当前位置:文档之家› 缓冲器的相关问题解释

缓冲器的相关问题解释

缓冲器的相关问题解释
缓冲器的相关问题解释

对于“TSG T7001-2009 项目3.16缓冲器[B](5)”

相关问题的技术解析

“TSG T7001-2009 项目3.16缓冲器[B](5)”要求如下:

“对重缓冲器附近应当设置永久性的明显标识,标明当轿厢位于顶层端站平层位置时,对重装置撞板与其缓冲器顶面间的最大允许垂直距离 ;并且该垂直距离不超过最大允许值;”

鉴于此要求,实际是为了防止电梯在安装监督检验时顶部空间符合规定,但由于电梯运行后的维修、改造等原因导致该空间不再符合要求的问题。

一、曳引驱动电梯井道顶部空间及制导行程的要求

依据TSG T7001-2009 3.2项的要求,曳引驱动电梯井道顶部空间的必须满足以下要求: (1) 当对重完全压在缓冲器上时,应当同时满足以下条件: ① 轿厢导轨提供不小于0.1+0.035v 2(m )的进一步制导行程;

② 轿顶可以站人的最高面积的水平面(其要求是,轿顶应有一块不小于0.12m 2的站人用的净面积,其短边不应小于0.25m 。)与位于轿厢投影部分井道顶最低部件的水平面之间的自由垂直距离不小于1.0+0.035v 2(m );

③ 井道顶的最低部件与轿顶设备的最高部件之间的间距(不包括导靴、钢丝绳附件等)不小于0.3+0.035v 2(m );

与导靴或滚轮、曳引绳附件、垂直滑动门的横梁或部件的最高部分之间的间距不小于0.1+0.035v 2(m );

④ 轿顶上方应当有一个不小于0.5m ×0.6m ×0.8m 的空间(任意平面朝下即可);

(2) 当轿厢完全压在缓冲器上时,对重导轨有不小于0.1+0.035v 2(m )的制导行程;

注:采用减行程缓冲器并对电梯驱动主机正常减速进行有效监控时0.035v 2可以用下值代替:

①电梯额定速度不大于4m/s 时,可以减少到1/2,但是不小于0.25m ;

②电梯额定速度大于4m/s 时,可以减少到1/3,但是不小于0.28m ;

设置这些要求其目的是为了保护在轿顶作业的人员的基本安全、防止轿顶设备损坏以及防止轿厢出轨。

二、井道顶部空间及制导行程测量

轿厢在顶层平层,测出导靴至轨道末端距离L 1。同时测出井道顶最低部件至:

轿顶站人部位距离L 2;轿顶最高设备(如检

修盒、反绳轮等)距离L 3;导靴或滚轮、钢丝绳附 图1 轿厢顶层平层时各尺寸 件和垂直滑动门的横梁或部件等最高点距离L 4,

见图1。对重压实缓冲器轿坎与层门坎高差L ,见图2;由此可计算出:

①制导行程H 1=L 1-L ≥0.1+0.035 v 2;

②轿顶可站人部位与井道顶最低距离H 2=L 2-L ≥1.0+0.035 v 2; ③井道顶最低部件与轿顶设备最高部件的间距H 3=L 3-L ≥0.3+0.035 v 2; 与导靴或滚轮、钢丝绳附件等最高点的间距H 4=L 4-L ≥0.1+0.035 v 2。 ④轿厢上方顶部应有大于0.5m ×0.6m ×0.8m 的空间。 由以上测量可知对于要满足顶部空间要求的电梯,当对重完全压在缓冲器上时,必须同时满足:

L ≤L 1-(0.1+0.035 v 2); L ≤L 2-(1.0+0.035 v 2

);

L ≤L 3-(0.3+0.035 v 2); L ≤L 4-(0.1+0.035 v 2

);

L ≤min{ L 1-(0.1+0.035 v 2), L 2-(1.0+0.035 v 2), L 3-(0.3+0.035 v 2), L 4-(0.1+0.035 v 2)}

上式的意义是:L 必须小于或等于L 1-(0.1+0.035 v 2), L 2-(1.0+0.035 v 2), L 3-(0.3+0.035 v 2), L 4-(0.1+0.035 v 2)四个数据中最小者。

三、对重缓冲器附近永久性的明显标识的标定

如果设对重装置的撞板与缓冲器顶面间的距离为S 1,对重缓冲器的行程为S 2, 见图2。

依据GB10060的4.5.1轿厢在两端站平层位置时,轿厢、对重装置的撞板与缓冲器顶面间距离:

耗能型缓冲器: 150≤S 1≤400mm , 蓄能型缓冲器: 200≤S 1≤350mm 。

如果设对重装置撞板与其缓冲器顶面间的最大允许垂直距离为H max ,则必须:

H max ≤min{ S 1 max ,L- S 2}

所以取H max = min{ S 1 max ,L- S 2}。

在标注对重装置撞板与其缓冲器顶面间的最大允许垂直距离为H max 时,应让轿厢在顶层平层,在对重缓冲器顶面垂直以上对应H max 处的井道壁上按规定标注永久性的明显标识,见图3。

图2撞板与缓冲器顶面间距

图3 标注永久性的明显标识

当顶部空间很大,不可能导致: ①制导行程H 1;②轿顶可站人部位与井道顶最低距离H 2;③井道顶最低部件与轿顶设备最高部件的间距H 3;与导靴或滚轮、钢丝绳附件等最高点的间距H 4;④轿厢上方顶部应有大于0.5m ×0.6m ×0.8m 的空间;不满足要求时,只需满足使

耗能型缓冲器: H max ≤400mm , 蓄能型缓冲器: H max ≤350mm 。

ADC输入级(缓冲器)问题与ESD

实例: https://www.doczj.com/doc/9a18253188.html,/Analogpassive/20070506040237.htm https://www.doczj.com/doc/9a18253188.html,/Analogpassive/200705201038441.htm https://www.doczj.com/doc/9a18253188.html,/Analogpassive/200710271212531.htm

当开关设在位置1时,采样电容器被充电至采样节点的电压(在该例中为VS),然后开关切换至位置2,此时采样电容器上累积的电荷被转移至采样电路的其它部分。这一过程不断反复。 上述不带缓冲器的开关电容器输入可引起严重的系统级问题。例如,将采样电容器充电到适当电压所需的电流必须由连接到模数转换器输入端的外部电路提供。当电容器切换到采样节点(图1中的开关位置1)时,对电容器进行充电需要大电流。这一瞬态电流的大小是采样电容器容值、电容开关频率和采样节点电压的函数。 这个开关电流由下式表示: Iin=CVf 其中,C为采样电容器的电容值,V为采样节点上的电压(本例中用VS表示),f为采样开关进行开关操作的频率。这个开关电流会在采样节点产生较高的电流尖峰(图1)。 当设计模数转换器前端的模拟电路时,必须考虑这个开关电流的影响。由于该电流可以通过任何电阻,所以将产生压降,在模数转换器的采样节点处产生电压误差。如果转换器的输入端有高阻抗传感器或高阻抗滤波器相连,那么这个误差将非常大。 例如,假设电阻器被放置在模数转换器的前端,以隔离传感器并增强静电放电(ESD)保护功能(图2)。在本例中,采样电容器的容值为10pF,开关频率为1MHz。利用上式计算可得,瞬态电流约为25?A。当这个瞬态电流通过10k?的电阻器时,采样节点上将会产生250mV 的电压误差。由于采样节点可能被安排在下一个采样周期之前,因此这是最差情况下的近似

燃油泵以及压力调节器的原理

燃油压力调节器 喷油器的喷油量取决于喷孔截面,喷油时间和喷油压差。ECU通过控制喷油嘴开启时间来控制喷油量,因此,在喷孔面积一定时还要保持一定的压差。 喷油压差是指输油管内燃油压力和进气歧管内气体压力的差值,而进气歧管内气压随转速和负荷(节气门开度)变化,要保持恒定的喷油压力必须根据进气管压力变化来调节燃油压力。不知道你有没有这个东西的图,我这里上不了图,就大概的讲一下:压力调节器的上方一般会有个开口用橡胶软管跟进气管连接,在内部这个开口的下方是个弹簧,弹簧下面是个膜片,膜片下面是个柱塞状的东西,堵住一个孔,这个孔就是连接回油软管的,工作时,膜片上方的压力为弹簧压力和进气压力之和,膜片下方为燃油压力,膜片上下压力相等时就会处在平衡位置,当进气管压力下降时,膜片上移回油阀开度上升,会油量上升,这样油轨中的油压就下降到原来水平。反之,气压上升时,膜片下移,回油阀开度变小,回油量变小油压就会上升到原来水平,这样油压就会控制到制造时要求的大小,也就是膜片位于平衡位置的弹力 燃油压力调节器的功用是调节至喷油器的燃油压力,使油路中的燃油压力与进气管压力之差保持常数,这样从喷油器喷出的燃油量便唯一地取决于喷油器的开启时间,使电控单元能够通过控制电脉冲宽度来精确控制喷油量。 油压调节器的构造如图5.19 所示。膜片4 将油压调节器分隔成上下两个腔。上腔有进油口1 连接燃油分配管,回油口2 与汽油箱连通。下腔通过真空接管6 与节气门后的进气管相连。当燃油压力与进气管压力之差超过预调的压力值时,膜片上方的燃油就推动膜片向下压缩弹簧,打开回油阀,超压的燃油流回燃油箱,以保持一定的燃油压力。燃油供给系统的压力与进气管压力之差由油压调节器中的弹簧5 的弹力限定,调节弹簧预紧力即可改变两者的压力差,也就是改变喷油压力。燃油压力调节器装在燃油分配管的一端,可使燃油压力调节在正常范围内(图5.20)。

708C 故障说明.

1、E1: Security circuit opened 解释:安全回路断开 原因:变压器TC2保险丝熔断 安全回路有开关路动作 安全窗、盘车手轮、底坑、轿顶、机房、曳引机急停开关动作解决办法:更换保险丝 检查限速器、上/下极限、断绳、缓冲器、安全钳开关 检查安全窗、盘车手轮、底坑、轿顶、机房、曳引机急停动作故障显示及恢复方法:楼层显示器可显示,微机记录故障,安全回路恢复正常即可复位故障。 2、E2:Door Lock Opened Or Error 解释:门锁故障 原因:关门时厅/ 轿门锁不通,超时关门 运行时厅/ 轿门锁断开,电梯急停 主控器检测点故障 解决办法:检查门机 检查轿顶板PM709输入输出信号动作是否准确 主控器I3.1 , I3.2 输入信号是否正确 检查厅/轿门联锁及线路 故障显示及恢复方法:楼层显示器可显示,微机记录故障,门锁信号恢复正常即可复位故障。出现此故障后可能伴有E14出现,电梯到端 站重新校正后恢复运行。 3、E3: Can’t Find the Leveling Point 解释:电梯减速后超过10秒检测不到门区信号 原因:门区开关损坏 平层板插入深度少 解决办法:更换门区开关

平层板至少插入开关2/3 故障显示及恢复方法:楼层显示器显示,微机记录故障,检修复位。 4、E4: Can’t Find the Deceleration Point 解释:检测不到减速点 原因:换速(双稳态)开关故障 换速磁铁位置错误 变频器分频卡输出脉冲错误或有干扰 参数time/floor protect错误 解决办法:检查换速(双稳态)开关,并更换 1mm 调整磁铁位置,磁铁距离开关水平距离6+ - 通过主控器显示界面观察脉冲信号变化是否正常 检测变频器分频模块 调整加大time/floor protect参数(默认13S)故障显示及恢复方法:楼层显示器可显示,微机记录故障,出现此故障后可能伴有E14出现,电梯到端站重新校正后恢复运行。 5、E5:Up Limited Switch Opened 解释:上限位断开,上行急停,下行可以,上行不能再起动 原因:电梯碰到上限位 解决办法:将电梯“TEST”向下运行 故障显示及恢复方法:楼层显示器可显示,微机记录故障 6、E6:Down Limited Switch Opened 解释:下限位断开,下行急停,上行可以,下行不能再起动原因:电梯碰到下限位 解决办法:将电梯“紧急电动”向上运行 故障显示及恢复方法:楼层显示器可显示,微机记录故障 7、E7:Deceleration Switch Error

缓冲区相关知识介绍

缓冲区相关知识介绍 这里所说的缓冲区指的是为标准输入与标准输出设置的缓冲区,为什么要设置一个标准输入缓冲区主要是从效率上来考虑的,如果不设缓冲区会降低cpu的效率,因为它总是会等待用户输入完之后才会去执行某些指令!同样设置一个标准输出缓冲区是为了解决打印的问题!总之这样做的目的就是为了效率! 接下来讲解一下怎么设置标准输入与标准输出缓冲区。 如果我们不认为的设置的话,系统会自动的为标准输入与标准输入设置一个缓冲区,这个缓冲区的大小通常是4Kb的大小,这和计算机中的分页机制有关,因为进程在计算机中分配内存使用的就是分页与分段的机制,并且每个页的大小是4Kb,因此通常情况下缓冲区的大小会设置为4Kb的大小!并且这个缓冲区的类型是一个全缓冲的缓冲区!所谓全缓冲指的是:当缓冲区里的数据写满的时候(或者可以说达到顶端)缓冲区中的数据才会“写”到标准输入磁盘文件中,这里说的写不是将缓冲区中的数据移动到磁盘文件中,而是拷贝到磁盘文件中,也就说此时磁盘文件中保留了一份缓冲区内容的备份!除了全缓冲外还有不缓冲和行缓冲,不缓冲不太常见与常用,在这里我就不做讲解了!下面讲解一下什么是行缓冲。行缓冲指的是当在键盘上敲下回车键的时候数据会存储在缓冲区中,这是毫无疑问的,同时也将缓冲区的数据拷贝一份到磁盘文件中!那么磁盘文件中备份的内容有什么用呢??本人能力有限目前还没有发现有什么用! 当热我们还可以自己设置缓冲区,缓冲区的大小可以由我们自己决定,缓冲区的类型也由我们自己决定!在这里有两个函数,一个是setbuf( FILE *stream , char *buffer ) 另一个是setvbuf( FILE *stream , char *buffer , int mode , unsigned int size ) ;其中缓冲区的类型可以是:_IOFBF :全缓冲_IOLBF :行缓冲_IONBF :不缓冲 下面讲解一下缓冲区是怎么工作的!

减压阀的工作原理

减压阀是气动调节阀的一个必备配件,主要作用是将气源的压力减压并稳定到一个定值,以便于调节阀能够获得稳定的气源动力用于调节控制。 1.调节手柄; 2.调压弹簧; 3.溢流阀; 4.膜片; 5.阀杆; 6.反馈导管; 7.进气阀门; 8.复位弹簧 上图所示为一种常用的直动式减压阀结构。 压力为P1的压缩空气,由左端输入经进气阀门节流后,压力降为P2输出。P2的大小可由调压弹簧2进行调节。若顺时针旋转调节手柄,调压弹簧被压缩,推动膜片和阀杆下移,进气阀门打开,在输出口有气压输出。同时,输出气压经反馈导管作用在膜片上产生向上的推力。该推力与调压弹簧作用力相平衡时,阀便有稳定的压力输出。 若输出压力超过调定值,则膜片离开平衡位置而向上变形,使得溢流阀打开,多余的空气经溢流口排入大气。当输出压力降至调定值时,溢流阀关闭,膜片上的受力保持平衡状态。若逆时针放置手柄,调压弹簧放松,作用在膜片上的气压力大于弹簧力,溢流阀打开,输出压力降低直到为零。台湾DPC气动提醒您,反馈导管的作用是提高减压阀的稳压精度。另外,能改善减压阀的动

态性能,当负载突然改变或变化不定时,反馈导管起着阻尼作用,避免振荡现象发生。 若输入压力瞬时升高,输出将随之升高,使膜片气室内压力升高,在膜片上产生的推力相应增大,此推力破坏了原来力的平衡,使膜片向上移动,有少部分气流经溢流孔、排气孔排出。在膜片上移的同时,因复位弹簧的作用,使阀芯也向上移动,关小进气阀口,节流作用加大,使输出压力下降,直至达到新的平衡为止,输出压力基本又回到原来值。 若输入压力瞬时下降,输出压力也下降、膜片下移,阀芯随之下移,进气阀口开大,节流作用减小,使输出压力也基本回到原来值。逆时针旋转旋钮。使调节弹簧放松,气体作用在膜片上的推力大于调压弹簧的作用力,膜片向上曲,靠复位弹簧的作用关闭进气阀口。再旋转旋钮,进气阀芯的顶端与溢流阀座将脱开,膜片气室中的压缩空气便经溢流孔、排气孔排出,使阀处于无输出状态。 二、减压阀的基本性能 (1)?调压范围:它是指减压阀输出压力P2的可调范围,在此范围内要求达到规定的精度。调压范围主要与调压弹簧的刚度有关。 (2)?压力特性:它是指流量g为定值时,因输入压力波动而引起输出压力波动的特性。输出压力波动越小,减压阀的特性越好。

减震缓冲技术

减震缓冲技术发展综述 姓名:尚兴超 学号:511011503 指导老师:梁医 一.概述 机械振动、冲击问题广泛存在于工程机械[1]、汽车机械、建筑机械、船舶机械、航空航天、武器领域[2]等,减振器和缓冲器主要是用于减小或削弱振动或冲击对设备与人员影响的一个部件。它起到衰减和吸收振动的作用。使得某些设备及人员免受不良振动的影响,起到保护设备及人员正常工作与安全的作用,因此它广泛应用于各种机床、汽车、摩托车、火车、轮船、飞机及坦克等装备上。 振动问题的基本方程为: ()e sin n t d x A t ζωωφ-=+ 从方程中可以看出,系统振动幅值的衰减与阻尼系数大小ζ有关[3],也就是说,震动产生的能量将会被阻尼所吸收。减震器和缓冲器就是基于此原理而设计的。 二.发展历史 世界上第一个有记载、比较简单的减震器是1897年由两个姓吉明的人发明的。他们把橡胶块与叶片弹簧的端部相连,当悬架被完全压缩时,橡胶减震块就碰到连接在汽车大梁上的一个螺栓, 产生止动。1898年,第一个实用的减震器 由一个法国人特鲁芬特研制成功并被安装到摩托赛车上。他将前叉悬置于弹簧上,同时与一个摩擦阻尼件相连,以防止摩托车的振颤。1899年,美国汽车爱好者爱德华特·哈德福特将前者应用于汽车上。后来,又经历了加布里埃尔减震器、平衡弹簧式减震器和1909年发明的空气弹簧减震器。空气弹簧减震器类似于充气轮胎的工作原理,它的主要缺点是常常产生漏气。 1908年法国人霍迪立设计了第一个实用的液压减震器。其原理是液流通过小孔时产生的阻尼现象。20世纪60年代,通用公司麦迪逊工程师研制了把螺旋弹簧、液压减震器和上悬架臂杆组成的麦迪逊减震器,其体积比较小,得到了广泛的应用[4]。 三.研究现状 液压缓冲器是目前应用最为广泛的减震缓冲装置,其结构简单,运行平稳。

ADC常见问题解答

#1楼主:工业应用Sigma-Delta ADC常见问题解答 贴子发表于:2008/12/25 13:14:35 问题:峰峰值噪声与有效噪声的区别,峰峰值分辨率与有效分辨率的区别?无失码分辨率又是指的什么? 答案:无失码分辨率是对ADC线性性能的评价指标。峰峰值分辨率和有效值分辨率是评价ADC噪声性能的重要指标。它们之间的关系是 峰峰值分辨率=有效分辨率-2.7 bits 这个关系的理论基础是,噪声通常是随机的,并且它的分布是正态分布。那么 Vnoise (peak-to-peak) = Vnoise (rms) x 6.6;99.9%的出现概率 如果转换为分辨率,就是2.7位的差别。(log26.6=2.7) 如果对应于ADC的转换结果,峰峰值分辨率是没有跳码的位数,也就是保持稳定的位数。我们以AD7799为例,在数据手册中都会有两个表格,如下所示: 第一个表格是在不同的增益和数据输出速率的条件下有效噪声的值。第二个表格是在不同的增益和数据输出速率的条件下的有效分辨率和峰峰值分辨率。例如,在16.7Hz数据输出速率,64倍增益条件下,有效噪声是0.065uV,对应的有效分辨率为20位,峰峰值分辨率为17.5位。 要了解具体的原理和推导,请参见ADI网站上的应用笔记AN-615“Peak to Peak Resolution vs. Effective Resolution” 问题:为什么转换结果的后几位总在跳,是不是正常?

答案:判断是不是正常要先了解造成这种情况的原因。如果排除掉输入信号的原因,ADC 转换结果的不稳定是由于噪声引起的。在ADC的数据手册中对ADC在不同配置的情况下 的噪声有详细的数据表格。所以对于用户ADC的转换结果的分析,要进行与数据手册相同测试条件的测试,然后与表格中数据进行比较。 数据手册中的噪声性能表格中的数据结果的测试条件是:使用高精度低噪声的参考电压源,短路ADC的差分输入端并接到正确的共模电平上,然后设置ADC的增益、滤波器系数,C HOP模式,BUFFER状态等等,然后采集足够多的转换结果,一般至少要几百个样本,做 噪声分析。ADC的噪声是呈正态分布,所以通过软件可以计算出这些样本的均值和标准偏差,标准偏差乘以6.6就得到峰峰值的噪声,然后通过满量程值与峰峰值噪声的比就能够计算出成峰峰值分辨率。这个分辨率与数据手册中表格中相同配置情况下的峰峰值分辨率比较就可以知道ADC的性能是不是正常了。 通常比较简单的检验方法可以采一组足够多的数据,找出最大值和最小值相减,这是ADC 转换结果中跳动的码值,然后转换为位数,就可以大概得到峰峰值分辨率,也就是无跳动的分辨率,与数据手册中相比就可以了。如果测试结果与数据手册的指标相近,那么就正常,如果相差很远,就要仔细检查电路和PCB设计了。 问题:在使用多通道SIGMA-DELTA ADC时,通道切换的速度很慢? 答案:数据手册上所示的数据输出速率指的是在对同一通道进行连续采样时的输出数据速率。一旦进行了通道切换,ADC内部的sigma-delta的调制器以及数字滤波器要有一定的建立时间。大多数ADC内部的数据滤波器是sinc3滤波器,所以通道切换后会需要3个数据输出 的时间才能建立起来。对于ADC在通道转换后,DRDY信号会在滤波器完全建立起来以后才会有效,所以用户没有必要把前三次的转换结果丢掉。 但是对于AD7732/4/8/9系列产品,它们的设计是经过特别设计处理的,所以它的通道切换 速度以及转换速度非常快,适用于多通道快速切换采样的应用。 要了解更详细的内容,请参见ADI网站上的应用笔记AN-665“Channel Switching Using Δ-ΣADCs”。 问题:什么情况下要使用内部的BUFFER? 答案:Sigma-Delta ADC的前端是开关电容结构的。这种结构在稳定状态下具有比较大的输入阻抗,但是当它工作在开和关切换的情况下,会需要一定的充电电流。这个电流的大小与采样频率,输入信号的差分电压和输入电容的大小有关。如果不用内部的buffer,那么这个动态的负载会对外部的电阻和电容的大小有限制。如果外部的电阻电容值太大的话,在AD C采样阶段,输入信号就不能对ADC的输入电容进行足够的充电,因此会造成ADC的增 益误差。对于在不使用内部buffer的情况下所能允许的最大外部电阻电容值以及它带来的误差,都会在数据手册中有说明。如果你的前端的输出阻抗及电容较大,请使用内部Buffer.

冷凝压力调节阀的工作原理

冷凝压力调节阀的工作原理 冷凝压力调节阀用于调理介质的流量、压力和液位。依据调理部位旌旗灯号,主动节制阀门的开度,然后到达介质流量、压力和液位的调理。冷凝压力调节阀分电动冷凝压力调节阀、气动冷凝压力调节阀和液动冷凝压力调节阀等。 冷凝压力调节阀由电动执行机构或气动执行机构和冷凝压力调 节阀两局部构成。冷凝压力调节阀凡间分为纵贯单座式冷凝压力调节阀和纵贯双座式冷凝压力调节阀两种,后者具有流畅才能大、不服衡办小和操作不变的特点,所以凡间特殊合用于大流量、高压降和走漏少的场所。 流畅才能Cv是选择冷凝压力调节阀的首要参数之一,冷凝压力调节阀的流畅才能的界说为:当冷凝压力调节阀全开时,阀两头压差为0.1MPa,流体密度为1g/cm3时,每小时流径冷凝压力调节阀的流量数,称为流畅才能,也称流量系数,以Cv透露表现,单元为t/h,液体的Cv值按下式核算。 依据流畅才能Cv值巨细查表,就可以确定冷凝压力调节阀的公

称通径DN。 冷凝压力调节阀的流量特征,是在阀两头压差坚持恒定的前提下,介质流经冷凝压力调节阀的相对流量与它的开度之间关系。冷凝压力调节阀的流量特征有线性特征,等百分比特征及抛物线特征三种。三种注量特征的意义如下: (1)等百分比特征(对数)等百分比特征的相对行程和相对流量不成直线关系,在行程的每一点上单元行程转变所惹起的流量的转变与此点的流量成正比,流质变化的百分比是相等的。所以它的长处是流量小时,流质变化小,流量大时,则流质变化大,也就是在分歧开度上,具有一样的调理精度。 (2)线性特征(线性)线性特征的相对行程和相对流量成直线关系。单元行程的转变所惹起的流质变化是不变的。流量大时,流量相对值转变小,流量小时,则流量相对值转变大。 (3)抛物线特征流量按行程的二方成比例转变,大体具有线性和等百分比特征的中心特征。 从上述三种特征的剖析可以看出,就其调理功能上讲,以等百分比特征为最优,其调理不变,调理功能好。而抛物线特征又比线性特征的调理功能好,可依据运用场所的要求分歧,遴选个中任何一种流

电压关断型缓冲器(RCD Snubber)的基本类型及其工作原理

本文较深入地讨论了两种常用模式的RCD Snubber电路:抑制电压上升率模式与电压钳位模式,详细分析了其各自的工作原理,给出了相应的计算公式,最后通过实验提出了电路的优化设计方法。 RCD Snubber电路的基本类型及其工作原理 RCD Snubber是一种能耗式电压关断型缓冲器,分为抑制电压上升率模式和电压钳位模式两种类型,习惯上前者称为RCD Snubber电路,而后者则称为RCD Clamp电路。 为了分析方便,以下的分析或举例均针对反激电路拓扑,开关器件为功率MOSFET。 图1 常用的RCD Snubber电路 抑制电压上升率模式 对于功率MOSFET来讲,其电流下降的速度较GTR或IGBT快得多,其关断损耗的数值要比GTR或IGBT小,但是这个损耗对整个小功率的电源系统也是不容忽视的。因此提出了抑制电压上升率的RCD Snubber。 如图1所示,在开关管关断瞬间,反激变压器的漏感电流需要按原初始方向继续流动,该电流将分成两路:一路在逐渐关断的开关管继续流动;另一路通过Snubber电路的二极管Ds向电容Cs充电。由于Cs上的电压不能突变,因而降低了开关管关断电压上升的速率,并把开关管的关断功率损耗转移到了Snubber电路。如果Cs足够大,开关管电压的上升及其电流的下降所形成的交叉区域将会进一步降低,可以进一步降低开关管的关断损耗。但是Cs的取值也不能过大,因为在每一个关断期间的起始点(也就是开通期间的结束点),Cs必须放尽电荷以对电压上升率进行有效的抑制;而在关断期间的结束点,Cs虽然能降低开关管电压的上升时间,但其端电压最终会达到()(为忽略漏感时的电压尖峰,为次级对初级的反射电压)。 关管导通的瞬间,Cs将通过电阻Rs与M所形成的回路来放电。Snubber的放电电流将流过开关管,会产生电流突波,并且如果某个时刻占空比变窄,电容将不能放尽电荷而不能达到降低关断损耗的目的。 可见,Snubber电路仅在开关过渡瞬间工作,降低了开关管的损耗,提高了电路的可靠性,电压上升率的减慢也降低了高频电磁干扰。 电压钳位模式 RCD Clamp不同于Snubber模式,其目的是限制开关管关断瞬间其两端的最大尖峰电压,而开关管本身的损耗基本不变。在工作原理上电压钳位模式RC的放电时间常数比抑制电压上升率模式更长。 以图2为例分析电路的工作过程,并且使用工作于反激式变换器的变压器模型。反激式变压器主要由理想变压器、激磁电感与漏感组成。

旋变数字转换器常见问题解答

旋变数字转换器常见问题解答 编写人CAST (HM) 版本号V1.0_Draft ------------------------------------------------------------------------------------------------------------ 本报告为Analog Devices Inc. (ADI) 中国技术支持中心专用,ADI可以随时修改本报告而不用通知任何使用本报告的人员。 如有任何问题请与china.support@https://www.doczj.com/doc/9a18253188.html,联系。 ------------------------------------------------------------------------------------------------------------

目录 1 ADI公司旋变数字转换器产品概述 (2) 2 RDC原理和主要参数指标 (4) 2.1 旋转变压器 (4) 2.2 RDC的原理 (6) 2.3 RDC的绝对位置和速度输出 (7) 3 应用中的常见问题 (8) 3.1 RDC接口的相关问题 (8) 3.1.1 AD2S12xx系列集成励磁信号的RDC,如何提高励磁驱动能力 (8) 3.1.2 对于旋变的输出,也就是RDC的正余弦输入信号,应如何保护以确保系统精度 (9) 3.2 RDC性能相关的问题 (10) 3.2.1 AD2S12xx系列的串行时钟频率最高为多少 (10) 3.2.2 外部时钟是如何影响跟踪速率的 (10) 3.2.3 AD2S8x系列RDC的数字端口的逻辑电平是多少 (10) 3.2.4 RDC产品的一些相关指标参数的来源 (10) 3.3 RDC调试和应用中的相关问题 (11) 3.3.1 RDC上电和控制时序方面有哪些注意点 (11) 3.3.2 ADI的RDC是否适用于较低转速的应用 (12) 3.3.3 如果手头没有旋变或电机,我们能不能测试或验证RDC的功能 (12) 3.3.4 测量时如何降低外部噪声干扰 (12) 3.3.5 使用RDC中的故障检测指示需要注意的问题 (12) 3.3.6 如果旋变不是单极的,应如何应用RDC实现正确转换 (13) 3.3.7 能否实现两片RDC同步输出励磁信号 (13) 3.3.8 多旋变系统中,用多路器切换旋变需要注意些什么 (13) 3.3.9 如果系统中已有参考激励,则应该用什么型号的RDC,AD2S12xx系列是否合适... (13) 3.3.10 ADI有没有完整的伺服电机控制系统的解决方案 (14) 3.3.11 如果是高电压激励信号(如100V),有什么解决方案 (14) 3.3.12 AD2S8x系列RDC输出时的控制信号INHIBIT、ENABLE和BYTE SELECT应如 何使用 (14)

时钟缓冲器基础知识---文本资料

时钟缓冲器基础知识 时钟是所有电子产品的基本构建块今天。用于在同步数字系统中的每个数据过渡,有一个时钟,用于控制的寄存器中。大多数系统使用晶体,频率时序发生器(FTGS ),或廉价的陶瓷谐振器来产生精确的时钟同步的系统。此外,时钟缓冲器被用来创建多个副本,乘,除时钟频率,甚至移动时钟边沿向前或向后的时间。许多时钟缓冲解决方案已经创造了超过过去几年,以解决当今高速逻辑系统所需的许多挑战。其中一些挑战包括:高工作频率和输出频率,传播延迟从输入到输出,输出到输出歪斜引脚之间,周期tocycle和长期抖动,扩频,输出驱动强度,I / O电压标准和冗余。因为钟表是最快的信号系统,通常最重的负载下,特别考虑必须在创建时钟树时发出。在这一章中,我们列出了非PLL和基于PLL的缓冲区的基本功能,并显示这些设备如何被用来解决高速逻辑设计挑战。 在当今的典型的同步设计中,通常需要多个时钟信号,以驱动各种组件。创建副本的所需数目的时钟树的构建。树开始于一个时钟源,例如振荡器或外部信号并驱动一个或多个缓冲器。缓冲器的数量通常是依赖于目标设备的数目和位置。 在过去几年里,通用逻辑组件被用来作为时钟缓冲器。这些是足够的时间,但他们做一点维持时钟的信号完整性。事实上,它们实际上是一个不利的电路。随着时钟树中的速度和时序容限降低增加,传播延迟和输出歪斜变得越来越重要。在接下来的几节中,我们讨论了旧设备,为什么他们却不足以应付当今的设计需求。与现代缓冲区相关的常见术语的定义如下。最后,我们解决了现代时钟缓冲器的属性具有和不具有PLL。经常被用作时钟源的FTG是一种特殊类型的PLL时钟缓冲器。 ◆早期的缓冲器 一种时钟缓冲器是一种装置,其输出波形随输入波形。输入信号传播通过该设备并重新驱动输出缓冲器。因此,这种装置具有与它们相关联的传播延迟。此外,由于通过每个输入输出路径上的设备的传播延迟之间的差异,将歪斜的输出之间存在。一类非PLL时钟缓冲器的一个例子是74F244 ,可从几个制造商。这些设备已经面世多年,是适用于设计中的频率分别为20MHz以下。设计师时钟和风扇出来,只会令到在电路卡上的多个同步设备。有了这些缓慢的频率和相关的上升时间,设计师们适当的利润,用以满足建立和保持时间的同步接口。然而,这些缓冲区是不是最佳的为今天的高速时钟要求。该74F244患有长传播延迟(3 ?5 ns)和长输出到输出偏斜延迟。基于非PLL时钟缓冲器在最近几年有所改善,并使用更先进的I / O设计技术来提高输出至输出偏斜。随着时钟周期越短,在时钟分配系统的不确定性或歪斜变得更加的一个因素。由于时钟用于驱动处理器和同步系统部件之间的数据传输,时钟分配系统是系统设计的一个重要组成部分。时钟分配系统的设计,不采取歪斜考虑可能会导致系统性能下降和可靠性。 ◆时钟偏差 歪斜是在指定发生在同一时间的两个信号的到达时间的变化。歪斜是由驱动装置和变异引起的电路板走线布局变化的电路板延时器的输出歪斜。由于时钟信号驱动系统的许多部件,并且因为所有这些组件应该正好在同一时间,以进行同步接收的时钟信号,在时钟信号的其目的地的到达的任何变化将直接影响系统的性能。歪斜通过改变时钟边沿的到来将直接影响系统的利润。因为在同步系统中的元素所需要的时钟信号,以在同一时间到达时,时钟偏差减小其内的信息,可以通过从一个装置到下一个循环时间。 随着系统速度的提高,时钟偏差的总周期时间的比例越来越大。当循环次数分别为50纳秒,时钟歪斜很少是设计重点。即使是歪斜的周期时间20 %,它不会引起任何问题。作为循环次数下降到15ns少,时钟偏差,需要不断增加的设计资源的量。现在,通常情况下,这些高速系统中只能有10 %专门用于时钟偏移的时序预算的,所以很明显,它必须减少。 有两种类型的时钟偏差的影响系统性能。时钟驱动器会导致固有偏差和所述印刷电路板

自立式调节阀工作原理

工作原理 1、自力式压力调节阀工作原理(阀后压力控制)(如图1) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。P2经过控制管线输入到执行器的下膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀后压力。当阀后压力P2增加时,P2作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯关向阀座的位置,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减少,流阻变大,从而使P2降为设定值。同理,当阀后压力P2降低时,作用方向与上述相反,这就是自力式(阀后)压力调节阀的工作原理。 2、自力式压力调节阀工作原理(阀前压力控制)(如图2) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。同时P1经过控制管线输入到执行器的上膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀前压力。当阀后压力P1增加时,P1作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯向离开阀座的方向移动,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减大,流阻变小,从而使P1降为设定值。同理,当阀后压力P1降低时,作用方向与上述相反,这就是自力式(阀前)压力调节阀的工作原理。

3、自力式温度调节阀工作原理(加热型)(如图3) 温度调节阀是根据液体的不可压缩和热胀冷缩原理进行工作的。 加热用自力式温度调节阀,当被控对象温度低于设定温度时,温包内液体收缩,作用在执行器推杆上的力减小,阀芯部件在弹簧力的作用下使阀门打开,增加蒸汽和热油等加热介质的流量,使被控对象温度上升,直到被控对象温度到了设定值时,阀关闭,阀关闭后,被控对象温度下降,阀又打开,加热介质又进入热交换器,又使温度上升,这样使被控对象温度为恒定值。阀开度大小与被控对象实际温度和设定温度的差值有关。 4、自力式温度调节阀工作原理(冷却型)(如图4) 冷却用自力式温度调节阀工作原理可参照加热用自力式温度调节阀,只是当阀芯部件在执行器与弹簧力作用下打开和关闭与温关阀相反,阀体内通过冷介质,主要应用于冷却装置中的温度控制。

计算机系统结构试题2

一、选择题 1、对汇编语言程序员,下列(A )不是透明的。 A: 中断字寄存器 B: 乘法器 C: 移位器 D: 指令缓冲器 2、假设对A机器指令系统的每条指令的解释执行可直接由B机器的一段微程序解释执行,则A称为(D )。 A: 仿真机 B: 宿主机 C: 虚拟机 D: 目标机 3、 1. 查看下面三条指令:V3←A;V2←V0+V1;V4←V2*V3;假设向量长度小于64,且前后其他的指令均没有相关性,数据进入和流出每个功能部件,包括访问存储器都需要一拍的时间,假设向量的长度为N。三条指令全部采用串行的方法,那么执行的时间是: A: 3N+20 B: 3N+21 C: 3N+22 D: 3N+23 4、某向量处理机有16个向量寄存器,其中V0-V5种分别存放有向量A,B,C,D,E,F,向量的长度是8,向量各元素均为浮点数;处理部件采用两个单功能流水线,加法功能部件时间为2拍,乘法功能部件时间为3拍。采用类似CRAY-1的链接技术,先计算(A+B)*C,在流水线不停的情况下,接着计算(D+E)*F。求此链接流水线的通过时间是多少拍?(设寄存器出入各需1拍) A: 8 B: 9 C: 17 D: 18 5、设有一个4个处理器的MIMD系统,假设在系统中访存取指和取数的时间可以忽略不计;加法与乘法分别需要2拍和4拍;在MIMD 系统中处理器(机)之间每进行一次数据传送的时间为1拍;在MIMD 系统中,每个PE都可以和其它PE有直接的的通路。 求利用此系统计算表 达式所需的 节拍数。 A: 23 B: 12 C: 11 D: 10 6、以下哪些是周期窃取方式的特点? A : 硬件结构简单 B : 硬件结构复杂 C : 数据输入或输出过程中占用了CPU时间 D : 数据输入或输出过程中不占用CPU时间 7、从下列有关Cache的描述中,选出应填入空格中的正确答案:(1)今有甲、乙两台计算机,甲计算机的Cache存取时间为50ns,主存储器为2us;乙计算机的Cache存储时间为100ns,主存储器为1.2us。设Cache的命中率均为95%,则甲计算机的平均存取时间为__A_ns;乙计算机的平均存取时间为__B_ns。 (2)在Cache中,经常采用直接映象或组相联映象两种方式,在Cache 容量相等的情况下,前者比后者的命中率__C__。 选项 A : 147.5 153.5 155 180 选项 B : 147.5 153.5 155 180 选项 C : 高低相等 8、有研究人员指出,如果在采用通用寄存器指令集结构的计算机里加入寄存器—存储器寻址方式可能提高计算机效率,做法就是用指令ADD R2,0(Rb)代替指令序列LOAD R1,0(Rb) ADD R2,R2,R1假定使用新的指令能使时钟周期增加10%,并且假定只对时钟产生影响,而不影响CPI那么采用新指令,要达到与原来同样的性能需要去掉的LOAD操作所占的百分比?(提示:去掉的是与ADD指令连用的LOAD 指令,假定未采用新指令前LOAD指令占总指令的22.8%)A: 39% B: 36% C: 40% D: 39.8% 9、下述的几个需要解决的问题中,那个是向量处理机所最需要关心 的? A: 计算机指令的优化技术 B: 设计满足运算器带宽要求的存储器 C: 如何提高存储器的利用率,增加存储器系统的容量 D: 纵横处理方式的划分问题 10、一台单处理机可以以标量方式运行,也可以以向量方式运行。 在向量方式情况下,计算可比标量方式快18倍。设某基准程序在此 计算机上运行的时间是T。另外,已知T的25%用于向量方式,其余 机器时间则以标量方式运行。那么在上述条件下与完全不用向量方式 的条件下相比的加速比是: A: 3 B: 3.43 C: 3.33 D: 以上均不正确 11、给定1个采用完全混洗互连网络,并有256个PE的SIMD机器, 加入执行混洗互连函数10次,则原来在PE123中的数据将被送往何 处? A: PE237 B: PE222 C: PE111 D: PE175 12、设计一种采用加、乘和数据寻径操作的算法,计算表达 式 。假设加法和乘法分别需要2个和4个单位 时间,从存储器取指令、取数据、译码的时间忽略不计,所有的指令 和数据已经装入有关的PE。现有一台串行计算机,有一个加法器,一 个乘法器,问最短多少单位时间计算出s? A: 192ns B: 130ns C: 128ns D: 以上结果都不对 13、下列功能,那些一般由硬件实现? A : 第一次关CPU中断 B : 返回中断点 C : 第一次开CPU中断 D : 保存中断点 14、星形网络的网络直径和链路数分别为()和()。 选项 1 : N-1 N/2 2 N(N-1)/2 选项 2 : N-1 N/2 2 N(N-1)/2 16、在计算机系统结构来看,机器语言程序员看到的机器属性是(D)。 A)计算机软件所要完成的功能B)计算机硬件的全部组成 C)编程要用到的硬件知识D)计算机各部件的硬件实 现 17、在提高CPU性能的问题上,从系统结构角度,可以(D)。 A)提高时钟频率B)减少 程序指令条数 C)减少每条指令的时钟周期数D)减少程序指 令条数和减少每条指令的时钟周期数 18、计算机系统结构不包括(C)。 A)主存速度B)机器工作状态C)信息保护 D)数据表示 19、推出系列机的新机器,不能更改的是(A)。 A)原有指令的寻址方式和操作码B)系统 的总线的组成 C)数据通路宽度 D)存储芯片的集成度 20、在系统结构设计中,提高软件功能实现的比例会(C)。 A)提高解题速度 B)减少需要的存储容量 C)提高系统的灵活性 D) 提高系统的性能价格比 21、重叠寄存器技术主要用于解决在RISC系统中因( C )而导致 的问题。 A)JMP指令影响流水线B)CALL 指令的现场保护 C)只有LOAD和STORE指令带来的访问存储器不便D)存储 器访问速度 22、不属于堆栈型替换算法的是(C)。 A)近期最少使用法B)近期最久未用法 C)先进先 出法D)页面失效频率法 23、与全相联映象相比,组相联映象的优点是(B)。 A)目录表小B)块冲突概率低C)命中率高 D)主存利用率高 24、最能确保提高虚拟存储器访主存的命中率的改进途径是(D)。 A)增大辅存容量 B)采用FIFO替换算法并增大页面 C)改用LRU替换算法并增大页面D)改用LRU替换 算法并增大页面数 25、"一次重叠"中消除"指令相关"最好的方法是( A )。 A)不准修改指令B)设相关专用通路C)推后分析下条指令 D)推后执行下条指令 26、在流水机器中,全局性相关是指(D)。 A)先写后读相关B)先读后写相关C)指令相关 D)由转移指令引起的相关 27、下列说法不正确的是(D)。 A)线性流水线是单功能流水线B)动态 流水线是多功能流水线 C)静态流水线是多功能流水线D)动态 流水线只能是单功能流水线 28、16个处理器编号为0、1、…、15,采用单级Cube 3 互连网络互连, 与13号处理器相连的处理器号是()。 A)2 B)3 C)4 D)5 29、经多级网络串联来实现全排列网络,只能用(C)。 A)多级立方体网络B)多级PM2I网络C)多级混洗交 换网络D)上述任何网络 30、经3级立方体网络对0-7八个端子(0 1 2 3 4 5 6 7)排列, 进行模8移4变换,得到的这八个端子新的排列应当是()。 A)(2 3 4 5 6 7 0 1)B)(4 5 6 7 0 1 2 3) C)(1 2 3 0 5 6 7 4)D)(1 0 3 2 5 4 7 6) 31、虫蚀寻径以流水方式在各寻径器是顺序传送的是(C)。 A)消息B)包C)片 D)字节 32、能实现指令、程序、任务级并行的计算机系统属于(D)。

气动调节阀的结构和工作原理

气动调节阀的结构和工作原理

气动调节阀常见于钢铁行业,尤其广泛应用于加热炉、卷取炉等燃烧控制系统。本文根据气动调节阀的结构和工作原理对在气动调节阀在日 常使用的常规维护和常见故障进行了分析研究,为设备维护和故障维修提供了参考。 本文以美国博雷(BARY)厂家生产的 S92/93系列的气动执行机构为例,结合现场实际使用情况,进行了分析和总结。阀门公称直径DN250,介质为混合煤气,气源为仪表压空,压力为3-5Bar,电磁阀为24V。 1、气动调节阀的结构和工作原理 1.1、气动调节阀的结构 气动调节阀由执行机构和阀体两部分组成。 1.2、气动调节阀的工作原理 气动调节阀的工作原理:气动调节阀由执行机构和调节机构组成。执行机构是调节阀的推力

部件,当调节器或定位器得到4-20mA信号时,控制电磁阀24V信号到,打开,使得仪表压空进入执行机构汽缸,转动阀杆使阀体动作,当到达需要指定开度时,位置反馈使得定位器停止信号输出,维持当前位置。当需要关闭阀门时,定位器得到关闭信号,使电磁阀停止供气,汽缸靠内部弹簧反作用力,使阀门关闭。当需要从满度减少开度时,定位器输出气源压力会减弱,弹簧自身反作用力致使阀门向关闭方向动作,直至信号压力与弹簧压力平衡,到达指定开度,以此来控制该介质流量。 2、气动调节阀的日常维护 在对气动调节阀日常点巡检中,要注意以下几点:一是检查仪表气源是否正常,检查过滤器、减压阀是否正常,观察压力是否在3-5Bar;二是观察汽缸有无漏气现象,尤其是阀杆连接处和两端盖处;三是检查电磁阀是否工作正常,有无漏气现象;四是检查定位器工作是否正常,有无漏气现象;五是检查所有连接部件固定螺丝是否紧牢;六是尽量避免过多浮灰覆盖到执行机构上,要市场保持工作环境清洁。 3、气动调节阀常见故障原因分析

RC缓冲电路snubber设计原理教学内容

R C缓冲电路s n u b b e r 设计原理

RC缓冲电路snubber设计原理 RC 缓冲 snubber 设计 Snubber 用在开关之间,图 4 显示了 RC snubber 的结构图,用 RC 电路可以降低管子的峰值电压及关断损耗和降低电流振铃现象。我们可以轻松选择一个snubber Rs , Cs 网络,但是我们需要优化设计以达到更好的缓冲效果 快速 snubber 设计,为了达到 Cs 〉 Cp ,一个比较好的选择是 Cs 选择两倍大小的 Cp ,也就是两倍大小的开关管寄生电容及估算出来的 LAYOUT 布板电容,对于 Rs ,我们选择的标准是 Rs=Eo/Io ,这表示通过电流流向 Rs 的所产生的电压不能比输出电压还大。消耗在 Rs 上的电压大小我们可以通过储存在Cs 上的能量来估计。下式表示了储存在电容上的能量。 当电容 Cs 充放电的过程中,能量在电阻 Rs 上消耗,而这个过程中在一个给定的开关频率下平均的功率损耗如下所得:

因为振铃的发生,实际的功耗比上式要稍微大一些。 如下将用实例来演示一遍以上的简化设计步骤,现在用 IRF740 ,额定工作电流时 Io=5A , Eo=160V , IRF740 的 Coss=170pF ,布板寄生电容大概 40pF ,两倍 Cp 值大概 420pF 左右,我们选择一个 500V 的 mike snubber 电容,标准的容值有 390 和 470pF ,我们选择比价接近的 390pF , Rs=Eo/Io=32W ,开关频率 fs 设为 100kHz 的话, Pdiss 大概为 1W 左右,选择一个寄生电感非常小的 2 W 的碳膜电阻作为 Rs 。

02325计算机系统结构复习题参考答案

计算机系统结构(02325)复习题 一、填空题 。 1.评价存储系统的指标包括每位价格c 、命中率H 和存储层次的等效访问时间T A 2.计算机系统设计方法有“由上往下”设计、“由下往上”设计和“由中间开始”向两边设计。其中软硬件结合较好的是“由中间开始”向两边设计的设计方法。 3.I/O控制方式可分为程序控制I/O方式、直接存储器访问(DMA)方式和I/O处理机方式。 4.在通道方式I/O传输过程中,用户经由输入/输出的访管指令来使用外设,进管后按其提供的入口地址,将管理程序调出来执行要编制通道程序。CPU在执行完启动I/O 指令后,通道就可以与其并行工作。 5.Cache块的调度算法通常有 FIFO算法和 LRU 算法两种。 6.计算机硬件和软件在逻辑功能上是等效的,在性能、价格、实现的难易程度上是不同的。 7.系列机的软件兼容可分为向上兼容、向下兼容、向前兼容和向后兼容,其中向后兼容是软件兼容的根本特性。 第8—12题重复第1—5题 13.有一个“主存—辅存”层次,采用组相联映象。主存共1024个页面,分为S组。当S= 1 时,则成为全相联映象,当S= 1024 时,则成为直接映象。 二、解释题 1. 冷启动失效率:Cache空到Cache满的失效率。 2. Huffman压缩概念:当各种事件发生的概率不均等时,采用优化技术对发生概率最高的事件用最短的位数(时间)来表示(处理),而对出现概率较低的,允许用较长的位数(时间)来表示(处理),就会导致表示(处理)的平均位数(时间)的缩短。 3. 动态再定位:在硬件上设置基址寄存器和地址加法器。在程序不作变换直接装入主存的同时,装入主存的起始地址存入对应该道程序使用的基址寄存器中。程序执行时,只要通过地址加法器将逻辑地址加上基址寄存器的程序基址形成物理(有效)地址后去访存即可。 4.LRU替换算法:LRU替换算法就是近期最少使用替换算法,即选择近期里使用得最少的页,将其替换出去。一般将近期最少使用法改为近期最久未用过的替换算法,即选择出主存中近期最久未被使用过的页面将其替换出去,我们仍然称其为LRU替换算法。 5.动态再定位:在硬件上设置基址寄存器和地址加法器。在程序不作变换直接装入主存的

相关主题
文本预览
相关文档 最新文档