当前位置:文档之家› 定量构效关系(QSAR)及研究方法

定量构效关系(QSAR)及研究方法

定量构效关系(QSAR)及研究方法
定量构效关系(QSAR)及研究方法

分为三部分内容:

1定量构效关系及研究现状

2二维定量构效关系的概念模式及研究方法

3三维定量构效关系研究

一、定量构效关系及研究现状

1、定量构效关系(QSAR)就是定量的描述和研究有机物的结构和活性之间的相互关系。最初它作为药物设计的一个研究分支,是为了适应合理设计生物活性的需要发展起来的。近二三十年,特别是计算机的发展和应用使QSAR研究提高到一个新的水平,其应用范围也在迅速扩大。

2、目前,QSAR在药物、农药、化学毒剂、环境毒理学等领域得到广泛的应用。

QSAR在药物和环境研究领域具有两方面的功能:

根据所阐明的构效关系的结果,为设计、筛选或预测生物活性化合物指明方向

根据已有的化学反应知识,探求生理活性物质与生物体的相互作用规律,从而推论生物

活性所呈现的机制

3、QSAR的发展主要历程了三个阶段:

早期朴素认识很早以前,人们就已经认识到物质的反应性与其结构之间存在着一定的关系。由于当时对物质认识水平肤浅,这种对结构--活性的认识是最朴素最原始的。

定性阶段Crum-Brown和Frazer开创了结构-活性定量关系研究的先河,他们认为化合物的生物活性与结构之间有某种函数关系Ψ=f(C)

定量阶段Hansch等人从研究取代基与活性的关系出发,建立了线性自由能模型,从而使构象关系的研究从定性构效关系转向定量构效关系。

4、目前QSAR研究呈现三个方面的的特点:

综合性QSAR的研究越来越多的借助数学、化学、生物等学科的理论和方法

理论性主要是量子化学、量子生物学的理论应用于QSAR方程

程序化即专家系统和数据库的开发和研制

二、二维定量构效关系的概念模式及研究方法

1、QSAR的研究程序包括五个主要步骤:

选择合适的待测数据资料,建立待测数据库。

从数据库中选择合适的分子结构参数及欲研究的活性参数

选择合适的方法建立结构参数与活性参数间的定量关系模型

模型检验,选择更好的结构参数或建模方法,使模型更优化;同时需给出模型的约束条件和误差范围

实际应用,预测新化合物的活性

2、自从Hansch在1964年构建了线性自由能关系模型形成QSAR以来,经过许多研究者的努力当前已有多种QSAR模型,大致可分为两种:数值模型和推理模型,在这里我们主要介绍数值模型。目前比较普遍使用的QSAR数值模型有:Hansch线性自由能关系模型,Free-Wilson取代基贡献模型,辛醇-水分配系数法和分子连接法。

Hansch线性自由能关系模型

这个图是Hansch方程的一个发展历程。

最下面是经典的Hansch方程形式,这个模型是以生理活性物质的半数有效量作为活性参数,以分子的电性参数、立体参数和疏水参数作为线性回归分析的变量。它的基本思想认为药物分子的活性可由其物化参数来定量表达。

中间这个方程是由日本学者藤田稔夫对经典的Hansch方程作出一定改进得到的,它是用抛物线模型描述疏水性与活性的关系。这一方程比经典方程的拟合效果更好。

后来Hansch发现药物要交替穿过水相和类脂构成的体系,其移动难易程度和lgP呈现出函数关系,最后确定以双直线模型描述疏水性与活性的关系。双直线模型的预测能力比抛物线模型进一步加强。

下面是Free-Wilson取代基贡献模型

这是模型的数学表达式。他的基本假设是:分子中任一个位置上所存在的取代基始终是等量改变相对活性的对数值;取代基的活性贡献大小取决于它在分子中的不同位置。

在QSAR研究中涉及众多的参数,主要可分为两大类:结构参数和活性参数

活性参数是构成二维定量构效关系的要素之一,常见的活性参数有:半数有效量、半数有效浓度、半数抑菌浓度、半数致死量、最小抑菌浓度等

疏水参数:疏水性是影响药物生理活性的一个重要性质,疏水参数最常见的是脂水分配系数. 电性参数:用以表征取代基团对分子整体电子分配的影响,其数值对于取代基也具有加和性。立体参数表征分子内部由于各个基团相互作用对药效构象产生的影响以及对药物和生物大分子结合模式产生的影响

几何参数是与分子构象相关的立体参数,常见的几何参数有分子表面积、溶剂可及化表面积、分子体积、多维立体参数等。

拓扑参数:根据分子的拓扑结构将各个原子编码,用形成的代码来表征分子结构。

理化性质参数:偶极矩、分子光谱数据、前线轨道能级、酸碱解离常数等理化性质参数有时也用做结构参数参予定量构效关系研究。

三、三维定量构效关系的研究

由于二维定量构效关系不能精确描述分子三维结构与生理活性之间的关系,随着构效关系理论和统计方法的进一步发展,引入了三维定量构效关系。这种方法间接地反映了药物分子与大分子相互作用过程中的非键相互作用特征,相对于二维定量构效关系有更加明确的物理意义和更丰富的信息量,因此三维定量构效关系逐渐取代了二维定量构效关系的地位,成为基于机理的合理药物设计的主要方法之一。

这是3D-QSAR的发展历程,我们可以看出自从80年代提出以来,它的发展还是很快的。目前应用最广泛的三维定量构效关系方法是比较分子场方法和比较分子相似性方法。

(1) 比较分子场分析方法

这种方法通过分析分子在三维空间内的疏水场、静电场和立体场分布,以这些参数为变量对药物活性做回归分析。它的基本原理是:如果一组相似化合物以同样的方式作用于同一靶点,那么它们的生物活性就取决于每个化合物周围分子场的差别,这种分子场可以反映药物分子和靶点之间的非键相互作用特性。

优点:通过比较同系列分子附近空间各点的疏水性、静电势等理化参数,将这些参数与小分子生理活性建立联系,从而指导新化合物的设计

不足:分子的排列是该模型最关键、最困难的问题,也就是说化合物与受体作用位点结合的方向,任何小误差出现在过程中都将导致计算结果的不精确。

⑵比较分子相似因子分析法与比较分子场分析方法最大的不同就是分子场的能量函数采用了与距离相关的高斯函数的形式,这种方法中共定义五种分子场的特征,包括立体场、静电场、疏水场以及氢键给体场和氢键受体场。

这个方法是人们对比较分子场分析方法做了大量修正和改进得到的更具优势的模型。

优势体现在:采用了与距离相关的高斯函数形式,可以有效地避免在传统比较分子场分析方

法中由静电场和立体场的函数形式所引起的缺陷;由于分子场能量在格点上的迅速衰退,不需要定义能量的截断值。

⑶距离几何法这种方法假定配体分子的活性基团与受体分子间的结合位点之间是相互作用的,它将药物分子划分为若干功能区块定义药物分子活性位点,计算低能构象时各个活性位点之间的距离,形成距离矩阵;同时定义受体分子的结合位点,获得结合位点的距离矩阵,通过活性位点和结合位点的匹配为每个分子生成结构参数,对生理活性数据进行统计分析

⑷分子形状分析法研究步骤一般可分为:

①分析药物分子的构象,得到分子构象库:

②确定分子的活性构象;

③根据分子的活性构象选定参考构象;

④将其他分子构象与参考构象进行重叠;

⑤根据重叠构象确定公共重叠体积和其他的分子特征;

⑥最后根据重叠体积和分子特征,建立QSAR模型。 3、通过活动,使学生养成博览群书的好习惯。

B比率分析法和比较分析法不能测算出各因素的影响程度。√

C采用约当产量比例法,分配原材料费用与分配加工费用所用的完工率都是一致的。X

C采用直接分配法分配辅助生产费用时,应考虑各辅助生产车间之间相互提供产品或劳务的情况。错

C产品的实际生产成本包括废品损失和停工损失。√

C成本报表是对外报告的会计报表。×

C成本分析的首要程序是发现问题、分析原因。×

C成本会计的对象是指成本核算。×

C成本计算的辅助方法一般应与基本方法结合使用而不单独使用。√

C成本计算方法中的最基本的方法是分步法。X

D当车间生产多种产品时,“废品损失”、“停工损失”的借方余额,月末均直接记入该产品的产品成本中。×

D定额法是为了简化成本计算而采用的一种成本计算方法。×

F“废品损失”账户月末没有余额。√

F废品损失是指在生产过程中发现和入库后发现的不可修复废品的生产成本和可修复废品的修复费用。X

F分步法的一个重要特点是各步骤之间要进行成本结转。(√)

G各月末在产品数量变化不大的产品,可不计算月末在产品成本。错

G工资费用就是成本项目。(×)

G归集在基本生产车间的制造费用最后均应分配计入产品成本中。对

J计算计时工资费用,应以考勤记录中的工作时间记录为依据。(√)

J简化的分批法就是不计算在产品成本的分批法。(×)

J简化分批法是不分批计算在产品成本的方法。对

J加班加点工资既可能是直接计人费用,又可能是间接计人费用。√

J接生产工艺过程的特点,工业企业的生产可分为大量生产、成批生产和单件生产三种,X

K可修复废品是指技术上可以修复使用的废品。错

K可修复废品是指经过修理可以使用,而不管修复费用在经济上是否合算的废品。X

P品种法只适用于大量大批的单步骤生产的企业。×

Q企业的制造费用一定要通过“制造费用”科目核算。X

Q企业职工的医药费、医务部门、职工浴室等部门职工的工资,均应通过“应付工资”科目核算。X

S生产车间耗用的材料,全部计入“直接材料”成本项目。X

S适应生产特点和管理要求,采用适当的成本计算方法,是成本核算的基础工作。(×)

W完工产品费用等于月初在产品费用加本月生产费用减月末在产品费用。对

Y“预提费用”可能出现借方余额,其性质属于资产,实际上是待摊费用。对

Y引起资产和负债同时减少的支出是费用性支出。X

Y以应付票据去偿付购买材料的费用,是成本性支出。X

Y原材料分工序一次投入与原材料在每道工序陆续投入,其完工率的计算方法是完全一致的。X

Y运用连环替代法进行分析,即使随意改变各构成因素的替换顺序,各因素的影响结果加总后仍等于指标的总差异,因此更换各因索替换顺序,不会影响分析的结果。(×)

Z在产品品种规格繁多的情况下,应该采用分类法计算产品成本。对

Z直接生产费用就是直接计人费用。X

Z逐步结转分步法也称为计列半成品分步法。√

A按年度计划分配率分配制造费用,“制造费用”账户月末(可能有月末余额/可能有借方余额/可能有贷方余额/

可能无月末余额)。

A按年度计划分配率分配制造费用的方法适用于(季节性生产企业)

蛋白质构效关系的计算方法研究

蛋白质构效关系的计算方法研究 生物的各项生理活动及多种分类性状都直接或间接地与蛋白质相关,蛋白质功能由其结构决定。蛋白质的构效关系分析,就是利用计算手段对蛋白质结构与功效之间的关系进行研究。 蛋白质侧链结构几乎是最简单的三维结构了,但是对于蛋白质行使其功能而言,起到了重要作用。本文的第一个研究点就是研究蛋白质侧链结构预测。 从计算上来讲,这是一个具有不准确目标函数的优化问题。在内外因素作用下,蛋白质侧链易发生突变。 本文的第二个研究点就是研究突变的可能性。蛋白质的突变的外在后果,就是可能导致某些疾病。 本文的第三个研究点就是研究突变与疾病的定量相关性。如前述三点,我们把它们建模成机器学习问题来研究。 1.蛋白质侧链结构预测的一种并行蚁群方法。重构蛋白质侧链的目标是为每个残基位选择一个合适的旋转异构体使组成的结构最接近天然结构。 针对蛋白质侧链优化目标难以量化,以及全局优化算法最坏情况下将消耗指数级时间等问题,提出了一种并行元启发搜索框架。它通过共享信息素矩阵融合不同的能量函数,共同指导侧链构象的选择。 为了合理减少旋转异构体库的不连续性,采用梯度下降法为每个残基位选择的旋转异构体进行最优化处理。随后,在经典测试集上进行验证,本文方法具有很强的竞争力。 2.基于迭代决策树的蛋白质稳定性变化预测技术。针对基因数据高速膨胀,而结构解析成本高、效率低的情况,建立一种使用低精度蛋白质结构模型预测点

突变引起的稳定性变化模型。 由于蛋白质突变引起的蛋白质物化性质和结构上的变化,以及这些变化对蛋白质的稳定性具有重要的影响,利用I-TASSER构造蛋白质的三维结构,并通过重插侧链的方式获得蛋白质突变后的结构,从而可以获取突变前后蛋白质结构的变化。为了更准确的描述突变环境,同时引入基于多序列比对、基于多模板比对以及基于物理或先验知识的能量值作为特征。 最后结合GBRT算法,构建了一种新型的稳定性变化回归模型。在5组独立数据集上的实验表明,在与目前最先进的预测软件比较时,本文方法均获得了最优的Pearson相关系数。 3.贝叶斯人工神经网络的疾病相关突变预测技术。针对蛋白质突变和功能之间的复杂关系,提出了一种新的构效关系模型。 这个模型通过结合贝叶斯分类与人工神经网络技术,不仅考虑了统计数据,减少了过拟合现象,而且描绘出更为准确的非线性关系,提高了预测的准确性和鲁棒性。由于目前数据库涉及物种繁多且构建规则各不相同,通过自动化整合UniProt与PDB数据库中有关人类的数据,使蛋白质序列、功能注释与蛋白质三维结构可以快速相互映射。 在描绘复杂的突变位置环境时,首次引入生物单元(biological unit)作为分析对象,进而可以分析分子内与分子间的结构等特征参数。在两组验证实验中,本文方法成功地优化了经典贝叶斯分类、人工神经网络算法,并与其它预测器在多个测试集上进行比较时,均获得了最高的预测准确度。 本文的创新点主要表现在:在侧链预测中采用基于SHOP机制的并行元启发方案,成功模仿自然界中侧链之间相互影响最终形成结构的过程,并针对每个残

定量构效关系

(一)定量构效关系 能对定量构效关系有个整体的认识:描述分子的三维结构与生理活性之间的关系,所应用的主要技术方法是“比较分子场方法(CoMFA)”定量构效关系(QSAR)是一种借助分子的理化性质参数或结构参数,以数学和统计学手段定量研究有机小分子与生物大分子相互作用、有机小分子在生物体内吸收、分布、代谢、排泄等生理相关性质的方法。这种方法广泛应用于药物、农药、化学毒剂等生物活性分子的合理设计,在早期的药物设计中,定量构效关系方法占据主导地位,1990年代以来随着计算机计算能力的提高和众多生物大分子三维结构的准确测定,基于结构的药物设计逐渐取代了定量构效关系在药物设计领域的主导地位,但是QSAR在药学研究中仍然发挥着非常重要的作用。 发展历史 定量构效关系是在传统构效关系的基础上,结合物理化学中常用的经验方程的数学方法出现的,其理论历史可以追溯到1868年提出的Crum-Brown方程,该方程认为化合物的生理活性可以用化学结构的函数来表示,但是并未建立明确的函数模型。最早的可以实施的定量构效关系方法是美国波蒙拿学院的Hansch在1962年提出的Hansch方程。Hansch方程脱胎于1935年英国物理化学家哈密顿提出的哈密顿方程以及改进的塔夫托方程。哈密顿方程是一个计算取代苯甲酸解离常数的经验方程,这个方程将取代苯甲酸解离常数的对数值与取代基团的电性参数建立了线性关系,塔夫托方程是在哈密顿方程的基础上改进形成的计算脂肪族酯类化合物水解反应速率常数的经验方程,它将速率常数的对数与电性参数和立体参数建立了线性关系。 Hansch方程在形式上与哈密顿方程和塔夫托方程非常接近,以生理活性物质的半数有效量作为活性参数,以分子的电性参数、立体参数和疏水参数作为线性回归分析的变量,随后,Hansch和日本访问学者藤田稔夫等人一道改进了Hansch方程的数学模型,引入了指示变量、抛物线模型和双线性模型等修正,使得方程的预测能力有所提高。 几乎在Hansch方法发表的同时,Free等人发表了Free-Wilson方法,这种方法直接以分子结构作为变量对生理活性进行回归分析。其在药物化学中的应用范围远不如Hansch方法广泛。Hansch方法、Free-Wilson方法等方法均是将分子作为一个整体考虑其性质,并不能细致地反应分子的三维结构与生理活性之间的关系,因而又被称作二维定量构效关系。二维定量构效关系出现之后,在药物化学领域产生了很大影响,人们对构效关系的认识从传统的定性水平上升到定量水平。定量的结构活性关系也在一定程度上揭示了药物分子与生物大分子结合的模式。在Hansch方法的指导下,人们成功地设计了诺氟沙星等喹诺酮类抗菌药。 由于二维定量不能精确描述分子三维结构与生理活性之间的关系,1980年代前后人们开始探讨基于分子构象的三维定量构效关系的可行性。1979年,Crippen提出“距离几何学的3D-QSAR”;1980年Hopfinger等人提出“分子形状分析方法”;1988年Cramer 等人提出了“比较分子场方法”(CoMFA)。比较分子场方法一经提出便席卷药物设计领域,成为应用最广泛的基于定量构效关系的药物设计方法;1990年代,又出现了在比较分子场方法基础上改进的“比较分子相似性方法”以及在“距离几何学的3D-QSAR”基础上发展的“虚拟受体方法”等新的三维定量构效关系方法,但是老牌的CoMFA依然是使用最广泛的定量构效关系方法。

活性多糖构效关系研究进展

中图分类号:TS23;文献标识码:A;文章篇号:1007-2764(2004)01-0037-0104 活性多糖构效关系研究进展 孙 群 阚健全 赵国华 陈宗道 (西南农业大学食品科学学院 重庆北碚 400716) 摘 要:活性多糖具备抗肿瘤、抗病毒等多种多样的生物功能,而活性多糖的功能与结构关系密切。关于活性多糖的构效关系研究已成为生命科学的最前沿领域之一。本文详细论述了对活性多糖一级结构、高级结构与其生物学活性关系的研究进展。 关键词:活性多糖;构效关系;一级结构;高级结构 糖类是自然界最多的有机化合物,多糖是重要的生物高分子物质,但在较长时期内未受到重视,所以多糖的研究比蛋白质核酸晚,现在已知自然界组成多糖的单糖已超过百种。近几十年来,人们不断发现糖类物质具有多种多样的生物功能,如促进免疫、抗肿瘤、抗突变、降血脂、抗病毒等。所以常把多糖称为“生物应答效应物”(biological response modifer, BRM)或活性多糖。而它的化学结构则是其生物活性的基础,为此,构效关系成为当前糖化学和生物学共同关注的焦点问题。本文就活性多糖构效关系的最新研究进展作一论述。 1 活性多糖一级结构与其生物活性的关系 1.1 活性多糖组成和糖苷键类型 主链糖单元的组成决定了多糖的种类,不同种类的多糖,其生物学活性存在较大差异。根据主链糖单元的组成可将多糖分为两类:同多糖和杂多糖。同多糖是指主链的重复单元相同的多糖;杂多糖则是由两种或两种以上的单糖连接而成的多糖。从菌体中获得的活性多糖一般是由葡萄糖构成的(香菇多糖、裂褶多糖、灰树花多糖等)。葡聚糖是自然界许多动植物和微生物多糖的基本结构单元,据推测,它可能是生物产生宿主防御机制的基本诱发基因[1]。 从高等植物中获得的具有激活补体作用的多糖一般为酸性杂多糖,酸性部分主要为半乳糖醛酸和葡萄糖醛酸。Kiyohara H研究甘草根中的果胶多糖发现一些中性低聚糖也具抗补体和促进有丝分裂活性。Hirano M[2]等对多糖活性决定簇研究中认为分支区与补体作用、促进有丝分裂和调节巨噬细胞Fc受体兴奋有关。例如柴胡、当归和甘草的果胶多糖PG-2含有收稿日期:2003-10-16 作者简介:孙群(1979-),女,硕士研究生, 研究方向:食品化学与营养学带 (KDO)糖链。这与淋巴细胞、单核细胞壁中的鼠李半乳糖醛酸聚糖相似,因为淋巴细胞、单核细胞、巨噬细胞的表面发现有数个脂多糖(LPS)受体分子,其中一个LPS受体有一种对LPS上KDO起决定作用的潜在特殊属性。现已知在人体的单核细胞产生IL-1时,LPS中LDO基团起重要的信号作用。因此,含有KDO 氨基酸残基的特异性果胶可能被细胞表面上的LPS受体所识别,从而启动了一些相应的生物活性。 硫酸化均多糖比硫酸化杂多糖更具活性,如岩藻依聚糖和葡聚糖等均多糖的磺酸化酯比肝素等杂多糖磺酸酯有更强的抗HIV-Ⅲ,抗人类T淋巴细胞病毒Ⅲ的活性[3]。关于多糖的类型与活性的一般规律还有待进一步深入研究。 多糖主链上糖苷键的类型也是决定多糖活性的重要因素。具有抗肿瘤活性的多糖是由β(1→3)键连接的β-D-葡聚糖往往具有较明显的抗肿瘤活性,若骨架结构主要由(1→6)键或其他键连接,则抗肿瘤活性就很低。香菇多糖、猪苓多糖、裂褶多糖和核盘菌多糖都属于含有β(1→3)键连接的D-葡萄糖残基为骨架葡聚糖,因此对小鼠移植性肉瘤S180有较强的抑制力,表现出较强的抗肿瘤活性。除了葡聚糖外,其他多糖的活性也受到糖苷键类型的影响,如具有抗肿瘤活性的甘露多糖为(1,6)键型;活性半乳多糖则以(1,3)键型连接。 1.2 官能团与其生物活性的关系 1.2.1 羧甲基化 多糖羧基化后对活性有很大影响,如淀粉无活性,但其羧甲基产物羧甲基淀粉(CMS)和羧甲基直链淀粉(CMA)均具有免疫调节作用[4]。CMS和CMA对小鼠S-180的生长有抑制作用,抑制率均为50%,且使小鼠的胸腺增重,胸腺细胞数增多,还能促进大鼠移植膀胱宿主的免疫应答反应,这主要是依赖T细胞 104

多肽定量构效关系与分子设计

多肽定量构效关系与分子设计 丁俊杰 丁晓琴3  赵立峰 陈冀胜 (北京药物化学研究所 北京102205) 摘 要 综述了多肽定量构效关系和计算机辅助多肽分子设计方法的最新进展,重点介绍了多肽定量 构效关系研究中的化学结构定量描述符和建立数学模型的统计方法,并对模拟肽学和虚拟组合多肽库在多肽分子设计中的应用进行了简要的论述。 关键词 多肽定量构效关系 遗传算法 人工神经网络 模拟肽学 虚拟组合多肽库中图分类号:Q516;O641 文献标识码:A 文章编号:10052281X (2005)0120130207 The Polypeptide Q SAR and Computer 2Aided Molecular Design Ding Junjie Ding Xiaoqin 3  Zhao Lifeng Chen Jisheng (Beijing Institute of Pharmaceutial Chemistry ,Beijing 102205,China ) Abstract The advances in polypeptide QS AR and com puter 2aided m olecular design are reviewed.The chemical structure descriptors and statistical method of mathematical m odeling in the polypeptide QS AR study are introduced in de 2tail.The application of peptidomimetics and virtual combinatorial peptide library in the com puter 2aided polypeptide de 2sign are brielfly described. K ey w ords polypeptide QS AR ;genetic alg orithm ;artificial neural netw orks ;peptidomimetics ;virtual combina 2torial peptide library 收稿:2003年11月,收修改稿:2004年7月 3通讯联系人 e 2mail :dingxq @https://www.doczj.com/doc/9911490285.html, 多肽是维持生命过程中必不可少的物质,由于它们具有高活性、高选择性以及副作用小等特点,现已逐渐成为药物研究的热点之一。对肽类药物的研究开发及先导化合物的发现,至今仍是一件耗资巨大但效率很低的工作。造成这种状况的一个主要原因就是缺乏深入的理论指导和先进的分子设计方法,因此迫切需要新的理论方法和多肽分子设计技术的出现。近年来,以各种理论计算方法和分子模拟技术为基础的计算机辅助分子设计,在各种肽类化合物的研究开发中得到了广泛的应用。利用计算机分子图形学、分子动力学和量子化学等进行构象分析,寻找多肽及类似物的药效团,进行二维和三维的定量构效关系(QS AR )研究,及应用各种分子设计方法,设计有较高活性的肽类和非肽模拟物,已成为国际上十分活跃的研究领域。 一、多肽的定量构效关系研究 在多肽类似物的研究和开发中,定量构效关系是一个重要的理论计算方法和常用手段。所谓多肽的QS AR ,就是用数学模式来表达多肽类似物的化学结构信息与特定的生物活性强度间的相互关系。多肽的QS AR 研究方法同其它药物的QS AR 研究方 法一样,基本上可分为以下5个步骤[1] :(1)选择和设计一系列多肽类似物;(2)类似物的化学结构的定量描述;(3)合成设计化合物并进行生物活性的测定;(4)建立数学模型,确定化学结构与生物活性之间的函数关系;(5)新类似物的活性预测以及新的高活性类似物的设计。近年来,多肽的QS AR 研究主要集中在如下两个方面:多肽的化学结构定量描述符的研究和建立QS AR 数学模型的统计方法。 第17卷第1期2005年1月 化 学 进 展 PROG RESS I N CHE MISTRY Vol.17No.1  Jan.,2005

药物化学构效关系(第二版 尤启冬 主编)

抗肿瘤作用机理:1、药物在体内能形成缺电子活泼中间体(碳正离子)或其他具有活泼的亲电性基团的化合物,进而与肿瘤细胞的生物大分子(DNA,RNA,酶)中富电子基团(氨基,巯基,羟基等)发生共价结合,使其丧失活性,致肿瘤细胞死亡。2、属细胞毒类药物,在抑制和毒害增生活跃的肿瘤细胞的同时,对其它增生较快的细胞产生抑制。如骨髓细胞、肠上皮细胞、毛发细胞和生殖细胞等。副作用大:影响造血功能和机体免疫功能,恶心、呕吐、骨髓抑制、脱发等。 氮芥类药物脂肪氮芥:氮原子的碱性比较强,在游离状态和生理PH()时,易和β位的氯原子作用生成高度活泼的亚乙基亚胺离子,为亲电性的强烷化剂,极易与细胞成分的,亲核中心发生烷基化反应。脂肪族氮芥:烷化历程是双分子亲核取代反应(SN2), 反应速率取决于烷化剂和亲核中心的浓度。脂肪氮芥属强 烷化剂,对肿瘤细胞的杀伤能力也较大,抗肿瘤谱较广; 但选择性比较差,毒性也较大。芳香族氮芥:氮原子与苯环共轭,减弱了碱性,碳正离子中间体,单分子的亲核取代反应。 氮芥类药物及大多数烷化剂主要是通过和,DNA上鸟嘌呤或胞嘧啶碱基发生烷基化,产生DNA链内、链间交联或DNA蛋白质交联而抑制,DNA的合成,阻止细胞分裂。 【1】β-内酰胺类抗生素的化学结构特点: 1分子内有一个四元的β-内酰胺环,除了单环β-内酰胺外,该四元环通过N原子和邻近的第三碳原子与另一个五元环或六元环相稠合。 2除单环β-内酰胺外,与β-内酰胺环稠合的环上都有一个羧基。 3所有β-内酰胺类抗生素的β-内酰胺环羰基α-碳都有一个酰胺基侧链。 4β-内酰胺环为一个平面结构,但两稠环不共平面 β-内酰胺类药物可抑制粘肽转肽酶的活性和青霉素结合蛋白 【2】青霉素构效关系 (1)6位的侧链酰胺基团决定其抗菌谱。改变其极性,使之易于透过细胞膜可以扩大抗菌谱。例如,在芳环乙酰氨基的α位上引入-NH2、-COOH、和-SO3H等亲水性基团,可以扩大抗菌谱,增强亲水性有利于对革兰阴性菌的抑制作用并能增强对青霉素结合蛋白的亲和力。 (2)在侧链引入立体位阻较大基团或在6位引入甲氧基等可保护β-内酰胺环不被β-内酰胺酶进攻,而得到耐酶抗生素。 (3)羧基是基本活性基团。可利用前药原理将羧基制成酯,以增加口服吸收和改善药物代谢动力学性质。 (4)青霉烷酸分子中的3个手性碳的构型对其活性至关重要。只有绝对构型为2S,5R,6R 具有活性;但噻唑环上的2个甲基不是保持活性的必要基团。 优点:强效的抗生素缺点:不稳定不耐酸不口服不耐酶耐药性抗菌谱窄易过敏 【3】半合成头孢菌素构效: (1)7位酰胺基取代基是抗菌谱的决定基团,对其进行结构修饰,可扩大抗菌谱并可提高抗菌活性,增加对β-内酰胺酶的稳定性。 (2)7位氢原子以甲氧基取代可增加β-内酰胺环的稳定性。 (3)环中S原子可影响抗菌效力,将其改为碳或氧可提高抗菌活性。 (4)3位取代基既可提高抗菌活性,又能影响药物代谢动力学性质。

定量构效关系(QSAR)及研究方法

分为三部分内容: 1定量构效关系及研究现状 2二维定量构效关系的概念模式及研究方法 3三维定量构效关系研究 一、定量构效关系及研究现状 1、定量构效关系(QSAR)就是定量的描述和研究有机物的结构和活性之间的相互关系。最初它作为药物设计的一个研究分支,是为了适应合理设计生物活性的需要发展起来的。近二三十年,特别是计算机的发展和应用使QSAR研究提高到一个新的水平,其应用范围也在迅速扩大。 2、目前,QSAR在药物、农药、化学毒剂、环境毒理学等领域得到广泛的应用。 QSAR在药物和环境研究领域具有两方面的功能: 根据所阐明的构效关系的结果,为设计、筛选或预测生物活性化合物指明方向 根据已有的化学反应知识,探求生理活性物质与生物体的相互作用规律,从而推论生物 活性所呈现的机制 3、QSAR的发展主要历程了三个阶段: 早期朴素认识很早以前,人们就已经认识到物质的反应性与其结构之间存在着一定的关系。由于当时对物质认识水平肤浅,这种对结构--活性的认识是最朴素最原始的。 定性阶段Crum-Brown和Frazer开创了结构-活性定量关系研究的先河,他们认为化合物的生物活性与结构之间有某种函数关系Ψ=f(C) 定量阶段Hansch等人从研究取代基与活性的关系出发,建立了线性自由能模型,从而使构象关系的研究从定性构效关系转向定量构效关系。 4、目前QSAR研究呈现三个方面的的特点: 综合性QSAR的研究越来越多的借助数学、化学、生物等学科的理论和方法 理论性主要是量子化学、量子生物学的理论应用于QSAR方程 程序化即专家系统和数据库的开发和研制 二、二维定量构效关系的概念模式及研究方法 1、QSAR的研究程序包括五个主要步骤: 选择合适的待测数据资料,建立待测数据库。 从数据库中选择合适的分子结构参数及欲研究的活性参数 选择合适的方法建立结构参数与活性参数间的定量关系模型 模型检验,选择更好的结构参数或建模方法,使模型更优化;同时需给出模型的约束条件和误差范围 实际应用,预测新化合物的活性 2、自从Hansch在1964年构建了线性自由能关系模型形成QSAR以来,经过许多研究者的努力当前已有多种QSAR模型,大致可分为两种:数值模型和推理模型,在这里我们主要介绍数值模型。目前比较普遍使用的QSAR数值模型有:Hansch线性自由能关系模型,Free-Wilson取代基贡献模型,辛醇-水分配系数法和分子连接法。 Hansch线性自由能关系模型 这个图是Hansch方程的一个发展历程。 最下面是经典的Hansch方程形式,这个模型是以生理活性物质的半数有效量作为活性参数,以分子的电性参数、立体参数和疏水参数作为线性回归分析的变量。它的基本思想认为药物分子的活性可由其物化参数来定量表达。

浙江大学量效关系和构效关系药理实验报告

课程名称:药理学实验___________________指导老师:丁玲______成绩:__________________ 实验名称:__传出神经药物对兔眼瞳孔的作用,以及药物的构效关系、量效关系实验类型:__验证性同组学生姓名:葛倩倩、张敏哲 【实验目的】 1、观察拟胆碱药、抗胆碱药及拟肾上腺素药对瞳孔的作用,并分析两种药物的散瞳机制; 2、了解在同系瑶族中,药物的作用可随取代基的变化而递变; 3、以去甲肾上腺素的升压作用为例,了解药物剂量与反应之间的关系,及通过函数转换,将非直线关系 转化成直线关系的方法。 【实验内容】 一、传出神经药物对兔眼瞳孔的作用 1、取家兔两只,在适度的光照下,用测瞳尺测量两眼瞳孔的大小(mm)。另用闪射光检验兔眼的对光反射; 2、对家兔眼结膜囊内如下表方式滴药: 兔号左眼右眼 1 1%硫酸阿托品溶液1%硝酸毛果芸香碱 2 1%盐酸去氧肾上腺素溶液0.5%水杨酸毒扁豆碱 3、滴药10min,在相同的光照下,测眼瞳孔大小及对光反射。如滴毛果芸香碱及毒扁豆碱演的瞳孔已经缩小,在这两演的结膜囊内再滴入1%硫酸阿托品溶液两滴,10min后检查瞳孔大小和对光发射又有何变化。 二、药物的构效关系和量效关系 1、取兔1只,耳缘静脉注射2%戊巴比妥钠1.5ml/kg使之麻醉,剪去颈部皮肤,在颈部郑重切开皮肤,分离肌肉,暴露右颈总动脉,通过动脉插管连接仪器,以记录血压、心率变化; 2、设置好软件参数,并记录兔初始血压及初始心率; 3、通过耳缘静脉注射1%硫酸阿托品0.2 ml/kg,然后依次注入10-4mol/L重酒石酸去甲肾上腺素0.1mg/kg,10-4mol/L盐酸肾上腺素0.1mg/kg,10-4mol/L硫酸异丙肾上腺素0.1mg/kg; 4、记录每次给药后兔血压和心率的变化; 5、待数据稳定后,依次注入10-6mol/L的去甲肾上腺素0.1、0.2、0.5mg/kg,之后对10-5mol/L及 10-4mol/L去甲肾上腺素做相同操作。

定量构效关系(QSAR)在新兽药研发中的应用

定量构效关系(QSAR)在新兽药研发中的应用 利用化合物定量构效关系(QSAR)方法研制新兽药,是今后药物研究开发的热点和重点。此稿介绍应用QSAR法通过化学的合成获得新药——鱼腥草素α-位衍生物、大蒜新素衍生物和水溶性氟苯尼考琥珀酸钠的方法原理,扩大了发展新药的思路,谨供阅览。 定量构效关系(Quantitative structure-activity relationship, QSAR)是在传统构效关系的基础上,以数学和统计学手段,研究化合物分子的理化性质参数或结构参数与其生物活性的定量关系。在药理学中,可利用化合物的理化性质参数或结构参数,结合物理化学中常用的经验方程推测化合物的药理活性,一定程度上揭示了药物分子与生物大分子结合的模式,预测或解释有机小分子的药理活性,以及在生物体内吸收、分布、代谢、排泄等生理相关性质。在药物设计中,可利用受体或药理作用靶位特点,结合化合物分子的量子化学参数或结构参数,通过经验方程设计新化合物结构,在体外模拟其生物活性,有目的的合成新药物分子。 1、定量构效关系(QSAR)的研究背景 1868年,A Crum-Brown等人提出了Crum-Brown方程,用化学结构的函数来表示化合物的生理活性,药物构效关系研究由定性研究发展到定量研究。随着技术和分子生物学、分子药理学的快速发展,定量构效关系已从经典的二维定量构效关系发展到具有直观性的三维定量构效关系,再到可以模拟化合物分子全部构象的四维定量构效关系,直至可以模拟诱导契合的五维定量构效关系,使人们对药物配体-受体的结合过程有了更深入的认识,这对于药物分子设计和先导化合物改造有十分重要的意义。 QSAR研究中涉及了多种经验方程。1962年,美国波蒙拿学院的Hansch提出了表示二维定量关系的Hansch方程。1980年代前后人们开始探讨基于分子构象的三维定量构效关系的可行性。1979年,Crippen提出“距离几何学的3D-QSAR”;1980年Hopfinger等人提出“分子形状分析方法”;1988年Cramer等人提出了“比较分子场方法”(CoMFA)。比较分子场方法一经提出便席卷药物设计领域,成为应用最广泛的基于定量构效关系的药物设计方法;1990年代,又出现了在比较分子场方法基础上改进的“比较分子相似性方法”以及在“距离几何学的3D-QSAR”基础上发展的“虚拟受体方法”等新的三维定量构效关系方法。1997年,Hopfinger引入了4D-QSAR的概念[1]。2002年,Vendani和Dobler[2-4]提出了5D-QSAR的概念。4D-QSAR 、5D-QSAR模型验证能力与3D-QSAR虽有一定优越性,但由于考虑的受体结果因素过多,所以2D-QSAR、3D-QSAR方法依然在药物定量构效关系研究方面占据重要的地位。 结构参数是构成定量构效关系的要素之一,常见的结构参数有:疏水参数、电性参数、立体参数、几何参数、拓扑参数、理化性质参数以及纯粹的结构参数等。 活性参数是构成定量构效关系的另一大要素,人们根据研究的体系选择不同的活性参 数,常见的活性参数有:半数有效量、半数有效浓度、半数抑菌浓度、半数致死量、最小抑菌浓度等,所有活性参数均必须采用物质的量作为计量单位,以便消除分子量的影响,从而真实地反应分子水平的生理活性。为了获得较好的数学模型,活性参数在定量构效关系中一般取负对数后进行统计分析。 2、定量构效关系(QSAR)在兽药研发中的应用 笔者课题组先后利用QSAR方法设计研究了多种新的兽用药物,包括鱼腥草素α-位衍生物、大蒜新素衍生物、氟苯尼考琥珀酸钠、苦参碱磺酸钠等。 2.1鱼腥草素α-位衍生物 1

翻译中文 构效关系研究

构效关系研究非单调剂量反应曲线多氯联苯对鸡胚肝细胞 生物活性测定 在中国科学B辑:化学 ? 2009年科学出版社 牟云胜,张爱钱,高长安,彭素芬&王连生 国家重点实验室污染控制与资源化利用,环境学院,南京大学,南京210093 ,中国 内分泌干扰物(EDCs )的自然环境中表现出了独特的非单调性的响应曲线,不可能选择一个简单的指数的表征这些化合物的活性。目前,定量构效关系(QSAR)研究非单调剂量反应曲线已成为一个真正的挑战。为了探讨可能的机制,非单调剂量反应曲线表示多氯联苯同族(PCBs )对鸡胚肝细胞生物活性的测定,AM1方法的ChemOffice通过计算必要的结构描述为多氯联苯之间的相互作用,而多氯联苯和模拟制冷配体结合域(LBD),分析了使用FlexX在SYBYL7.0 。不同结合模式的多氯联苯已受人关注:不仅来自不成一线的结构,而且还来自自由结合能。在一些构效关系模型内建立了单独的低和高剂量范围,表明受体结合可以占主导地位的干扰的生理功能的细胞色素P4501A - P4501A在低剂量范围内。但在高剂量的范围内,EROD抑制可能与急性毒性由于分子极性或分配系数分布并因此损害的鸡胚肝细胞结构和功能。 多氯联苯类化合物(多氯联苯),非单调剂量反应曲线,定量构效关系(QSAR)1简介 近年来,人们发现,某些内分泌干扰物检测低或高剂量引起不同的反应的毒理学试验。萨尔等[ 1 ]表明,低剂量的雌激素(己烯雌酚)将促进小鼠的前列腺增生症,而高剂量会抑制前列腺增长。其他化学品的内分泌干扰毒性试验与非单调剂量反应关系也得到证实,如双酚A [ 2 ] ,甲基氯化物和DDT[ 3 ] 。因此,用一个单一的线性模型进行毒性评价是不够整个范围内的浓度的[ 4 ] 。此外,这将是一个巨大的挑战的开始,在传统的毒理学模型因为浓度低剂量可低于常规没有观察到不良反应水平(无害作用剂量)在育种或增长试验协议。 定量构效关系(QSAR研究)研究是毒理机制研究一个有效的工具,已广泛应用于评价和估算的各种毒副作用。然而,科学假设,即在同一模式下显示整

药物化学构效关系

局部麻醉药构sheng效关系 1.分类 芳酸酯类、酰胺类、氨基醚类、氨基酮类、其他类 2.构效关系 亲酯部分中间链亲水部分 ⑴亲脂部分: 芳烃或芳杂环,这一部分修饰对理化性质变化大,但苯环作用较强。 苯环上引入给电子取代基,麻醉作用增强,而吸电子取代基则作用减弱。 ⑵中间部分:此部分决定药物稳定性,和局麻作用持续时间有关 ⑶亲水部分:常为仲胺和叔胺,仲胺刺激性较大;烃基链3~4个碳原子作用最强,杂环以哌啶环作用最强 巴比妥类药构效关系 (1)、分子中5位上应有两个取代基。(2)、5位上的两个取代基的总碳数以4—8为最好(3)、5位上的两个取代基的总碳数以4—8为最好. (4)、在酰亚胺氮原于上引入甲基,可降低酸性和增加脂溶性。(5)、将C2上的氧原子以硫原子代替,则脂溶性增加,起效快,作用时间短。 苯二氮卓类药物的构效关系 (1)1,3-二氢-5-苯基-2H-1,4-苯二氮卓-2-酮是此类药物基本结构;(2)环A7位引入吸电子取代基活性增加(3)环B为七元亚胺-内酰胺结构是产生药理作用的必要结构(4)5位苯环上的取代基时产生药效的重要结构之一,(5)1,2位的酰胺键和4,5位的亚胺键在酸性条件下易水解开环. 吩噻嗪类药构效关系 R1 部分必须由三个成直链的碳原子组成,若为支链,与多巴胺受体B 部分立体上不匹配,抗精神病活性明显下降,抗组胺作用增强。 顺式吩噻嗪类药物与多巴胺的优势构象能部分重叠,活性高(当侧链与氯取代的苯环同侧时,成为顺式构象)。 丁酰苯类药物的构效关系 (1)丁酰苯基为必需的基本骨架(2)侧链末端连一碱性叔胺(3)苯环的对位一般具 有氟取代(4)侧链湠基于碱基之间以三个碳原子最好 镇痛药的一般特征 (1)分子中具有一个平坦的芳香结构(2)有一个碱性中心能在生理PH条件下大部分电离为阳离子(3)含有哌啶或类似于哌啶的空间结构 吗啡的构效关系(半合成类镇痛药) 叔胺是镇痛活性的关键基团,氮原子引入不同的取代基可使μ 受体激动剂转变为拮抗剂。酚羟基被醚化和酰化后,活性及成瘾性均降低。羟基被烃化、酯化、氧化或去除后,活性及成瘾性均增加。 解痉药构效关系 (1)该部分可以为叔胺或季胺(2)中间脂肪连接部分n在2-4之间(3)一般来讲,X为酯键,醚键和烷基(4)R1和R2为饱和的碳环或杂环,也可以为芳环或芳杂环 氢氯噻嗪结构改造药的构效关系

构效关系

一、喹诺酮类构效关系: 1、A环是必须的药效团,3羧和4酮为抗菌活性不可少的部分; 2、B环可以是苯、吡啶、嘧啶; 3、1位乙基及环丙基活性强,环丙基最佳(环丙沙星); 4、2位取代活性低; 5、5位氨基可增强活性.(司帕沙星) 6、6位F改善细胞的通透性; 7、7位引入杂环,增强抗菌活性,哌嗪最好; 8、8位F、甲氧基或与1位成环,增强活性(左氧氟沙星),甲基、甲氧基光毒性减少 二、苯二氮卓构效关系要点. 1、3位引入羟基(奥沙西泮)降低毒性,并产生手性碳,右旋体作用强。 2、7位有吸电子基可增加活性,吸电子越强,作用越强,其次序为NO 2>Br>CF3>Cl 3、5位苯是产生药效的重要基团,5位苯环的2’位引入体积小的吸电子基团.(如F、Cl )可使活性增强。 4、1,2位拼入三氮唑可提高稳定性,并提高与受体的亲和力,活性显著增加。 5、苯环用生物电子等排体噻吩杂环置换,保留活性。 6、1位取代基在体内代谢去烃基,仍有活性。 三、吩噻嗪类药物的构效关系: 以氯丙嗪为先导化合物,对吩噻嗪类进行结构改造。三方面: 1、吩噻嗪环上的取代基:吩噻嗪环只有2位引入吸电子基团时可增强活性。作用强度与吸电子性能成正比,CF3>Cl>COCH3>H>OH。2位乙酰基可降低药物的毒性和副作用。 2、10位N上的取代基:母核上的10位N原子与侧链碱性氨基之间相隔3个直链碳原子时作用最强,是吩噻嗪类抗精神病药的基本结构。侧链末端的碱性基团常为叔胺,也可为氮杂环,以哌嗪取代作用最强。 3、三环的生物电子等排体。 四、μ受体选择性激动剂构效关系 1、芳环和碱性叔胺氮原子是μ受体激动剂的必要结构部分,二者通过2个或3个碳原子的碳链相连接。 2、芳环3位酚羟基的存在使活性显著增强。氮原子上以甲基取代活性好,当N-取代基增大到3~5个碳原子时,如烯丙基(纳洛酮)、环丁基甲基时,由激动剂转变为拮抗剂。 3、μ受体选择性激动剂的药效构象相同,其芳环以直立键与哌啶环相连。 五、抗胆碱药构效关系 1、6,7位有氧桥(东莨菪碱),分子极性减少,中枢作用增强。 2、6位有羟基(山莨菪碱),分子极性增强,中枢作用减弱。中枢作用强度顺序是:东莨菪碱>阿托品>山莨菪碱 3、引入季铵(丁溴东莨菪碱),不进入中枢神经 六、作用于肾上腺素受体药物构效关系 (一)肾上腺素受体激动剂的结构及构效关系

药物构效关系

构效关系 1.巴比妥酸无镇静催眠作用 当5位的两个氢被取代后才呈现活性。5位基团取代成不同的巴比妥类药物 作用强弱和快慢----药物的理化性质 作用时间长短----药物的体内代谢速度 位基团不同取代生成不同的巴比妥类药物 (1)解离常数(2)脂水分配系数。作用时间长短----药物的体内代谢 速度 胆碱酯类M受体激动剂的构效关系 2.胆碱酯类M受体激动剂 3.苯乙醇胺类拟肾上腺素药物的构效关系

4.局部麻醉药的构效关系 亲脂性部分 ?可为芳烃、芳杂环,以苯环作用较强。 ?苯环上邻对位给电子取代基如氨基、烷氧基有利于增加活性;而吸电基会使活性下降。 中间部分-决定药物稳定性 ?作用时间:-CH2CO->-CONH->-COS->-COO- ?作用强度:-COS->-COO-> -CH2CO-> -CONH- ?通常以n = 2-3碳原子为最好 ?在苯环和羰基之间插入-CH2-,-O-,破坏了共轭体系,活性下降;插入-CH=CH-,则保持活性。 亲水性部分 ?可为仲胺和叔胺,或脂环胺如吡咯烷、哌啶、吗啉等,以叔胺最为常见。 ?不可以是伯胺,不稳定而且毒性大。 5.b受体阻滞剂的构效关系

1,4-二氢吡啶环是必需结构,吡啶或六氢吡啶环则无活性,1位N不被取代为佳。2,6-位取代基应为低级烷烃。若C4有手性,立体结构有选择作用。 4位取代苯基上邻、间位有吸电子基团时活性较佳。3,5-位取代基酯基是必要结构,-COCH3,-CN活性降低,硝基则激活钙通道。 7.组胺H2受体拮抗剂的构效关系(SAR)

9.喹诺酮类抗菌药物的构效关系 (1)吡啶酮酸的A 环是抗菌作用必需的基本药效基团,变化较小。其中3位COOH和4位C=O与DAN螺旋酶和拓扑异构酶Ⅳ结合,为抗菌活性不可缺少的部分。3位的羧基被磺酸基、乙酸基、磷酸基、磺酰氨基等酸性替团替代以及4位酮羰基被硫酮基、亚氨基等取代均使抗菌活性减弱。 (2)B环可作较大改变,可以是并合的苯环(X=CH,Y=CH)、吡啶环(X=N,Y=CH)、嘧环(X=N,Y=N)等。 (3)1位N上若为脂肪烃基取代时,在甲基、乙基、乙烯基、氟乙基、正丙基、羟乙基中,以乙基或与乙基体积相似的乙烯基、氟乙基抗菌活性最好; 若为脂环烃取代时,在环丙基、环丁基、环戊基、环己基、1(或2)-甲基环丙基中,其抗菌作用最好的取代基为环丙基、而且其抗菌活性大于乙基衍生物。 1位N上可以为苯基或其它芳香基团取代,若为苯取代时,其抗菌活性与乙基相似,其中2,4-二氟苯基较佳,对革兰氏阳性菌作用较强。 (4)2位上引入取代基后,其活性减弱或消失,这可能源于2位取代基的空间位阻作用干扰喹诺酮类药物与受体的结合时,对1位和3位取代基立体构象的要求所致。 (5)5位取代基中,以氨基的抗菌作用最佳。其他基团取代时,活性减少。5位取代基的存在,从空间张力的角度可干扰4位羰基与靶位的结合,取代基体积越大这种干扰越作用越强。所以抗菌活性减弱。但从电性效应的角度考虑,向其母核共轭π键提供电子的取代基,均使4位羰基氧原子上的电荷密度有不同程度

药物化学药物功能及构效关系

1.左旋多巴:理化:白色或类白色的结晶性粉末,无臭无味;在水中微溶,在乙醇、氯仿或乙醚中不溶,在稀酸中易溶。儿茶酚结构极易被空气氧化变色。水溶液久置后,可变黄、红紫、直至黑色。高温、光、碱和重金属离子可加速变化。注射液常加入L-半胱氨酸盐酸盐作为抗氧化剂,变黄不能使用。 功能:治疗各型PD,轻症及较年轻的患者,肌肉强直及运动困难疗效较好,对重症年老体衰及肌肉震颤者疗效较差,起效慢,但是疗效持久,去随着用药时间延长而递增,对其他原因引起的帕金森综合征也有效,但对抗精神病药引起的锥体外系反应无效。 药物相互作用:维生素B6:多巴脱羧酶辅基,增加多巴脱羧酶活性,增加外周多巴胺含量,外周副作用增强,进入脑组织量减少。不良反应增加,不能合用。 抗精神病药:对抗左旋多巴作用,慎服或不用。 不良反应:胃肠道反应、心血管反应、不自主异常运动、开-关现象、精神障碍: 2、对乙酰氨基酚(扑热息痛)在热水或乙醇中易溶,在丙酮溶解,在冷水中略溶,弱酸性,在空气中稳定,水溶液的稳定性与溶液的ph有关pH 6时最稳定,半衰期可达21.8年(25°C) 在酸及碱性条件下,稳定性较差在潮湿的条件下易水解成对氨基酚,进一步发生氧化降解,生成亚胺醌,颜色逐渐变深,在贮存及制剂过程要特别注意。 检验:对氨基酚是制备过程的中间体,也是贮存过程中的水解产物。由于对氨基酚毒性较大,故药典规定应检查其含量。 检查原理:对氨基酚为芳香伯胺,与亚硝基铁氰化钠在碱性条件下生成蓝紫色配位化合物代谢:对乙酰氨基酚的体内代谢主要受YP450酶系催化。正常情况下代谢产物可与内源性的谷胱甘肽结合而解毒,但在大量或过量服用对乙酰氨基酚后,肝脏内的谷胱甘肽被耗竭,N-乙酰亚胺醌会进一步与肝蛋白的亲核基团(如-SH)结合引起肝坏死。这是过量服用对乙酰氨基酚会导致肝坏死、低血糖和昏迷的主要原因。解毒剂:各种含巯基的化合物可用于对乙酰氨基酚过量的解毒。 功能:解热镇痛,临床用于发热、头痛、神经痛。6个月以下的婴儿发烧(腋温大于38℃)时使用。6个月以上的婴儿发烧(腋温大于38℃)时使用布洛芬。婴儿不使用含有氨酚伪麻敏美字样的复方抗感冒药。 注意事项:服用时间不宜太长,剂量不宜太大,巯基化合物作为解毒剂。患有蚕豆病即遗传性葡萄糖-6-磷酸脱氢酶(G6PD)缺乏症的孩子在发烧时,不能使用对乙酰氨基酚退烧,而应使用布洛芬退烧 3、阿司匹林(乙酰水杨酸):微溶于水,溶于乙醇等,也溶于强碱或碳酸溶液,同时分解功能:具有较强的解热镇痛和抗炎,抗风湿作用,用于感冒发烧,头痛,牙痛,神经痛,肌肉痛和痛经等,是风湿及活动性风湿关节炎的首选药物。 胃穿孔;长期服用引起胃肠道出血,主要是由于Aspirin抑制了胃壁前列腺素的生物合成,致使黏膜易受损伤;?较常见的过敏性哮喘副作用也与PG的生物合成受抑制有关,这是因为前列腺素PGE对支气管平滑肌有很强的舒张作用。 16岁以下儿童慎用阿司匹林:雷耶综合征急性精神、神经症状,脑水肿及肝、肾等脏器的脂肪沉积现象,尤其是患了流行性感冒与水痘等病毒性传染病以后。元凶是病毒,但阿斯匹林起了推波助澜的作用。 4、双氯芬酸钠(双氯灭痛):略溶于水,易溶于乙醇。(2)代谢:口服吸收完全迅速,服药后1-2h血药浓度达峰值,其游离酸与血清白蛋白具有很强的结合力。排泄快,长期应用无蓄积作用。

构效关系概论

构效关系概论 (Generality of Structure - Activity Relationships) 一.单项选择题 1.以下哪个说法是不合理的 A.根据在体内的作用方式,药物可分为结构非特异性药物和结构特异性药物 B.结构非特异性药物的活性主要取决于药物分子的各种理化性质 C.结构特异性药物的活性与受体间的相互作用有关, D.结构特异性药物的活性与药物的各种理化性质有关 2.以下哪个是药物解离度与生物活性间最合理的关系 A.合适的解离度,有最大活性 B.增加解离度,离子浓度增加,活性增强 C.增加解离度,不利于吸收,活性下降 D.增加解离度,有利于吸收,活性增强 3.下述哪个说法不正确 A.阿司匹林在胃中容易被吸收 B.可待因在肠中吸收很好 C.季铵盐在胃肠道均不易吸收 D.布洛芬在肠道吸收很好 4.哪个说法不正确 A.具有相同基本结构的药物,它们的药理作用也相同 B.最合适的脂水分配系数,可使药物有最大活性 C.适度增加中枢神经系统药物的脂水分配系数,活性会有所提高 D.药物的脂水分配系数是影响药物活性的因素之一 5.两个非极性区的键合形式是 A.氢键B.离子键C.共价键D.疏水键 6.在药物分子的芳环上引入取代基使化合物的亲脂性增大的基团是 A.氨基B.羧基C.烷基D.羟基 7.可与受体的羧基有相互作用的基团是 A.苯基B.羟基C.卤素D.烷基 8.关于药物与受体相互作用的说法哪个不正确 A.结构特异性药物的活性与药物和受体的作用有关 B.药物与受体以共价键结合时,形成可逆的复合物 C.药物与受体可逆的结合方式主要是:离子键、氢键、偶极作用、范德华力、电荷转移复合物和疏水作用等。 D.药物和受体的作用方式分为可逆作用和不可逆作用 9.药物与受体结合时的构象称为 A.最低能量构象B.优势构象C.最高能量构象D.药效构象

多糖的构效关系研究

多糖的构效关系研究 摘要:多糖具备抗肿瘤、抗病毒等多种多样的生物功能,而它的功能与结构关系密切。关于多糖的构效关系研究已成为生命科学的最前沿领域之一。本文从多糖的理化性质与活性、多糖的结构与活性的角度,具体阐述多糖的构效关系,为定向合成设计糖类药物和先导化合物的改造提供参考。 关键词:多糖构效关系活性 多糖是来自于高等植物动物细胞膜以及微生物细胞壁中的天然大分子,是自然界含量最丰富的生物聚合物,由10个以上单糖通过糖苷键连接而成。有机体内多糖作为一种重要的信息分子的受体,参与了分子识别、细胞黏附以及机体防御等过程的调节。多糖作为药物,具有抗肿瘤、抗病毒、抗凝血、抗尿路结石、降血糖、免疫调节抗感染等生物活性,且毒副作用低,不良反应少,备受青睐[1,2,3]。而它的化学结构则是其生物活性的基础,多糖结构的分析是糖化学研究者一项具有挑战性的任务,源于糖结构中单糖组成、多种异构体糖元连接顺序、取代基的位置和含量及其三维结构当中任意的组成发生变化,其活性可能相应的改变[4]。 本文就近几年来多糖结构与抗肿瘤、抗病毒、抗凝血等生物活性的关系及其机制作一介绍,重点阐述多糖的抗肿瘤和抗病毒活性的构效关系,为定向合成设计糖类药物和先导化合物的改造提供参考。 1 多糖的理化性质与活性 1. 1 溶解度 多糖溶于水是其发挥生物学活性的首要条件,如从茯苓中提取的多糖组分中,不溶于水的组分不具有生物学活性,水溶性组分则具有突出的抗肿瘤活性。降低分子质量是提高多糖水溶性,从而增加其活性的重要手段,一种真菌多糖,不溶于水,在大鼠体内仅有微弱的抑瘤活性,5 mg/kg剂量时抑瘤率为57 %,降低分子质量后,完全溶于水,1 mg/kg剂量可使抑瘤率达到100 %[5]。向多糖引入分支可在一定程度上削弱分子间氢键的相互作用,从而增加其水溶性,如具有α-葡聚糖构型的灵芝多糖,不溶于水,羧甲基化后溶解性提高,在体外也表现出一定的抗肿瘤活性,经红外色谱分析,经羧甲基化后,α-葡聚糖在3400cm-1处的羟基伸缩振动峰变窄,且向高波长方向振动,说明分子间的氢键在引入羧甲基分支后被破坏[6]。有些含有疏水分支的多糖不溶于水,经过氧化还原成羟基多糖后才溶于水,从而产生生物学活性[7]。由此可见,降低分子质量、引入支链或对支链进行适当修饰,均可提高多糖溶解度,从而增强其活性。 1. 2 分子质量 多糖分子质量越大,分子体积越大,不利于多糖跨越多重细胞膜障碍进入生物体内发挥生物学活性。肝素经过降解后的低分子质量组分能克服肝素原有的出血和诱导血小板减少等不足,还具有抗血栓、活性强、生物利用率高、体内半衰期长和口服易吸收等优点;裂褶多糖起初由于分子质量太大,影响临床应用效果,经过超声降解后,分子质量有所降低,临床应用效果大为改善[8]。但也并不是多糖分子质量越低越好, 因为分子质量过低,无法形成产生活性的聚合结构, Alban等人研究了分子质量与硫酸化凝结多糖抗凝血活性的关系,认为抗凝血活性与相对分子质量呈哑铃型曲线关系[9];Gao等人报道,硫酸化凝结多糖在相对分子质量为(7~11)×103内,随着相对分子质量升高,其抗凝血活性有增强的趋势[10],这说明存在满足多糖活性的最佳相

相关主题
文本预览
相关文档 最新文档