了滑环技术的螺旋CT;后来的电子束CT或称超速CT相继问世。CT机性能在不断提高,检查领域不断拓宽. CT发展前景广阔,并将沿着影像医学所追求的目标——提高显示病变的敏感性、特异性和推确性,微创或无创,操作简便和降低检查费用等方面不断改进、完善和发展。 第二节CT的组成与功能 CT由扫描部分、计算机部分、操作台、显示与记录系统等组成。 一、扫描系统 扫描系统包括:扫描机架、扫描床、扫描控制电路等。 (一) 扫描机架 图6-1是扫描机架外形图,图6-2是扫描机架内部结构。X线系统、图像采集、X线过滤器、系统准直器均装在机架内。机架可根据检查需要进

相干光断层扫描技术操作规范

相干光断层扫描技术操作规范 【适应证】 1.主要用于眼后节检查。 (1)黄斑部病变,如黄斑水肿、黄斑裂孔、黄斑前膜、玻璃体牵拉黄斑、神经上皮或色素上皮浆液性脱离、视网膜深层出血、黄斑下新生血管膜等。 (2)视盘病变,如视盘水肿、视神经萎缩、视盘小凹、埋藏玻璃膜庆。 (3)视网膜病变,如视网膜血管性病变、孔源性视网膜脱离等。 (4)视网膜神经纤维层厚度分析及动态监测。 (5)对视盘杯盘比动态监测。 2.眼前节检查。 【禁忌证】 1.严重屈光间质浑浊者。 2.瞳孔太小,且不能散大者。

3.婴幼儿或其他不能配合检查者。 【操作方法及程序】 1.相干光断层扫描(OCT)仪主要由眼底摄像机、低相干涉仪、监视器、计算机图像处理显示系统组成。信号探测光源为超级发光二极管,产生850nm红外低相干光。 2. OCT的检查程序分两部分:图像扫描和力像分析。 3.图像扫描。 (1)小瞳孔下即可进行检查,也可以滴用散瞳药散大瞳孔后检查。 (2)根据扫描部位的不同,选择相应的OCT扫描方式。 (3)请受检者坐在OCT裂隙灯显微镜前,将镜头对准被检眼。 (4)嘱受检者用被检眼注视内固视点,或对侧眼注视外固视点,调节内/外固视点,直至在眼底成像监视器上获得欲扫描部位的清晰眼底图像及OCT扫描线或环。 (5)开始扫描后,上下调节OCT控制面板上的“interferometer”滑轮,直至在电脑监视器上显示出扫描

部位的OCT图像,冻结图像,储存。 4.图像分析。 (1)在受检者扫描所得图像列表中,选取需要分析的图像。 (2)根据扫描部位和所拟分析的组织层次,选择相应的分析工具,例如分析黄斑部的神经视网膜厚度时,可用“Retinal thickness”;分析视盘周围神经纤维层厚度或地形图时,应选用“RNFL thickness”,或“RNFL map”等。 5.打印结果。 【注意事项】 1.检查前应当询问病史、便于选择正确的扫描部位和扫描方式。 2.了解受检者的屈光状态,并根据屈光状态适当调节扫描轴深。 3.开始扫描前,前后移动裂隙灯显微镜,调节调焦旋钮和背景照明灯亮度,以获得清晰的眼底图像。 4.由于OCT为断层扫描,扫描深度仅为2mm,对于较高的视

计算机断层成像实验报告

浙江师范大学实验报告 实验名称CT实验教学班级物理071 姓名骆宇哲学号07180132同组人沈宇能实验日期09/10/15 室温气温 CT实验教学 摘要:本实验通过学生在教师的指导下进行铜制孔卡的结构断层成像。并对所成图象利用计算机进行分析处理。从而使学生掌握CT扫描、图像重建的技术。 关键词:计算机断层成像、图像重建、 引言:自七十年代初第一台电子计算机断层扫描装置问世以来,成像技术发展异常迅速,设备不断更新。以医学成像为例,已实现了三大飞跃,即脏器清晰图像的获得,把生化病理研究推向分子结构的水平和直接提供有关成像组织的化学成分的信息,步入了断层显像的新时代。计算机断层扫描和图像重建技术,是在不破坏物体情况下,将物体每一个断层面上的结构和组份的分布情况显示出来的一种实验方法,都是利用计算机图像重建的方法来得到物体内部的信息。 人们对射线成像的最早认识是从x光机开始的。医用x光机成像技术的发展和应用已有近百年的历史,它是利用x射线的物理性能和生物效应,来对人体器官组织进行检查。由于普通x光机只能把人体内部形态投影在二维平面上,因此会引起成像器官和骨骼等的前后重叠,造成影像模糊。为了克服这一缺点,英国ENI公司的工程师豪恩斯菲尔德(G.N.Hounsfield)运用了美国物理学家科马克(Cormack)于1963年发表的图像重建数学模型,推出了第一台x 射线计算机断层图像重建技术(X-CT)装置,并1977年9月在英国Ackinson Morleg医院投入运行。1979年该技术的发明者Hounsfield和Cormack为此获得了诺贝尔医学奖。 X-CT 的出现是X射线成像技术的一个重大突破。经过多代的发展,X-CT已获得广泛的应用。在医学上,目前已可用来诊断脊柱和头部损伤,颅内肿病,脑中血凝块,及肌体软组织损伤,胃肠疾病,腰部和骨盆恶性病变等等。目前X-CT除了广泛应用于临床诊断、生命科学和材料科学以外,还在工业和交通等方面也有重要的应用,例如,在线实时无损检测工业CT 等。 实验方案: 1、实验仪器:CD-50BGA+型CT教学实验仪铜制孔卡计算机 2、本次实验扫描参数为:采样时间0.5 视场直径40mm 扫描方式1 图像尺寸128*128。 本次实验处理参数:灰度拉伸:左40,右200 滤波:低通2 调节合适的亮度和对比度。 扫描一个物体所用的时间为:128*128*500。 3、实验步骤: 1)在开机扫描实验之前,须熟读“CT教学实验仪”的说明书。 2)连接各电缆插头、插座须检查核对无误后方可开机。 3)启动计算机和CT实验仪,进行预热。 4)将测试样品放入仪器载物平台上,调节平台上下高度,使红光恰好对准孔卡上部1/3处5)打开CT实验软件,设置实验的图像扫描参数。 6)打开核源锁(核源钥匙开启时要用手指微微顶住核源使其不过度弹起),点击“扫描”,

计算机断层成像

计算机断层成像 (Computed Tomography C T):是电子计算机技术与X线检查技术相结合的产物,是一种数字断层技术。它的发明标志着影像医学的第二次飞跃。 有关CT的历史:1963年美国物理学家A.M.Cormack在Journal of Applied Physics上发表了题为―用线积分表示一函数的方法及其在放射学上的应用‖的系列文章。 1967—1970年英国EMI工程师G.N.Hounsfield研制成功第一台头部X线CT扫描机,1971年9月被安装在伦敦的Atkinson-Morley’s医院。1972年利用这台X线CT首次为一名妇女诊断出脑部的囊肿,并取得了世界上第一张CT照片。1974年美国George-town大学医学中心Ledly研制第一台全身CT扫描机。为此Hounsfield和Cormack共同获得了1979年的诺贝尔生理和医学奖。1980年出现螺旋CT,后又出现多排CT,功能研究型CT等。 Hounsfield 和Cormack因发明CT获得1979年诺贝尔医学和生理学奖。 一、CT设备 1.X线扫描与接收部分:X线球管(X-ray Tube)数据采集部分(探测器-Detector)(产生X线,接收残余X线,并将其转换为数字信号) 2.计算机部分:接受穿透人体断面后X线衰减量的数字信息,计算出该断面上不同的X线吸收系数重建图像。计算机还起到控制、协调CT机各个部分的控制作用。计算机外设部分包括磁盘、磁带等,起到贮存CT图像的作用。 3.图像显示及存储部分:阴极射线管(CRT)(监视器)多幅照像机激光像机(湿式或干式)图像工作站报告终端光盘存储、服务器海量存储。 二CT的发展 (一)普通CT有高低档之分,但基本结构相同。不同机型扫描方式相同,探测器数目不同,扫描所需时间不同,计算机性能档次不同。 (二)螺旋扫描CT(多层螺旋CT)在旋转式CT扫描球管旋转时,通过滑环技术以及扫描床同时进行的连续平直移动,使X线扫描能无间隔连续进行,大大缩短扫描时间多层螺旋CT(超宽、多排或平板探测器)螺旋CT(Spiral or Helical CT)1989年研制成功,90年代应用于临床标志CT领域的重大革新。 CT机的发展:球管探测器扫描方式计算机软件的开发代谢、功能 第二节CT成像的基本原理 X线球管围绕人体选定部位的层面作360°匀速转动,用高度准直的X线束进行扫描,穿过人体的X线由探测器接收; 被接收到的X线信息由光电转换器转变为电信号,再经模/数转换器(A/D)将其变成数字信号,输入计算机,计算出该断面中多个单位体积的X线吸收值,并排列成数字矩阵数字矩阵经数/模转换器(D/A)用黑白不同的灰度等级在显示器荧屏上显示,从而获得该部位横断面结构的图像,即CT图像 第三节CT图像的特点及影响因素 1.CT图像的特点:CT图像是重建图像,是由一定数目由黑到白不同灰度的小方格(像素pixel)按矩阵排列所构成。每一像素实际代表的是一定厚度的组织结构(体素)对X线的平均衰减值。不同的CT装置所得图像的像素大小及数目可以是不同的。像素越小、数目越

电子计算机X射线断层扫描技术

电子计算机X射线断层扫描技术 英文全称:electronic computer X-ray tomography technique CT是一种功能齐全的病情探测仪器,它是电子计算机X射线断层扫描技术简称。 CT的工作程序是这样的:它根据人体不同组织对X线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就 CT机 可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。1、CT的发明 自从X射线发现后,医学上就开始用它来探测人体疾病。但是,由于人体内有些器官对X线的吸收差别极小,因此X射线对那些前后重叠的组织的病变就难以发现。于是,美国与英国的科学家开始了寻找一种新的东西来弥补用X线技术检查人体病变的不足。1963年,美国物理学家科马克发现人体不同的组织对X线的透过率有所不同,在研究中还得出了一些有关的计算公式,这些公式为后来CT 的应用奠定了理论基础。1967年,英国电子工程师亨斯费尔德在并不知道科马克研究成果的情况下,也开始了研制一种新技术的工作。他首先研究了模式的识别,然后制作了一台能加强X射线放射源的简单的扫描装置,即后来的CT,用于对人的头部进行实验性扫描测量。后来,他又用这种装置去测量全身,获得了同样的效果。1971年9月,亨斯费尔德又与一位神经放射学家合作,在伦敦郊外一家医院安装了他设计制造的这种装置,开始了头部检查。10月4日,医院用它检查了第一个病人。患者在完全清醒的情况下朝天仰卧,X线管装在患者的上方,绕检查部位转动,同时在患者下方装一计数器,使人体各部位对X线吸收的多少反映在计数器上,再经过电子计算机的处理,使人体各部位的图像从荧屏上显示出来。这次试验非常成功。1972年4月,亨斯费尔德在英国放射学年会上首次公布了这一结果,正式宣告了CT的诞生。这一消息引起科技界的极大震动,CT的研制成功被誉为自伦琴发现X射线以后,放射诊断学上最重要的成就。因此,亨斯费尔德和科马克共同获取1979年诺贝尔生理学或医学奖。而今,CT已广泛运用于医疗诊断上。

-MRI成像技术(1)

第七讲-MRI成像技术(1) 1 MRI成像系统简介 ●1.1M R I影像设备发展概况 ●磁共振成像技术是在磁共振波谱学的基础上发展起来的。磁共振成像自出现以来曾被 称为:核磁共振成像、自旋体层成像、核磁共振体层成像、核磁共振C T等。 ●1945年由美国加州斯坦福大学的布洛克(B l o c h)和麻省哈佛大学的普塞尔(P u r c e l l) 教授同时发现了磁共振的物理现象,即处在某一静磁场中的原子核受到相应频率的电磁波作用时,在它们的核能级之间发生共振跃迁现象。因此两位教授共同获得1952年诺贝尔物理学奖。 ●F o r p e r s o n a l u s e o n l y i n s t u d y a n d r e s e a r c h;n o t f o r c o m m e r c i a l u s e ● ●磁共振的物理现象被发现以后,很快形成一门新兴的医学影像学科—磁共振波谱学。 ●1971年纽约州立大学的达曼迪恩(Damadian)教授在《科学》杂志上发表了题为“核 磁共振(NMR)信号可检测疾病”和“癌组织中氢的T1时间延长”等论文, ●1973年曼斯菲德(Mansfields)研制出脉冲梯度法选择成像断层。 ●1974年英国科学家研制成功组织内磁共振光谱仪。 ●1975年恩斯托(Ernst)研制出相位编码成像方法。 ●1976年,得到了第一张人体MR图像(活体手指)。 ●1977年磁共振成像技术进入体层摄影实验阶段。 ●几十年期间,有关磁共振的研究曾在三个领域(物理、化学、生理学或医学)内获得了 六次诺贝尔奖。(2003年10月6日,瑞典卡罗林斯卡医学院宣布,2003年诺贝尔生理学或医学奖授予美国化学家保罗·劳特布尔(Paul C. Lauterbur)和英国物理学家彼得·曼斯菲尔德(Peter Mansfield),以表彰他们在医学诊断和研究领域内所使用的核磁共振成像技术领域的突破性成就。) 雷蒙德·达马蒂安的“用于癌组织检测的设备和方法” 幻灯片7 1.2 MRI影像设备功能 现代磁共振成像系统大体结构都很相似,基本上由四个系统组成:即磁体系统、梯度磁场系统、射频系统和计算机系统。 ●1.磁体系统 ●磁体系统是磁共振成像系统最重要、成本最高的部件,是磁共振系统中最强大的磁场, 平时我们评论磁共振设备的大小就是指静磁场的场强数值,单位用特斯拉(Tesla,简称T,垂直于磁场方向的1米长的导线,通过1安培的电流,受到磁场的作用力为1牛顿时,通电导线所在处的磁感应强度就是1特斯拉。)或高斯(Gauss)表示,1T=1万高斯。 ●临床上磁共振成像要求磁场强度在0.05~3T范围内。一般将≤0.3T称为低场,0.3T~ 1.0T称为中场,>1.0T称为高场。磁场强度越高,信噪比越高,图像质量越好。但磁 场强度过高也带来一些不利的因素。 ●为了获得不同场强的磁体,生产厂商制造出了不同类型的磁体,常见的磁体有永久磁 体、常导磁体和超导磁体。

电子计算机X射线断层扫描技术(CT)简介

电子计算机X射线断层扫描技术(CT)简介我院投资引进的美国GE-16排螺旋CT机,该机采用高效,低耗,环保的快速扫描和全景无失真成像技术,真正实现低耗低剂量成像。其检查手段涵盖了循环系统、呼吸系统、消化系统、神经系统等各种器质性病变以及恶性肿瘤等目前高发病谱。 CT检查适应症有: 1.神经系统病变:对于颅脑外伤、脑梗塞、脑肿瘤、炎症、变性病、先天畸形等,特别是创伤性颅脑急症诊断可以做到常规化,而且可清楚显示脑挫裂伤、急性脑内血肿、硬膜外及硬膜下血肿、颅面骨骨折、颅内金属异物等,对诊断急性脑血管疾病如高血压脑出血、蛛网膜下腔出血、脑动脉瘤及动静脉畸形破裂出血、脑梗塞等都具有很高价值。 2.心血管系统:可用于心脏常见病谱的诊断,对急性主动脉夹层具有一定的诊断意义。 3.胸部病变:对肺部创伤、感染性病变、肿瘤等均有很高的诊断价值。对于纵隔内的肿物、淋巴结以及胸膜病变等的图像显示也比较具有优势。 4.腹部器官:由于该机对实质性器官肝脏、脾脏、胰腺、肾脏、肾上腺等器官的图像显示清晰度高,提高了对这些脏疾病诊断的准确率,如对原发性肝癌或转移性肝癌的形态、轮廓、坏死、出血及生长方式等都可以清晰显示,同时对于其他脏器的肿瘤、

感染及创伤也能清晰的显示其部位、病变程度和病变分期等,对临床制定治疗方案提供了帮助。 5.盆腔脏器:盆腔器官之间有丰富的脂肪间隔,该机能准确地显示肿瘤对邻近组织的侵犯,特别是对卵巢、宫颈和子宫、膀胱、精囊、前列腺和直肠肿瘤的诊断,对临床分期治疗和放射治疗设计具有重要指导意义。 6.骨与关节:脊椎、人体各大关节、关节面细小骨折、软组织脓肿、髓内骨肿瘤造成的骨皮质破坏,如破坏区内的死骨、钙化、骨化以及破坏区周围骨质增生、软组织脓肿、肿物等诊断具有一定的可靠性。

中医院X线电子计算机断层扫描装置技术参数

中医院X线电子计算机断层扫描装置 技术参数 一、招标货物一览表: 编号货物名称数量 *1高端64排128层 螺旋CT。具备能 谱功能 1套 原装进口 配备原装进口独立后处理工作 站一套,具有主机所有应用软 件及功能。诊断工作站一套。 进口三通道无针筒高压注射器 1台 2随机附件1套3技术资料1套 4投标方认为必须提 供的其他资料 1套

二、设备技术规格及要求: 序号招标要求 1.设备名称:高端64排128层螺旋CT系统1.1设备数量:一套 1.2设备用途:全身扫描的临床应用和临床研究1.3制造厂商:投标人说明 *1.4设备型号:投标人说明,要求最新机型和最新的硬件、软件版本 1.5国际和国内安全认证:标准 2.主要技术规格 2.1扫描架系统 2.1.1扫描架孔径:≥700mm 2.1.2扫描架倾角:≥±30°,0.5度变化,可在操纵台遥控2.1.3冷却方式:高效风冷 *2.1.4探测器类型:新型探测器(如石榴石探测器、Stellar探测器、Nano panel探测器) 2.1.5探测器Z轴覆盖宽度:≥40mm 2.1.6采用动态双焦点技术:标准 2.1.7最薄采集层厚:≤0.625mm 2.1.8数据传输:≥5.2GB/s 2.1.9每层数据采样率:≥2800个/圈 2.1.10快速启动扫描功能:≤5分钟通电到扫描 2.1.11机架内置一体化心电监控及心电图显示系统,数据传输采用射频信号传递 2.2扫描床系统

2.2.1病人床可扫描垂直升降范围:≥44cm 2.2.2病人床可扫描垂直升降最高高度:≥95cm 2.2.3病人床可扫描垂直升降最低高度:≤55cm 2.2.4病人床水平移动范围:≥190cm 2.2.5病人床水平可扫描范围:≥180cm 2.2.6病人床水平移动最高速度:≥200mm/s 2.2.7病人床水平移动最低速度:≤0.5mm/s 2.2.8病人床承重量:≥205kg 2.2.9床移动精度:≤±0.25mm 2.2.10病人床附件:床面延长板、标准头托、输液架、臂托、各种衬垫 2.3X线球管及高压发生器 *2.3.1球管阳极热容量:≥8.0MHU 2.3.2阳极最大散热率:≥1.600MHU/min 2.3.3球管电流设置:20-660mA 2.3.4球管最大电流:≥660mA 2.3.5球管最小电流:≤20mA 2.3.6球管电流递增幅度:≤1mA 2.3.7球管最大电压:≥140KV 2.3.8球管最小电压:≤80KV 2.3.9球管大焦点:1.0×1.0mm 2.3.10球管小焦点:0.5×1.0mm *2.3.11发生器功率:≥75kW *2.3.12球管保用:一年无限次保用,若有损坏免费更换新球管;保用期后购买的新球管均一年无限次保用.

相关主题
文本预览
相关文档 最新文档