当前位置:文档之家› 轨道动力学发展概况(打印)

轨道动力学发展概况(打印)

轨道动力学发展概况(打印)
轨道动力学发展概况(打印)

简要发展历史

一、国外情况

1)20世纪40年代,铁木辛柯和沙湖年慈开始探讨单自由度集总参数轨道模型分析正弦及余弦荷载作用下的轨道位移响应问题。

2)六、七十年代,佐藤裕和佐藤吉彦曾经采用集总参数模型和连续弹性基础梁模型研究了轨道的动力效应。其中比较有代表的是所渭Sato“半车一轨道”模型。

3)美国Ahlbee曾提出与Sato模型相仿的“半车一轨道”集总参数模型,所不同的是轨道部分增加了一个基础参振量,并且考虑了钢轨接头因轮轨冲击变形而引起的刚度削弱影响。

4)20世纪70年代,英国Derby铁路研究中心以轨道不平顺作为激励源并将机车车辆和轨道的相互关系引入模型中。

5)Lyon和Jenkins等(1972)建立了低接头轨道动力分析模型,并由此定义了高频冲击力P1和低频响应力P2,并推荐了简化计算公式。

6)1979年Newton对该模型作了局部改进,以Timoshenko梁代替Euler梁描述钢轨,从而可以考虑梁的剪切变形和截面旋转惯性对轮轨垂向力的影响。

7)在此基础上,英国Derby中心的研究入员进一步采用了弹性点支承连续梁模拟轨道,并考虑了轨枕的振动影响。

8)Clark(1982)等为研究车辆在波浪型磨耗钢轨上行驶的动态效应,采用了弹性点支撑连续梁模拟轨道,并单独考虑轨枕的振动影响,使模拟更趋于实际。

9)加拿大Cai和瑞典Nielsen等为研究车辆与轨道相互动力作用问题,采用了“转向架一轨道"分布参数模型,轨道为二层离散支撑连续梁,并用此模型分析了车轮擦伤引起的轮轨冲击作用问题。

10)早在1926年Carter即开始研究机车动轮与钢轨间的蠕滑现象,给出了切向力与蠕滑率间变化的关系式,用来分析机车沿平直轨道运行时的稳定性问题。

11)60年代和70年代,Kalker的蠕滑理论研究已能针对轮轨间同时存在蠕滑和回旋的普遍情况,确定作用于车轮接触面上的蠕滑力和蠕滑力矩,并且开发了避开弹性力学的椭圆函数为系数而形式上更易于应用的“Kalker’’系数cii和蠕滑系数Fij。可以综合地分析轮轨间蠕滑和回旋对车辆横向稳定性、曲线通过和对轨道不平顺的响应问题。

二、国内情况

1)周宏业和叶翔(1963)采用单自由度集总参数轮轨碰撞模型计算轮轨冲击力;

2)徐实儒(1985)采用了这一模型并做了相应的改进:

3)吴章江(1982)提出了包含摩擦阻尼力的轮轨集总参数三自由度模型来计算轮轨冲击力。

4)20世纪80年代后,李定清(1984)采用阻尼和弹簧系统来等效轨下基础,

5)陈道兴(1984)在其基础上又建立了包括车辆悬架、轮轨接触、轨道支撑弹性非线性影响的轮轨动力分析模型。

6)张丁盛又从研究挚板隔振的角度出发,考虑轨下挚板和道床的影响,建立了轮轨系统的有限元模型,分析了秘板的减振效果。

应用大系统的思想,综合考虑机车车辆、轨道线路及轮轨界面三个方面的影响,研究轨道结构的动力响应。

8)近10年来,国内众多铁路科研单位陆续开展了车辆—轨道耦合动力学领域的理论与应用研究。

上述各种模型中,都是依据各自目的和模拟侧重点不同,形式种类各不相同。若按轨道模型参数来分,有分布参数模型与集总参数模型两大类;若按车辆模型化划分,则有整车、半车和轮对模型三种。在各类模型中又有多种不同形式,如分布参数模型中出现了弹性基础梁模型和弹性点支承梁模型,Euler梁模型与Timoshenko梁模型等等。下图给出了模型分类的基本描述及其相互关系。

轮轨动力分析模型分类框图

轨道动力学的发展中存在的主要问题

通过对轮轨相互作用问题国内外研究现状的总结与分析,我们发现尚存在如下6个方面的问题:

◆列车—轨道系统空间振动方程的建立问题

◆列车—轨道系统横向振动激振源的确定问题

◆列车—轨道系统横向振动随机分析问题

◆基于Hertz接触理论的轮轨垂向力的计算问题

◆高速列车—无碴轨道系统空间振动分析理论问题

◆高速铁路无碴轨道关键动力学设计参数的确定问题

车辆系统动力学解析

汽车系统动力学的发展现状 仲鲁泉 2014020326 摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂直和横向两个方面的动力学内容。介绍车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点介绍了受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学和操纵动力学内容。本文主要讲述的是通过对轮胎和悬架的系统动力学研究,来探究汽车系统动力学的发展现状。 关键词:轮胎;悬架;系统动力学;现状 0 前言 汽车系统动力学是讨论动态系统的数学模型和响应的学科。它是把汽车看做一个动态系统,对其进行研究,讨论数学模型和响应。是研究汽车的力与其汽车运动之间的相互关系,找出汽车的主要性能的内在联系,提出汽车设计参数选取的原则和依据。 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。

铁道车辆系统动力学作业及试地的题目详解

作业题 1、车辆动力学的具体内容是研究车辆及其主要零部件在各种运用情况下,特别是在高速运行时的位移、加速度和由此而产生的动作用力。 2、车辆系统动力学目的在于解决下列主要问题: ①确定车辆在线路上安全运行的条件; ②研究车辆悬挂装置和牵引缓冲装置的结构、参数和性能对振动及 动载荷传递的影响,并为这些装置提供设计依据,以保证车辆高速、安全和平稳地运行; ③确定动载荷的特征,为计算车辆动作用力提供依据。 3、铁路车辆在线路上运行时,构成一个极其复杂的具有多自由度的振动系统。 4、动力学性能归根结底都是车辆运行过程中的振动性能。 5、线路不平顺不是一个确定量,它因时因地而有不同值,它的变化规律是随机的,具有统计规律,因而称为随机不平顺。 (1)水平不平顺; (2)轨距不平顺; (3)高低不平顺; (4)方向不平顺。 6、车轮半径越大、踏面斜度越小,蛇行运动的波长越长,即蛇行运动越平缓。 7、自由振动的振幅,振幅大小取决于车辆振动的初始条件:初始位移和初始速度(振动频率)。

8、转向架设计中,往往把车辆悬挂的静挠度大小作为一项重要技术指标。 9、具有变摩擦减振器的车辆,当振动停止时车体的停止位置不是一个点,而是一个停滞区。 10、在无阻尼的情况下共振时振幅随着时间增加,共振时间越长,车辆的振幅也越来越大,一直到弹簧全压缩和产生刚性冲击。 11、出现共振时的车辆运行速度称为共振临界速度 12、在车辆设计时一定要尽可能避免激振频率与自振频率接近,避免出现共振。 13、弹簧簧条之间要留较大的间距以避免在振动过程中簧条接触而出现刚性冲击 14、两线完全重叠时,摩擦阻力功与激振力功在任何振幅条件下均相等。 15、在机车车辆动力学研究中,把车体、转向架构架(侧架)、轮对等基本部件近似地视为刚性体,只有在研究车辆各部件的结构弹性振动时,才把他们视为弹性体。 16、簧上质量:车辆支持在弹性元件上的零部件,车体(包括载重)及摇枕质量 17、簧下质量:车辆中与钢轨直接刚性接触的质量,如轮对、轴箱装置和侧架,客车转向架构架,一般是簧上质量。 18、一般车辆(结构对称)的垂向振动与横向振动之间是弱耦合,因此车辆的垂向和横向两类振动可以分别研究。 19、若车体质心处于纵垂对称面上,但不处于车体的横垂对称面上,则车体的浮沉振动将和车体的点头振动耦合起来。

车辆系统动力学发展1

汽车系统动力学的发展和现状 摘要:近年来,随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容。本文通过对汽车系统动力学的的介绍,对这一新兴学科的发展和现状做一阐述。 关键字:汽车系统动力学动力学响应发展历史 Summary:In recent years, with the rapid development of automobile industry, people on the vehicle comfort, reliability and safety are also put forward higher requirements, to achieve these requirements are related to vehicle system dynamics.Vehicle system dynamics is the study of all related to the movement of the car system discipline, it involves the scope is broad, in addition to the effects of dynamic response of vehicle longitudinal motion and its subsystems, and vehicles to and dynamic content crosswise two aspects in the vertical.Based on the vehicle system dynamics is introduced, the development and status of this emerging discipline to do elaborate. Keywords:Dynamics of vehicle system dynamics Dynamic response Development history 0 引言 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 传统的车辆动力学研究都是针对被动元件的设计而言,而采用主动控制来改变车辆动态性能的理念,则为车辆动力学开辟了一个崭新的研究领域。在车辆系统动力学研究中,采用“人—车—路”大闭环的概念应该是未来的发展趋势。作为驾驶者,人既起着控

铁路轨道的组成

.铁路轨道的组成:钢轨、轨枕、连接零件、道床、防爬设备、道岔。2.轨道的类型如何分类:设计车速在300km/h为无碴轨道结构;200km/h —250km/h为有碴轨道结构;特重型、重型、次重型、中型、轻型。3.轨距、水平、轨底坡定义,如何测量:(1)轨距:为两股钢轨头部内 侧与轨道中线相垂直的距离,1435mm,用道尺和轨检车量测。(2)水平:指线路左右两股轨道顶面的相对高差,用道尺和轨检车量测。(3)轨底坡:钢轨底面对轨枕顶面的倾斜度,可根据钢轨顶面车轮碾磨痕迹的光带位置来判断。 4.标准轨距:1435mm;曲线轨距:由固定轴距为4m的车辆顺利通过为 条件计算出来的;曲线轨距加宽:把曲线的内侧向内侧方向移动一定距离。 5.轨道误差:允许偏差+6mm或-2mm;正线、到 得大于5mm。三角坑:再一段不太长的距离内,首先是左股轨道比右股轨道高,接着是右股轨道比左股轨道高,所形成的轨道不平顺。 6.曲线规矩加宽:将曲线轨道内轨向曲线中心方向移动,曲线外轨的位 置保持与轨道中心半个规矩的距离不变。曲线外轨超高:有外轨提高法和线路中心高度不变法,前者是保持内轨标高不变而只抬高外轨,后者是内外轨分别各降低和抬高超高值的一半。超高值视离心力的大小而定,曲线半径越小,速度越高,离心力越大,用来平衡的超高值越大。 7.钢轨按取整后的每延米长度质量来分:43kg/m、45kg/m、50kg/m、 60kg/m、75kg/m。

8.标准钢轨长度:25m和12.5m;标准缩短:比25m缩短40mm 80mm 160mm,比15m缩短40mm 80mm 120mm六种。短轨长度为6.5m。 9.轨道附属设施:轨撑、防爬设备、轨距杆、曲线加强增加轨枕配置。 轨道爬行:由于钢轨相对于轨枕、轨排相对于道床的阻力不足导致轨道纵向位移。信号标志及线路标志作用是:向行人和线路养护人员先是铁路建筑物、设备的位置和状态,位置设置在铁路运行方向的左侧。 10.轨缝:18mm。钢轨接头位置应对接悬空布置。 11.轨枕作用:保持钢轨的位置、方向和轨距,并将它承受的钢轨力均匀 的分不到道床上。轨枕有木枕、钢枕和混凝土枕。 12.轨枕如何设置:钢轨应按标记位置铺设,并应与线路中线垂直。 13.联结零件:(1)连接钢轨与轨枕的接头扣件:夹板、螺栓、螺母、弹 簧垫圈。(2)连接钢轨和轨枕的中间扣件。钢轨夹板作用:加紧钢轨。 接头螺栓、螺母的作用:用来加紧夹板和钢轨,使夹板牢固,阻止钢轨部分伸缩。 14.道床作用:承受来自钢轨和轨枕传递的荷载,保护路 13.联结零件:(1)连接钢轨与轨枕的接头扣件:夹板、螺栓、螺母、弹 簧垫圈。(2)连接钢轨和轨枕的中间扣件。钢轨夹板作用:加紧钢轨。 接头螺栓、螺母的作用:用来加紧夹板和钢轨,使夹板牢固,阻止钢轨部分伸缩。 14.道床作用:承受来自钢轨和轨枕传递的荷载,保护路基顶面,保证轨 道稳定,几何形状,提供排水作用,减震降噪,提供维护条件。道床材

轨道结构类型

第二节轨道结构 高速铁路的轨道结构从总体上可分为两类:一类为传统的有砟轨道;另一类为无砟轨道,实践表明,两种轨道结构均可保证高速例车的安全运营。但由于两类轨道结构存技术经济方面的差异,各国均根据自己的国情、铁路的特点合理选用,以取得最佳的技术经济效益。 一、一般规定 (一)正线轨道 1.正线及到发线轨道应按一次铺设跨区间无缝线路设计。 2.正线应根据线路速度等级和线下工程条件,经技术经济论证后合理选择轨道结构类型,轨道结构宜采用无砟轨道。无砟轨道与有砟轨道应集中成段铺设,无砟轨道与有砟轨道之间应设臵轨道结构过渡段。 3.无砟轨道的结构型式应根据线下工程、环境条件等具体情况,经技术经济比较后台合理选择。同一线路可采用不同无砟轨道结构型式,同一型式的无砟轨道结构应集中铺设。 4.轨道结构部件及所用工程材料应符合国家和行业的相关标准要求。 5.无砟轨道主体结构应不少于60年设计使用年限的要求。 6.轨道结构设计应考虑减振降噪要求。 7.轨道结构应设臵性能良好排水系统。 (二)站线轨道 1.正线为轨道时,与正线相邻的两条到发线宜采用无砟轨道,其他可采用混凝土宽枕的有砟轨道;高架车站或站台范围设架空层的车站到发线区段宜采用无砟轨道结构。 2.站线采用有砟轨道时,轨道结构设计应符合下列规定: (l)到发线应采用60kg/m无螺栓孔新钢轨;其他站线宜铺设

50kg/m钢轨。 (2)到发线应采用混凝土轨枕.每千米铺设1667根;当铺设混凝土宽枕时,每千米铺设1760根。其他站线每千米铺设1440根. (3)站线应采用一级碎石道砟。到发线道床顶宽3.4m,道床厚度0.35m,边坡为1:1.75;其他站线道床预宽2.9m,道床厚度0.25m,边坡为1:1.5。, (4)站线混凝土轨枕宜采用弹条Ⅱ型扣件。 二、有砟轨道 l钢轨 正线轨道应采用100m定尺长的60kg/m无螺栓孔新钢轨,其质量应符合相应速度等级的钢轨相关要求。 2.轨枕 正线有砟轨道采用2.6m长混凝土轨枕,每千米铺设1667根。道岔区段铺设混凝上岔枕. 3配件 (1)有砟轨道采用与轨枕配套的弹性扣件,其轨下弹性垫层静刚度宜为60±10kN/mm。 (2)无砟轨道采用与轨道板或双块式轨枕相配套的弹性扣件,其轨下弹性垫层静刚度宜为25±5kN/mm。 4.道床 (1)采用特级碎石道砟,道砟的物理力学性能应符合有关规定。道砟上道前进行清洗,清洁度应满足有关要求。 (2)道床顶面低于轨枕承轨面不应小于40mm,且不应高于轨枕 中部顶面。 (3)路基地段单线道床顶面宽度3.6m,道床厚度0.35m,道床边坡1:l.75,砟肩堆高0.15m。双线道床顶面宽度分别按单线设计。,石质路堑地段采用弹性轨枕或铺设砟下弹性垫层

车辆动力学练习题及参考答案(可编辑修改word版)

车辆动力学练习题 一、单项选择题 1.轨道车辆通常由()、驱动部、走行部、制动部与连接部等组成。 A.车体B.转向架 C.轮对D.电动机 2.EDS 型磁悬浮的悬浮高度一般为()mm,因而对轨道精度和维护要求相对不高。 A.10 B.30 C.100 D.50 3.铁道车辆的()是指车辆每一根轮轴能够承受的允许静载。 A.轴重B.额定载重C.轮对重D.车体重 4.车轮必须具有(),以引导车轮沿道岔形成的线路方向运行,并产生变道时所需的横向导向力。 A.轮缘B.踏面 C.缓冲装置D.车轴 5.铁路轨道可以分为()轨道和曲线轨道。 A.缓和曲线B.坡度 C.直线D.圆曲线 6.人对频率在()Hz 以下的横向振动最敏感。 A.1B.2 C.5 D.10 7.轨道车辆的轮对由左右轮子和车轴固接组成,左右轮对滚动角速度一致,则称为()轮对。 A.弹性B.普通 C.刚性D.磁悬浮 8.轮轨蠕滑是指具有弹性的钢质车轮在弹性的钢轨上以一定速度滚动时,在车轮与钢轨的()间产生 相对微小滑动。 A.上方B.下方C.侧面D.接触面 9.稳定性的含义包含静态平衡稳定性和()稳定性两大类。 A.动态B.准静态 C.安全D.非平衡 10.目前国内外最常用的轨道不平顺数值模拟方法主要有()、三角级数法和白噪声滤波法等。 A.二次滤波法B.五次滤波法 C.四次滤波法D.三次滤波法 11.轨道交通车辆使用的轮胎一般是高压充气轮胎,轮胎内压力高达()kPa。 A.200~300 B.400~500 C.600~700 D.800~900 12.创造了581k m/h的世界轨道交通列车的最高速度记录的是()超导磁浮。 A.中国B.美国 C.日本D.德国 13.铁路轨道按轨枕使用材料可分为()轨道和混凝土轨枕轨道 A.铁枕B.木枕C.铜枕D.不锈钢

铁道车辆系统静动力学课程教学大纲

《铁道车辆系统静/动力学》课程教学大纲 课程代码: 0803715026 课程名称:铁道车辆系统静/动力学 英文名称:Rolling Stock Systerm Static & Dynamics 总学时:32 讲课学时:32 学分:2 适用对象: 车辆工程专业 先修课程:计算机语言、工程力学、城市轨道车辆工程 一、课程性质、目的和任务 铁道车辆系统静/动力学是城市轨道车辆专业方向的一门专业理论课。其目的是使学生掌握铁道车辆静力学以及铁道车辆动力学的基本理论和计算方法。通过本课程的学习,学生可以掌握铁道车辆静力学、动力学分析和计算方法,为从事铁路客车和城市轨道交通车辆的制造、维护、测试等工作打下良好的基础。 二、教学基本要求 本课程内容包括两部分。车辆静力学内容包括有限单元法的基本原理和方法,作用在车辆及其零部件上的载荷,车辆主要零部件的有限单元法计算。车辆动力学内容包括引起车辆振动原因,铁道车辆安全、平稳运行的条件和评定标准,铁道车辆系统的垂直振动和横向振动的原理和分析,铁道车辆蛇行运动稳定性。学完本课程应达到以下基本要求:1.掌握有限单元法的基本原理和方法。 2.掌握作用在铁道车辆及其零部件上的载荷。 3.掌握车辆主要零部件的有限单元法计算方法。 4.掌握铁路车辆安全、平稳运行的条件和评定标准。 5.掌握引起车辆振动原因和车辆振动的基本形式。 6.熟练分析铁道车辆蛇行运动稳定性。 7.熟练掌握铁道车辆系统的垂直振动和横向振动的原理和分析。 三、教学内容及要求 1.有限单元法基本原理部分 掌握有限单元法的解题思路,掌握单元刚度矩阵、坐标变换、结构刚度矩阵的建立,掌握载荷处理和约束处理的方法,掌握解题的具体步骤。 2.作用在铁道车辆及其零部件上的载荷部分 掌握作用在铁道车辆上、作用在车体上及作用在转向架上的载荷。 3.车辆主要零部件的有限单元法计算部分 了解客车车体钢结构的计算,了解转向架构架的计算,并且会进行计算结果整理。 4.车辆振动引论部分 了解本课程的性质和任务;掌握车辆振动基本概念与振动形式,掌握引起车辆振动的原因等基本知识。 5. 车辆的垂向振动部分

车辆系统动力学-复习提纲

1. 简要给出完整约束与非完整约束的概念2-23,24,25, 1)、约束与约束方程 一般的力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程。 2)、完整约束与非完整约束 如果约束方程只是系统位形及时间的解析方程,则这种约束称为完整约束。 完整约束方程的一般形式为: 式中,qi为描述系统位形的广义坐标(i=1,2,…,n);n为广义坐标个数;m为完整约束方程个数;t为时间。 如果约束方程是不可积分的微分方程,这种约束就称为非完整约束。 一阶非完整约束方程的一般形式为:

式中,qi为描述系统位形的广义坐(i = 1, 2, …,n);为广义坐标对时间的一阶与数;n为广义坐标个数;m为系统中非完整约束方程个数;t为时间。 2. 解释滑动率的概念3-7,8 1.滑动率S 车轮滑动率表示车轮相对于纯滚动(或纯滑动)状态的偏离程度,是影响轮胎产生纵向力的一个重要因素。 为了使其总为正值,可将驱动和被驱动两种情况分开考虑。驱动工况时称为滑转率;被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。

参照图3-2,若车轮的滚动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则车轮滑动率s定义如下: 车轮的滑动率数值在0~1之间变化。当车轮作纯滚动时,即uw=rd ω,此时s=0;当被驱动轮处于纯滑动状态时,s=1。 3. 轮胎模型中表达的输入量和输出量有哪些?3-22,23 轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,即轮胎在特定工作条件下的输入和输出之间的关系,如图3-7所示。 根据车辆动力学研究内容的不同,轮胎模型可分为:

铁道车辆平稳性分析

铁道车辆平稳性分析 1.车辆平稳性评价指标 1.1 sperling平稳性指标 欧洲铁路联盟以及前社会主义国家铁路合作组织均采用平稳性指数来评定车辆的运行品质。等人在大量单一频率振动的实验基础上提出影响车辆平稳性的两个重要因素。其中一个重要因素是位移对时间的三次导数,亦即(加速度变化率)。若上式两边均乘以车体质 量,并将之积改写为,则。由此可见,在一定意义上代表力F的变化率的增减变化引起冲动的感觉。 如果车体的简谐振动为,则,其幅值为: 影响平稳性指数的另一个因素是振动时的动能大小,车体振动时的最大动能为: 所以: sperling在确定平稳性指数时,把反映冲动的和反映振动动能的乘积作为衡量标准来评定车辆运行平稳性。 车辆运行平稳性指数的经验公式为: 式中——振幅(cm); f——振动频率(Hz); a——加速度,其值为:; ——与振动频率有关的加权系数。 对于垂向振动和横向振动是不同的,具体情况见错误!未找到引用源。。 表1振动频率与加权系数关系 对于垂向振动的加权系数对于横向振动的加权系 f的取值范围(Hz)公式f的取值范围(Hz)公式 0.5~5.9 0.5~5.5

5.9~20 5.4~2.6 大于20 1 大于26 1 以上的平稳性指数只适用一种频率一个振幅的单一振动,但实际上车辆在线路上运行时的振动是随机的,即振动频率和振幅都是随时间变化的。因此在整理车辆平稳性指数时,通常把实测的车辆振动加速度按频率分解,进行频谱分析,求出每段频率范围的振幅值,然后对每一频段计算各自的平稳性指数,然后再求出全部频率段总的平稳性指数: Sperling平稳性指标等级一般分为5级,sperling乘坐舒适度指标一般分为4级。但在两级之间可按要求进一步细化。根据W值来评定平稳性等级表见错误!未找到引用源。 表2车辆运行平稳性及舒适度指标与等级 W值运行品质W值乘坐舒适度(对振动的感觉) 1 很好 1 刚能感觉 2 好 2 明显感觉 3 满意 2.5 更明显但无不快 4 可以运行 3 强烈,不正常,但还能忍受3.25 很不正常 4.5 运行不合格 3.5 极不正常,可厌,烦恼,不能长时忍 受 5 危险 4 极可厌,长时忍受有害 我国也主要用平稳性指标来评定车辆运行性能,但对等级做了简化,见错误!未找到引用源。。 表3车辆运行平稳性指标与等级 平稳性等级评定 平稳性指标 客车机车货车 1 优<2.5 <2.75 <3.5 2 良好 2.5~2.75 2.75~3.10 3.5~4.0 3 合格 2.75~3.0 3.10~3.45 4.0~4.25 对sperling评价方法的分析: 1.该评价方法仅按照某一个方向的平稳性指标等级来判断车辆的性能是不全面的,需要同时考虑垂向与横向振动对人体的生理及心理的相互影响,因为有时根据垂向振动确定的平稳性指标等级与根据横向振动确定的平稳性指标等级存在较大的差异。 2.该评价方法不够灵敏。由于人体对不同振动频率的反应不同,当对应某一频率范围的平稳性指标值很大值大于,在该窄带中的振动已超出了人体能够承受的限度,但在其它频带中值都很小,由于该方向总的平稳性指标是不同振动频率的平稳性指标求和,因而可能该方向总的砰值并不大,从而认为该车辆的平稳性能符合要求是不正确的。

车辆系统动力学试题及答案

西南交通大学研究生2009-2010学年第( 2 )学期考试试卷 课程代码 M01206 课程名称 车辆系统动力学 考试时间 120 分钟 阅卷教师签字: 答题时注意:各题注明题号,写在答题纸上(包括填空题) 一. 填空题(每空2分,共40分) 1.Sperling 以 频率与幅值的函数 ,而ISO 以 频率与加速度的函数 评定车辆的平稳性指标。 2.在轮轨间_蠕滑力的_作用下,车辆运行到某一临界速度时会产生失稳的_自激振动_即蛇行运动。 3.车辆运行时,在转向架个别车轮严重减重情况下可能导致车辆 脱轨 ,而车辆一侧全部车轮严重 减重情况下可能导致车辆 倾覆 。 4.在车体的六个自由度中,横向运动是指车体的横移、 侧滚 和 摇头 。 5.在卡尔克线性蠕滑理论中,横向蠕滑力与 横向 蠕滑率和 自旋 蠕滑率呈相关。 6.设具有锥形踏面的轮对的轮重为W ,近似计算轮对重力刚度还需要轮对的 接触角λ 和 名义滚动圆距离之半b 两个参数。 7.转向架轮对与构架之间的 横向定位刚度 和 纵向定位刚度 两个参数对车辆蛇行运动稳定性影 响较大。 8. 纯滚线距圆曲线中心线的距离与车轮 的_曲率_成反比、与曲线的_曲率_成正比。 9.径向转向架克服了一般转向架 抗蛇行运动 和 曲线通过 对转向架参数要求的矛盾。 10.如果两辆同型车以某一相对速度冲击时其最大纵向力为F ,则一辆该型车以相同速度与装有相同缓冲器 的止冲墩冲击时的最大纵向力为_21/2F _,与不装缓冲器的止冲墩冲击时的最大纵向力为_2F_。 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

共2页 第1页 5.什么是稳定的极限环? 极限环附近的内部和外部都收敛于该极限环,则称该极限环为稳定的极限环。 6.轨道不平顺有几种?各自对车辆的哪些振动起主要作用? 方向、轨距、高低(垂向)、水平不平顺。方向不平顺引起车辆的侧滚和左右摇摆。轨距不平顺对轮轨磨耗、车辆运行稳定性和安全性有一定影响。高低不平顺引起车辆的垂向振动。水平不平顺则引起车辆的横向滚摆耦合振动。 三.问答题 (每题15分,共30分) 1.已知:轮轨接触点处车轮滚动圆半径r ,踏面曲率半径R w ,轨面曲率半径R t , 法向载荷N ,轮轨材料的弹性模量E 和泊松比o 。试写出Hertz 理论求解接触椭圆 长短半径a 、b 的步骤。P43-P44 根据车轮滚动圆半径、踏面在接触点处的曲率半径、钢轨在接触点处的曲率半径得到A+B 、B-A ,算得cos β,查表得到系数m 、n ,然后分别根据钢轨和车轮的弹性模量E 和泊松比σ,求得接触常数k ,得出轮轨法向力N ,然后带人公式求得a 、b 。 2. 在车辆曲线通过研究中,有方程式 ()W f r y f w O W μψλ212 1 2 222 * 11=??? ?????+???? ?? 二.简答题 (每题5分,共30分) 1.与传统机械动力学相比,轨道车辆动力学有何特点? 2.轮轨接触几何关系的计算有哪两种方法,各有何优缺点? 解析和数值方法。数值方法可以用计算机,算法简单,效率高,但存在一定误差;解析方法是利用轮轨接触几何关系建立解析几何的方式求解,比较准确,但是计算繁琐,方法难于理解。 3.在车辆系统中,“非线性”主要指哪几种关系? 轮轨接触几何非线性、轮轨蠕滑关系非线性、车辆悬挂系统非线性 4.怎样根据特征方程的特征根以判定车辆蛇行运动稳定性?。 根据求出的特征根实部的正负判断车辆蛇行运动的稳定性,当所有的特征根实部均为负时,车辆系统蛇行运动稳定,存在特征根为零或者负时,车辆系统的蛇行运动不稳定。

铁路轨道

铁路轨道 由钢轨、轨枕、连接零件、道床、道岔和其他附属设备等组成的构筑物。位于铁路路基上,承受车轮传来的荷载,传递给路基,并引导机车车辆按一定方向运转。有些国家或地区也称线路上部建筑。在钢梁桥、灰坑、转盘、某些隧道以及采用新型轨道结构的地段,可以没有道床、或者也没有轨枕。 轨道组成 轨道最早是由两根木轨条组成,后改用铸铁轨,再发展为工字形钢轨,20世纪80年代,世界上多数铁路采用的标准轨距(见铁路轨道几何形位)为1435毫米(4英尺8(1/2)英寸)。较此窄的称窄轨铁路,较此宽的称宽轨铁路(见铁路工程)。轨枕一般为横向铺设,用木、钢筋混凝土或钢制成。道床采用碎石、卵石、矿渣等材料。钢轨、轨枕、道床是一些不同力学性质的材料,以不同的方式组合起来的。钢轨以连接零件扣紧在轨枕上;轨枕埋在道床内;道床直接铺在路基面上。轨道承受着多变化的垂直、横向、纵向的静荷载和动荷载,荷载从钢轨通过轨枕和道床传递到路基。通过力学理论,分析研究在各种荷载条件下,轨道各组成部分所产生的应力和应变,而确定其承载能力和稳定性。 轨道类型 为使轨道成为一个整体,要根据铁路的具体运营条件,使轨道各部分之间的作用相互配合,并考虑轨道、车辆、路基三者之间相互作用的配合协调。这就要求将轨道划分类型。轨道类型的内容包括钢轨类型,连接零件种类,轨枕的种类和配置,道床材料和断面尺寸。它所依据的主要运营条件为铁路运量、机车车辆轴重和行车速度。最佳的轨道结构须做到在给定的运营条件下,保证列车按规定的最高速度平稳、安全和不间断地运行,将荷载有效地传递给铁路路基,并结合合理的轨道材料使用和养护制度,使其设备折旧费、建设投资利息和设备养护费用之和为最小。轨道结构类型,常按不同运营条件将铁路线路分成为轨道等级来表示。这种分等的标准各国不同。中国铁路1975年的规程,将轨道分为四种类型:轻型、中型、次重型和重型四等(见表[中国铁路轨道分类(1975年)])。 轨道养护 轨道各部分在列车重复荷载的作用以及气候环境条件的影响下,将产生磨耗、腐蚀、腐朽、疲劳伤损和残余变形。同时还会使轨距、水平、方向、高低等轨道几何形位发生变化。这些变化积累起来,如不及时消除,将加剧冲击振动,严重的甚至会引起脱轨、颠覆事故。因此,必须做好轨道更新和维修,以恢复轨道各组成部件的性能,并保持轨道几何形位处于良好状态(见轨道养护)。

车辆系统动力学 作业

车辆系统动力学作业 课程名称:车辆系统动力学 学院名称:汽车学院 专业班级:2013级车辆工程(一)班 学生姓名:宋攀琨 学生学号:2013122030

作业题目: 一、垂直动力学部分 以车辆整车模型为基础,建立车辆1/4模型,并利用模型参数进行: 1)车身位移、加速度传递特性分析; 2)车轮动载荷传递特性分析; 3)悬架动挠度传递特性分析; 4)在典型路面车身加速度的功率谱密度函数计算; 5)在典型路面车轮动载荷的功率谱密度函数计算; 6)在典型路面车辆行驶平顺性分析; 7)在典型路面车辆行驶安全性分析; 8)在典型路面行驶速度对车辆行驶平顺性的影响计算分析; 9)在典型路面行驶速度对车辆行驶安全性的影响计算分析。 模型参数为: m 1 = 25 kg ;k 1 = 170000 N/m ;m 2 = 330 kg ;k 2 = 13000 (N/m);d 2 =1000Ns/m 二、横向动力学部分 以车辆整车模型为基础,建立二自由度轿车模型,并利用二自由度模型分析计算: 1) 汽车的稳态转向特性; 2) 汽车的瞬态转向特性; 3)若驾驶员以最低速沿圆周行驶,转向盘转角0sw δ,随着车速的提高,转向盘转角位sw δ,试由 20sw sw u δδ-曲线和0 sw y sw a δ δ-曲线分析汽车的转向特性。 模型的有关参数如下: 总质量 1818.2m kg = 绕z O 轴转动惯量 23885z I kg m =? 轴距 3.048L m = 质心至前轴距离 1.463a m =

质心至后轴距离 1.585b m = 前轮总侧偏刚度 162618/k N rad =- 后轮总侧偏刚度 2110185/k N rad =- 转向系总传动比 20i =

铁道车辆系统动力学及应用-西南交通大学出版社

成都西南交大出版社有限公司关于《铁道车辆系统动力学及应用》 图书印刷项目 招标书 2018年1月25日

目录 第一部分招标公告 第二部分投标方须知 第三部分商务资料 第四部分投标相关文件格式

第一部分招标公告 根据《中华人民共和国投标招标法》有关规定,经成都西南交大出版社有限公司总经理办公会决定,现对外公开招标《铁道车辆系统动力学及应用》图书的印刷企业,兹邀请合格投标企业参加竞标。 一、招标内容: 1.招标内容为《铁道车辆系统动力学及应用》图书的印制。 2.投标人按招标人给定的样式清单,根据自身业务经营情况,以综合印张价方式报价,作为投标文件内容之一。报价单上只允许有一种报价,任何有选择报价将不予接受。投标人必须对样式清单上全部事项进行报价,只投其中部分事项投标文件无效。本投标文件中的报价采用人民币表示。 二、投标人资格要求: 1、在中华人民共和国境内注册,具有独立法人资格的印刷企业; 2、必须取得《印刷经营许可证》,且在投标时年审合格。 三、投标截止和开标时间、地点: 1.投标截止时间:2018年1月25日下午17:00(北京时间),逾期不予受理。 投标文件递交地点:成都市二环路北一段111号西南交通大学创新大厦21楼2105室 2.开标时间和地点: 2018年1月25日下午17:00 开标地点:成都市二环路北一段111号西南交通大学创新大厦21楼西南交通大学出版社 四、招标机构联系人信息: 联系人:王蕾 地址:成都市二环路北一段111号西南交通大学创新大厦21楼西南交通大学出版社 邮政编码:610031

电话:8700627 第二部分投标方须知 一、项目说明 1、“招标方”系指本次项目的招标人“成都西南交大出版社有限公司”。 2、“投标方”系指符合招标公告中投标人资格要求的投标单位: 3、“投标报价”应包含该书印刷材料成本、印刷、装订、送货下货、税金等所有费用。 4、无论投标过程中的做法和结果如何,投标方自行承担所有参加投标有关的全部费用。 二、投标文件的编写 1、投标要求 1)投标方应仔细阅读招标文件的所有内容,按招标文件的要求提供投标文件,并保证所提供的全部资料的真实性,不真实的投标文件将视为废标。 2)投标文件应备正本一份、副本一份。在每一份投标文件上要注明“正本”或“副本”字样,一旦正本和副本有差异,以正本为准。若投标文件正本和副本存在较大差异,将在评标中酌情扣分。 3)投标文件应有投标人法定代表人亲自签署并加盖法人单位公章和法定代表人印鉴或授权代表签字,装入档案袋密封,封条上须加盖投标单位印章,在投标截止时间前由法定代表人或法人委托人持本人有效身份证件递交招标单位。 4)投标人必须保证投标文件所提供的全部资料真实可靠,并接受招标人对其中任何资料进一步审查的要求。 5)投标文件所有封袋上都应写明以下内容:

轨道结构答案

第一章 1. 简述轨道结构的作用及特点。 答:轨道结构的作用是引导机车车辆的运行,直接承受来自车辆的荷载,并将荷载传至路基或桥隧结构物。有足够的强度,稳定性,耐久性,并具有固定的几何形位,保证列车安全,平稳,不间断的运行。 2. 简述在进行铁路建设时,选择轨道类型时应考虑的因素。 答:先确定钢轨类型,然后从技术经济观点出发,确定与之配套的轨枕类型与铺设数量,以及道床的材料与断面尺寸,使之组成一个等强度的结构整体,充分发挥各部件的作用。 3. 对比高速铁路、重载铁路及城市轨道交通的轨道结构异同点。 答:高铁路轨道各部件的力学性能,使用性能,组合结构性能都比相应的普通轨道要高许多,必须保证轨道结构具有高平顺性和稳定性。 重载铁路由于轨道承受的荷载大,反复作用破坏严重,所以必须采用强韧化得轨道,以抵御重载列车对轨道结构的破坏,强化轨道结构强度和延长使用寿命,确保列车的运行安全减少养护维修工作量。 城市轨道交通结构简单整体性强具有坚固性稳定性均衡性确保行车安全,平稳舒适。具有足够的强度,刚度,便于施工,易于管理,可靠性高,使用寿命延长,可以减少维护活避免维修,并利于日常的清洁养护,降低运营成本。要求扣件强度高,韧性好。采用成熟的新工艺,新技术,新材料,满足绝缘,减振降噪和减轻轨道结构结构自重等需求,尽可能符合城市环境,景观等要求。 第二章 1. 有砟轨道结构的主要组成及其功用是什么? 答:有砟轨道结构 组成部件: 钢轨、轨枕、联结部件、道床、道岔、防爬设备等 作用:引导机车车辆运行;直接承受由车轮传来的荷载,并把它分布传递给路基或桥隧构筑物。对轨道结构本身的要求:足够的强度、刚度、稳定性和规定的几何形位;保证列车按规定的速度安全运行,同时满足少维修的原则要求。 2. 钢轨的类型有哪些?钢轨分级使用的含义是什么? 钢轨的类型: 按《43~75kg/m热轧钢轨订货技术条件》(TB 2344)我国钢轨分为43,50,60,75kg/m四种类型。 钢轨分级使用:钢轨的二次或多次使用;钢轨在一次使用中的合理倒换使用。 3. 依照打磨的目的及磨削量分类,钢轨打磨的种类有哪些? 预防性打磨:为控制钢轨表面接触疲劳的发展,在裂纹开始扩展前将裂纹萌生区打掉的技术。 特点:打磨周期短;打磨深度浅:轨顶一般为0.05~0.075mm;外轨内缘和内轨外缘一般为0.1~0.15mm。 保养性(断面廓形)打磨:将钢轨断面打磨成最佳轮轨接触的几何形状,以延缓波磨和其他疲劳伤损的产生的技术。特点:在曲线地段,可明显降低轮轨横向力和冲角,减轻钢轨侧磨 修理性打磨:用来消除已产生的钢轨磨耗,如:波浪形磨耗、车轮擦伤、轨裂纹、马鞍形磨耗等;特点:钢轨的一次磨削量较大,打磨周期长;不能消除引起波磨、钢轨剥离及掉块的潜在的接触疲劳裂纹。 4. 比较一下木枕及混凝土枕的优缺点。 木枕: 优点:易加工、运输、铺设、养护维修;弹性好,可缓冲列车的动力冲击作用;与钢轨联结较

城市轨道动力学知识点整理

1轮轨系统是铁道车辆的核心内容 2铁路列车的两种形式:机车和车辆组成,机车提供牵引动力;没有专门机车 提供动力,车辆具有牵引力 3簧上质量:将车体视为支撑于弹簧上的刚体(车体加载重) 簧下质量:弹簧以下的质量,通常指轮对轴箱装置和大多数货车转向架侧架 4车体沿坐标轴及绕3个坐标轴振动时,分别给予下列名称 (1)伸缩振动:沿x轴方向作纵向振动 (2)横摆振动:沿y轴方向作横向振动 (3)浮沉振动:沿z轴方向作铅锤振动 (4)侧滚振动:车体绕x轴作回转振动 (5)点头振动:车体绕y轴作回转振动 (6)摇头振动:车体绕z轴作回转振动 垂直振动:浮沉和点头振动的组合发生在车体铅垂平面xoz内 横向振动:摇头和滚摆振动的组合发生在水平平面xoy内 纵向振动:伸缩运动沿车体纵向产生 5轴重:车辆每一根轮轴能承受的允许静载(货车21t23t25t客车14t15t16t17t)轴距:同一转向架下两轮轴中心之间的纵向距离(客车/动车组2.5~2.7m,轻轨车 辆轴距一般为2.0~2.3m,货车转向架为2.0m) 车辆定距:同一车辆两转向架之间的纵向距离,车辆定距决定了车辆长度和 载客量(客车/动车组25m,轻轨13m,货车9m) 轴箱悬挂:将轴箱和构架在纵向、横向和垂向联结起来、并使两者在这三个方 向的相对运动收到相互约束的装置。一般包括轴箱定位装置和轴箱减振器 中央悬挂:将车体和构架/侧架联结在一起的装置,具有衰减车辆系统同振动、 提高车辆运行平稳性和舒适性的作用 轮对冲角:垂直于轮轨接触点处钢轨切线方向,与轮轴轴线之间形成的夹角, 其大小反映了车辆曲线通过能力大小以及难易程度 曲线通过:车辆通过曲线时,曲线通过能力的大小,反映在系统通过指标上, 主要表现在车辆轮轨横向力,轮对冲角以及轮轨磨耗指数等的大小上 6铁道车辆动力学性能一般由转向架性能决定 转向架主要功能:(1)提高车辆运行的平稳性与安全性(2)支撑车体,承受并传递车体轮轨间的各种载力及作用力,并使轴重均匀分配(3)车体与转向架之间可以相对转动,便于通过曲线(4)缓和车辆与线路之间的作用,减小振动和冲击 7研究车辆运动的目的:了解车辆各部分的位移以及车轮作用在轨道上 的力;知道车辆的振动状态(自由振动和强迫振动) 8车辆系统动力性能 9铁路运输最基本要求:列车运行安全性(主要涉及车辆是否会脱轨和倾覆) 车辆脱轨主要分为爬轨脱轨(随着车轮转动,车轮轮缘逐渐爬上轨头引起的脱 轨最常见)、跳轨脱轨、掉道脱轨指标:脱轨系数轮重减载率,倾覆系数 脱轨系数分为两类:(1)不考虑作用时间的脱轨系数,是将测量或计算得到的 轮轨垂向力瞬间值作为轮重值而使用的脱轨系数;

2.高速轨道交通系统动力学性能演化及控制

“高速轨道交通系统动力学性能演化及控制”重大项目指南 高速轨道交通是现代铁路客运发展方向,在世界范围内蓬勃发展。以往关于高速轨道交通系统动力学的研究,主要侧重于多刚体系统与柔性基础耦合系统建模问题、运动稳定性问题、轮轨滚动接触力学问题等,聚焦于解决功能性设计、安全性评估、动力学性能优化等关键科学技术问题,以使高速轨道交通系统能够成功运行。随着我国高速铁路大规模运营,出现了一系列长期服役性能演化的实际问题,开始重视高速轨道交通系统长期性能方面的研究,如车辆系统故障机理与演化问题、基础结构疲劳损伤与性能劣化问题,相关研究刚刚起步,尚不能从本质上阐释系统动态性能演化的力学机制。深入开展高速轨道交通系统动力学性能演化及控制研究是解决上述问题的基本前提与根本保障。 本项目拟以高速铁路车辆与基础结构为研究对象,通过车辆装备和基础结构长期动力学性能演化规律的理论和试验研究,揭示长期运营过程中车辆及基础结构复杂非线性振动的力学演化机制,提出保障高速轨道交通系统动态服役稳定性与安全性的控制策略与方法。开展相关领域基础研究能够促进力学、信息与机械、土木学科交叉,为满足轨道交通领域国家重大装备与基础设施应用需求提供基础理论保障。 一、科学目标 以高速铁路车辆与基础结构构成的耦合系统为研究载体,开展复杂环境下系统运行性能的预测与评估理论方法研究,探明高速轨道交通车辆与轨下基础结构的长期动力学性能演变规律;开展动力学反问题研究,揭示高速列车强非线性振动与车辆服役状态的本质关系,探索系统长期服役过程中的载荷识别方法、故障诊断方法和动力学性能控制方法。由此,推动动力学与控制学科在轨道交通领域的理论创新与工程应用,提升我国在非线性动力学和破坏力学领域的创新能力。 二、研究内容 (一)高速轨道交通系统载荷特征与识别及载荷谱。 研究高速列车/轨道强非线性系统的载荷溯源方法,探明载荷作用机制,揭示系统动态载荷的源头,探索不同类型载荷传递路径及其在频域内的分布规律。提出车辆系统关键部件多种载荷的精准辨识方法和测试方法,构建覆盖复杂线路及运行工况的关键部件载荷数据库,揭示车辆系统关键部件载荷的统计学规律和演化规律。 (二)高速轨道交通车辆系统动力学行为演化及控制。 结合高速车辆服役性能跟踪试验海量数据及理论分析模型,揭示高速车辆动力学性能演化机理,发展车辆关键运动部件故障诊断的非线性动力学方法,揭示故障产生机理,探求高速车辆关键运动部件的故障演化规律。研究适用于高维、强非线性车辆系统的多点协调控制方法,发展适用于高速车辆振动控制策略与方法。 (三)高速轨道交通基础结构动力学性能演化、破坏机理及控制。 研究复杂服役环境条件下多种类型动态载荷的表征方法与耦合机制,探索基础结构劣化规律、关键部件的破坏机理及其与动力学性能演变的关联机制。构建表征高速轨道交通基础结构不同劣化特征模型,揭示基础结构不同劣化状态对系统动力学性能的影响规律,发展系统动态服役安全的评估方法及控制策略。 三、申请注意事项 (一)申请书的附注说明选择“高速轨道交通系统动力学性能演化及控制”(以上选择不准确或未选择的项目申请不予受理)。 (二)申请人申请的直接费用预算不得超过1700万元/项(含1700万元/项)。 (三)本项目由数理科学部负责受理。

最新铁路轨道复习

第一章轨道结构 一、填空题 1铁路轨道的类型以(铁路等级)来划分,我国生产的标准类型钢轨有(75kg/m)(60kg/m)(50kg/m)(43kg/m)(38kg/m)等五种。2钢轨采用(工字型)断面,由(轨头)(轨腰)(轨底)三部分组成。 3钢轨的公用为(引导机车车辆的运行)(承受车轮的巨大压力并传递到轨枕上)(为车轮提供连续平顺和阻力较小的滚动表面)(在电气化铁路或自动闭塞区段)(钢轨还兼做轨道电路之用)。 4在轨道上,钢轨与钢轨之间用夹板连接,称为(钢轨接头)。 5钢轨接头连接零件包括(夹板)(螺栓)(螺母)(垫圈)等组成。 6钢轨伤损分为(锈蚀)(磨耗)(折断)等几种。 7连接零件分为(机械式)和(拱形弹片式)两种。 8接头连接形式按相对以轨枕位置分(悬空式)和(承垫式)两种。 9我国钢轨标准长度有(25m)和(12.5m)两种,用于曲线轨道上的标准缩短轨比25m标准缩短量为(40mm)(80mm)(160mm)。10用于自动闭塞区段闭塞跟去两端的钢轨接头为(绝缘接头)。 11道床断面包括(道床厚度)(顶面宽度)(边坡坡度)三个主要特征。 12非同类轨道不得混铺,混凝土枕与木枕、混凝土枕与混凝土宽枕的分界处,距钢轨接头不得少于(5根)轨枕,木枕与混凝土宽枕只之间,应用混凝土轨枕过度,其长度不得小于(25m)。 13道床顶面宽度等于(轨枕长度)和(道床肩宽)之和。 14机鸣笛标设在铁路上行车方向(左)侧,距道口(500-1000m)处。 15道口按看守情况分(有人看守道口)和(无人看守道口)两种。 16在铁路线路上防止线路爬行的设备包括(防爬器)(防爬支撑)。 17电气化铁路与公路的交叉,在公路上的限界架其净高应为(4.5m)。 18道口铺设面应与轨顶面齐平,但在钢轨外侧(50mm)范围内的路面应较轨顶面低(5mm)。 19无人看守道口,应在距道口外股钢轨5m处的道路右侧设置(停车让行标志)。 20道口警标设在通向道口、距道口外股钢轨不少于(20)名的道路(右)侧。 21轨道几何尺寸是指轨道的(轨距)(水平轨向)和(高低轨底坡)。 22我国铁路直线轨道标准轨距为(1435)mm,容许误差为宽不得超过(1456)mm,窄不得超过(1000)mm。 23轨距应在轨头内侧顶面以下(16mm)处测量。 24固定轴距指(在同一车架或转向架上,始终保持平行的最前位和最后位车轴中心间的水平距离)。 25全轴距指(同一机车或车辆最前位和最后位的车轴中心间的水平距离)。 26三角坑是指(在一段较长的距离内,一股钢轨的顶面始终比另一股高,另一种称三角坑)。 27轮背内侧距T、轮缘厚度H及轮对狂度Q三者间关系为(Q=T+2H)。 二、选择题 160kg/m轨的钢轨高度是(B)mm。 A、192 B、176 C、152 D、140 2最高最低轨温差小于等于85℃地区,铺设60kg/m-25m标准轨,采用10.9级高强度螺栓,其接头螺栓扭力矩应达到(D)N·m。 A、900 B、700 C、600 D、500 3 50kg/m钢轨的构造轨缝为(A)。 A、18mm B、17mm C、16mm D、15mm 4已知钢轨垂直磨耗为8mm,侧面磨耗为12mm,则总磨耗为(C)。 A、20mm B、16mm C、14mm D、12mm 5 50kg/m轨线路,采用扣板式扣件,则每股钢轨内外侧扣板号码之和为(A)。 A、34 B、20 C、16 D、10 6下列配件中,属于弹条扣件组成部分的有(CD)。 A、铁座 B、弹簧垫圈 C、轨距挡板 D、挡板座 7在下列正线轨道配置中,符合加强条件的有(BD)。 A、木枕轨道半径为800mm B、混凝土轨道半径700mm C、坡度为12‰的下坡制动地段 D、长度为500mm的隧道

相关主题
文本预览
相关文档 最新文档