当前位置:文档之家› 基于LabVIEW的心音信号检测系统设计

基于LabVIEW的心音信号检测系统设计

基于LabVIEW的心音信号检测系统设计

基于LabVIEW的心音信号检测系统设计

心音信号是人体最重要的生理信号之一,含有关于心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量病理信息,是心脏及大血管机械运动状况的反映,具有非线性、非平稳的特点[1-2]。心音来自于人体内部,不容易被复制或模仿,同时还具有独特性,个体的不同,心音信号的表现形式也不相同。对其进行检测分析,可以达到对身份进行识别和验证的目的[3]。此外,通过听取心音,也可以获得用以判断心脏疾病的相关信息[4]。

本文设计、实现一套心音信号采集与分析系统,并研究利用心音进行被测试者的身份识别。因为传统的密码、口令等验证方法存在容易被忘记或破解的缺陷,而利用人体生物特征进行身份识别具有独特的优势,如指纹、虹膜、手形和面部特征等识别技术已经较为成熟,相关产品已经进入市场。但是利用人体生理信号,如心音、脉搏等,进行身份识别的研究才刚刚兴起,有着很大的研究价值和发展空间。随着计算机技术的迅速发展,基于单片机、DSP 等核心控制器采集心音信号,利用PC 机进行定量分析,已成为心音检测系统的研究趋势[5-6]。因此,本系统利用STC12C5A 单片机采集HKY-06B 型PVDF 薄膜式心音传感器输出的心音信号,并通过RS232 总线发送到上位机,实现了检测终端与上位机之间的数据通信,同时在上位机采用虚拟仪器软件LabVIEW 设计

开发了一套集数据管理、采集和分析于一体的虚拟心音检测系统。

1 系统设计

系统的硬件结构框图如图1 所示,包括以下几个部分:(1)心音传感器模块。能将心脏搏动信号转化为低阻抗音频信号;(2)信号预处理模块。负责对微弱的

心音信号进行前置放大、低通滤波、高通滤波和功率放大;(3)单片机模块。负

责将预处理后的心音信号进行A/D 采样以及通过键盘执行数据存储、液晶显示

WiFi信号及手机信号检测方法及标准

WiFi信号及手机信号检测方法及标准 一、技术参数说明: 1、信号功率绝对值dBm:仔细看的时候会发现这个值是负的,也就是说手机会显示比如-67(dBm),那就说明信号很强。科普一个小知识:中国移动的手机接收电平≥(城市取-90dBm;乡村取-94dBm)、(中国联通的手机接收电平≥-95dBm)时,则满足覆盖要求,也就是说此处无线信号强度满足覆盖要求。-67dBm 要比-90dBm信号要强20多个dB,那么它在打电话接通成功率和通话过程中的话音质量都会强很多(当然也包括EDGE/GPRS上网的速度那些),所以dBm值越大信号就越好,因为是个负值,而且在你手里的时候它永远是负值。如果感兴趣且附近有无线基站的天线的话,可以把你的手机尽量接近天线面板,那么值就越来越大,如果手机跟天线面板挨到一起,那么它可能十分接近于0。(0是达不到的,这里0的意思不代表手机没信号)。 2、移动设备信号发射功率概念:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站近时发射功率小。手机中的数据存储器存放有功率级别表,当手机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实 际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。也就是说,手机信号强度不是越强越好,也不是起弱越好,它是在一定标准范围内的。 3、Kbps、KBps:又称比特率,指的是数字信号的传输速率,也就是每秒钟传送多少个千位的信息(K表示千位,Kb表示的是多少千个位);Kbps也可以表示网络的传输速度,为了在直观上显得网络的传输速度较快,一般公司都使用kb(千位)来表示,如果是KBps,则表示每秒传送多少千字节。1KByte/s=8Kbps(一般简写为1KBps=8Kbps)。ADSL上网时的网速是512Kbps,如果转换成字节,就是512/8=64KBps(即64千字节每秒)。 二、店家检测各类信号强度的方法: 1、移动设备类型:检测设备可以是:iOS系统移动设备、Android系统移动设备和笔记本电脑。 2、检测软件:

信号采集与处理--MATLAB窗函数及其特征

信号采集与处理 MATLAB 窗函数及其特征 数字信号处理中通常是取其有限的时间片段进行分析,而不是对无限长的信号进行测量和运算。具体做法是从信号中截取一个时间片段,然后对信号进行傅里叶变换、相关分析等数学处理。信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的。在FFT分析中为了减少或消除频谱能量泄漏及栅栏效应,可采用不同的截取函数对信号进行截短,截短函数称为窗函数,简称为窗。 泄漏与窗函数频谱的两侧旁瓣有关,对于窗函数的选用总的原则是,要从保持最大信息和消除旁瓣的综合效果出发来考虑问题,尽可能使窗函数频谱中的主瓣宽度应尽量窄,以获得较陡的过渡带;旁瓣衰减应尽量大,以提高阻带的衰减,但通常都不能同时满足这两个要求。频谱中的如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱。不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的加窗处理,重要的问题是在于根据信号的性质和研究目的来选用窗函数。图1是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低,如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用矩形窗,例如测量物体的自振频率等;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。表1 是几种常用的窗函数的比较。 如果被测信号是随机或者未知的,或者是一般使用者对窗函数不大了解,要求也不是特别高时,可以选择汉宁窗,因为它的泄漏、波动都较小,并且选择性也较高。但在用于校准时选用平顶窗较好,因为它的通带波动非常小,幅度误差也较小。 5.3 广义余弦窗 汉宁窗、海明窗和布莱克曼窗,都可以用一种通用的形式表示,这就是广义余弦窗。这些窗都是广义余弦窗的特例,汉宁窗又被称为余弦平方窗或升余弦窗,海明窗又被称为改进的升余弦窗,而布莱克曼窗又被称为二阶升余弦窗。采用这些窗可以有效地降低旁瓣的高度,但是同时会增加主瓣的宽度。这些窗都是频率为0、2π/(N–1)和4π/(N–1)的余弦曲线的合成,其中N为窗的长度。通常采用下面的命令来生成这些窗: Ind=(0:N-1)*2*pi/(N-1) Window=A-B*cos(ind)+C*cos(2*ind) 其中,A、B、C适用于自己定义的常数。根据它们取值的不同,可以形成不同的窗函数,分别是:●汉宁窗A=0.5,B=0.5,C=0;●海明窗A=0.54,B=0.54,C=0;●布莱克曼窗A=0.5,B=0.5,C=0.08;

压力检测系统设计

单片机系统课程设计 成绩评定表 设计课题:压力检测系统设计 学院名称:电气工程学院 专业班级:自动1304 学生姓名:赵博 学号: 2 指导教师:王黎周刚李攀峰 设计地点 : 31-505 设计时间 : 2015-12-28~2016-01-08

单片机系统 课程设计课程设计名称:压力检测系统设计 专业班级:自动1304 学生姓名:赵博 学号: 2 指导教师:王黎周刚李攀峰 课程设计地点: 31-505 课程设计时间: 2015-12-28~2016-01-08 单片机系统课程设计任务书

目录 1绪论 (3) 1、1压力检测系统概述 (3) 2总体方案设计原理 (4) 2、1 基于单片机的智能压力检测的原理 (4) 2、2 压力传感器 (4) 2、2、1 压力传感器的选择 (4) 2、2、2金属电阻应变片的工作原理 (5) 2、3 A/D转换器 (5) 2、3、1 A/D转换模块器件选择 (5) 2、3、2 A/D转换器的简介 (5) 2、4单片机 (6) 2、4、1 AT89C51单片机简介 (6) 2、4、2主要特性 (7) 2、4、3 管脚说明 (7) 2、5单片机于键盘的接口技术 (8) 2、5、1 键盘功能及结构概述 (8) 2、5、2 单片机与键盘的连接 (9) 2、6 LED显示接口 (10)

2、6、1 LED显示器 (10) 2、6、2七段数码显示器 (11) 2、6、3LED数码管静态显示接口 (12) 3软件设计 (14) 3、1 A/D转换器的软件设计 (14) 3、1、1 ADC0832芯片接口程序的编写 (14) 3、2 单片机与键盘的接口程序设计 (15) 3、3 LED数码管显示程序设计 (16) 总结 (18) 参考文献 (19) 附录A (19) 附录B (20) 1绪论 1、1压力检测系统概述 压力就是工业生产过程中的重要参数之一。压力的检测或控制就是保证生产与设备安全运行必不可少的条件。实现智能化压力检测系统对工业过程的控制具有非常重要的意义。本设计主要通过单片机及专用芯片对传感器所测得的模拟信号进行处理,使其完成智能化功能。介绍了智能压力传感器外围电路的硬件设计,并根据硬件进行了软件编程。 本次设计就是基于AT89C51单片机的测量与显示。就是通过压力传感器将压力转换成电信号,再经过运算放大器进行信号放大,送至8位A/D转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。而在显示的过程中通过键盘,向计算机系统输入各种数据与命令,让单片机系统处于预定的功能状态,显示需要的值。 本设计的最终结果就是,将软件下载到硬件上调试出来了需要显示的数据,当输入的模拟信号发生变化的时候,通过A/D转换后,LED将显示不同的数值。

心音信号的处理与分析软件设计

生物医学工程软件技术心音信号的处理与分析软件设计 2012年6月7日

摘要 心音是人体最重要的生理信号之一,是评估心脏功能状态的一种基本方法,蕴含着心脏各个部分本身及相互之间作用的生理和病理等重要的诊断信息。先前人们广泛采用听诊器进行心音主观的分析诊断,但存在较大的局限性和主观性。而心电图机由于其采用低频响应的热笔结构,不能完整地记录全频心音,完全没有量化分析功能,在心音的存储、处理上存在着较大的局限性,故临床应用较少。因此,开发基于虚拟仪器的心音多功能处理分析仪器是一项十分有意义的工作。 本实验旨在设计一款对已的采集心音信号进行显示,处理分析,并获取相关特征参数,对信号采集者的心音正常与否进行简单判断。首先显示原始波形找到其特征进行简单时域处理,和频域滤波,提取包络并计算相关重要心音参数并简单判断是否在正常范围内来实现对于采集到的心音信号进行分析比较。除文件的读取外整个程序设计在一个大的while循环之下,程序运行过程中可根据具体的心音情况实时修改程序中的参数,满足个体差异性。 程序运行稳定,未发生异常事件且测量的健康被试者相关参数均在正常范围附近,可以推断该软件具有较高可靠性符合设计要求。 关键词:labview, 心音,处理分析,软件,设计。 1

目录 摘要 (1) 1 前言(或“绪论”) (2) 1.1 心音信号介绍 (2) 1.2国内外研究现状 (4) 2.设计任务 (6) 需求分析: (6) 3.设计内容 (8) 3.1波形显示、截取与去直流处理 (8) 3.1.1文件的读入 (9) 3.1.2波形的截取与去直流 (9) 3.2信号滤波去噪 (10) 3.3提取包络及曲线拟合、波形保存 (11) 3.31希尔伯特提取包络 (12) 3.32高斯曲线拟合 (12) 3.33外包络线保存 (13) 3.4心率及峰值等计算 (14) 3.5其他参数计算以及心音分裂的简单判断 (15) 3.5.1 S1、S2时长确定与收缩及舒张期确定 (16) 3.5.2心音分裂判断 (16) 4、程序结构分析 (17) 4.1原始波形界面 (17) 4.2截取后波形界面 (18) 5、流程图 (21) 7、调试及运行结果 (22) 8、课程体会 (26) 9 参考文献 (26) 附录:源程序 (27)

微弱信号检测装置(实验报告)剖析

2012年TI杯四川省大学生电子设计竞赛 微弱信号检测装置(A题) 【本科组】

微弱信号检测装置(A题) 【本科组】 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图

1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。 方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。

GSM 900 MHz手机信号强度检测系统设计

GSM 900 MHz手机信号强度检测系统设计 姚达雯;周国平;封维忠;王鑫鑫;黄峰 【期刊名称】《微型机与应用》 【年(卷),期】2014(000)001 【摘要】The design is used to detect the signal intensity of GSM 900 MHz adopted in cellular digital mobile communication network in China. With STC12C5A60S2 as the core MCU, it designs a detection system of signal intensity. It mainly includes the small signal amplifier module, adjustable attenuator, 0900BL18B200 radio transformer, AD8362 power voltage conversion circuit, LCD1602 display module and so on. With the help of ZY12RFSys32BB1 radio frequency training system to simulate GSM 900 MHz cellular signal, it determines the relevant parameters. Then, it carries out the actual tests with antenna collecting GSM 900 MHz cellular signal. Test resultes show that the system can work stably, and meet the requirements of design.%设计了用于检测我国蜂窝数字移动通信网 GSM 通信采用的900 MHz 频段的信号功率强度,以 STC12C5A60S2微处理器为核心,设计制作了信号强度检测系统,该系统主要包括小信号放大模块、可调衰减器、0900BL18B200射频变压器、AD8362功率电压转换电路和LCD1602显示模块等。在用ZY12RFSys32BB1射频训练系统模拟900 MHz 手机信号进行测试并确定相关参数后,通过天线收集GSM 900 MHz 信号进行了实际测试。测量结果表明,系统工作稳定,达到了设计要求。 【总页数】3页(28-30)

matlab语音信号采集与初步处理要点

《matlab与信号系统》实验报告 学院: 学号: 姓名: 考核实验——语音信号采集与处理初步 一、课题要求 1.语音信号的采集 2.语音信号的频谱分析 3.设计数字滤波器和画出频率响应 4.用滤波器对信号进行滤波 5.比较滤波前后语音信号的波形及频谱 6.回放和存储语音信号 (第5、第6步我放到一起做了) 二、语音信号的采集 本段音频文件为胡夏演唱的“那些年”的前奏(采用Audition音频软件进行剪切,时长17秒)。运行matlab软件,在当前目录中打开原音频文件所在的位置,采用wavread函数对其进行采样,并用sound函数可进行试听,程序运行之后记下采样频率和采样点。 利用函数wavread对语音信号的采集的程序如下: clear; [y,fs,bits]=wavread('music.wav'); %x:语音数据;fs:采样频率;bits:采样点数sound(y,fs,bits); %话音回放 程序运行之后,在工作区间中可以看到采样频率fs=44100Hz,采样点bits=16

三、语音信号的频谱分析 先画出语音信号的时域波形,然后对语音号进行快速傅里叶变换,得到信号的频谱特性。语音信号的FFT频谱分析的完整程序如下: clear; [y,fs,bits]=wavread('music.wav'); %x:语音数据;fs:采样频率;bits:采样点数sound(y,fs,bits); %话音回放 n = length (y) ; %求出语音信号的长度 Y=fft(y,n); %傅里叶变换 subplot(2,1,1); plot(y); title('原始信号波形'); subplot(2,1,2); plot(abs(Y)); title('原始信号频谱'); 程序结果如下图: 四、设计数字滤波器和画出频率响应 根据语音信号的特点给出有关滤波器的性能指标: 1)低通滤波器性能指标,fp=1000Hz,fc=1200 Hz,As=100dB,Ap=1dB; 2)高通滤波器性能指标,fc=4800 Hz,fp=5000 Hz As=100dB,Ap=1dB。

基于单片机的压力检测系统设计

常熟理工学院 电气与自动化工程学院 《传感器原理与检测技术》课程设计 题目:基于AT89C51单片机的 压力检测系统的设计 姓名:李莹 学号: 160509240 班级:测控 092 指导教师:戴梅 起止日期: 2012年7月2日-9日

电气与自动化工程学院 课程设计评分表 课程名称:传感器原理与检测技术 设计题目:压力检测系统的设计 班级:测控092学号:160509240 姓名:李莹 指导老师:戴梅 年月日

课程设计答辩记录 自动化系测控专业 092 班级答辩人:李莹课程设计题目压力检测系统的设计

目录第一章概述 1.相关背景和应用简介 2.总体设计方案 2.1总体设计框图 2.2各模块的功能介绍 第二章硬件电路的设计 1.传感器的选型 2.单片机最小系统设计 3.模数转换电路设计 4.传感器接口电路设计 5.显示电路设计 6.电源电路设计 7.原理图 第三章软件部分的设计 1.总体流程图 2.子程序流程图及相关程序 第四章仿真及结果 第五章小结 参考文献

第一章概述 1.传感器的相关背景及应用简介 近年来,随着微型计算机的发展,传感器在人们的工作和日常生活中应用越来越普遍。压力是工业生产过程中的重要参数之一。压力的检测或控制是保证生产和设备安全运行必不可少的条件。实现智能化压力检测系统对工业过程的控制具有非常重要的意义。压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。压力测量对实时监测和安全生产具有重要的意义。在工业生产中,为了高效、安全生产,必须有效控制生产过程中的诸如压力、流量、温度等主要参数。由于压力控制在生产过程中起着决定性的安全作用,因此有必要准确测量压力。通过压力传感器将需要测量的位置的压力信号转化为电信号,再经过运算放大器进行信号放大,送至8位A/D转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。 此次设计是基于单片机的压力检测系统,选择的单片机是基于AT89C51单片机的测量与显示,将压力经过压力传感器转变为电信号,经过放大器放大,然后进入A/D 转换器将模拟量转换为数字量显示,我们所采样的A/D转换器为ADC0808。 2.总体设计方案 本次设计是基于AT89C51单片机的测量与显示。电路采用ADC0809模数转换电路,ADC0809是CMOS工艺,采用逐次逼近法的8位A/D转换芯片,片内有带锁存功能的8路模拟电子开关,先用ADC0809的转换器对各路电压值进行采样,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。本次设计是以单片机组成的压力测量,系统中必须有前向通道作为电信号的输入通道,用来采集输入信息。压力的测量,需要传感器,利用传感器将压力转换成电信号后,再经放大并经A/D转换为数字量后才能由计算机进行有效处理。然后用LED进行显示。本设计的最终结果是,将软件下载到硬件上调试出来了需要显示的数据,当输入的模拟信号发生变化的时候,通过A/D转换后,LED将显示不同的数值。

振动信号检测系统的设计1

信号检测综合训练 说明书 题目:振动信号检测系统设计 学院:电气工程与信息工程学院 班级:电子(2)班 姓名: 钱鹏鹏 学号:11260224 指导老师:缑新科 2014.12.07

摘要 机械在运动时,由于旋转体的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。机械振动在大多情况下是有害的,振动往往会降低机器性能,破坏其正常工作,缩短使用寿命,甚至导致事故。机械振动还伴随着同频率的噪声,恶化环境,危害健康。另一方面,振动也被利用来完成有用工作,如运输、夯实、清洗、粉碎、脱水等。这时必须正确选择振动参数,充分发挥振动机械的性能。在现代企业管理制度中,除了对各种机械设备提出低振动和低噪声要求外,还需随时对机器的运行状况进行监测、分析、诊断,对工作环境进行控制。为了提高机械结构的抗振性能,有必要进行机械机构振动分析和振动设计,这些都离不开振动测试。 本文在此基础上设计了一种专用的振动信号检测系统,具有功耗低、体积小、精度高等优点。 信号检测的内容要求: 通过MCS-51系列单片机设计振动信号检测系统。要求如下: 1 振动信号的特点,选择合适的传感器,并设计相应的检测电路; 2 将设计完成的检测电路,通过软件防真验证; 3 主要设计指标:可测最大加速度:-5m/s~+5m/s;可测最大速度:-0.16m/s~+0.16m/s;可测最大位移:-5mm~+5mm;通频带:0.05Hz~35Hz;转换精度:8bit;采样频率:128Hz 4 利用LCD显示振动信号,有必要的键盘控制。

总体设计方案介绍: 本系统由发射电路和接收电路组成。发射电路主要由加速度传感器构成。接收电路由单片机最小系统和外部串口以及显示部分模块三部分组成。。 硬件电路设计: (1)使用MMA8452加速度传感器和STC89C52单片机来实现。 一.设计目的:了解加速度传感器的工作机理,以及单片机的各种性能; 二.设计器材:电源、proteus7.7软件、89C52,MMA8452加速度传感器,导线若干。 三.设计方案介:该系统目的是便于对一些物理量进行监视、控制。本设计以加速度传感器显示出加速度信号即振动信号,再通过单片机将信号从串口接入电脑显示出来,即完成振动信号的检测功能。 (2)振动传感器的分类 1、相对式电动传感器 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。 相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 2、电涡流式传感器 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 3、电感式传感器 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 4、电容式传感器 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 5、惯性式电动传感器 惯性式电动传感器由固定部分、可动部分以及支承弹簧部分所组成。为了使传感器工作在位移传感器状态,其可动部分的质量应该足够的大,而支承弹簧的刚度应该足够的小,也就是让传感器具有足够低的固有频率。根据电磁感应定律,感应电动势为:u=Blx&r 。式中B为磁通密度,l为线圈在磁场内的有效长度,r x&为线圈在磁场中的相对速度。 从传感器的结构上来说,惯性式电动传感器是一个位移传感器。然而由于其输出的电信号是由电磁感应产生,根据电磁感应电律,当线圈在磁场中作相对运动

WiFi信号及手机信号检测方法及标准

店家WiFi信号及手机信号检测方法及标准 一、技术参数说明: 1、信号功率绝对值dBm:仔细看的时候会发现这个值是负的,也就是说手机会显示比如-67(dBm),那就说明信号很强。科普一个小知识:中国移动的手机接收电平≥(城市取-90dBm;乡村取-94dBm)、(中国联通的手机接收电平≥-95dBm)时,则满足覆盖要求,也就是说此处无线信号强度满足覆盖要求。-67dBm 要比-90dBm 信号要强20多个dB,那么它在打电话接通成功率和通话过程中的话音质量都会强很多(当然也包括EDGE/GPRS上网的速度那些),所以dBm值越大信号就越好,因为是个负值,而且在你手里的时候它永远是负值。如果感兴趣且附近有无线基站的天线的话,可以把你的手机尽量接近天线面板,那么值就越来越大,如果手机跟天线面板挨到一起,那么它可能十分接近于0。(0是达不到的,这里0的意思不代表手机没信号)。 2、移动设备信号发射功率概念:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站近时发射功率小。手机中的数据存储器存放有功率级别表,当手机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实

际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。也就是说,手机信号强度不是越强越好,也不是起弱越好,它是在一定标准范围内的。 3、Kbps、KBps:又称比特率,指的是数字信号的传输速率,也就是每秒钟传送多少个千位的信息(K表示千位,Kb表示的是多少千个位);Kbps也可以表示网络的传输速度,为了在直观上显得网络的传输速度较快,一般公司都使用kb(千位)来表示,如果是KBps,则表示每秒传送多少千字节。1KByte/s=8Kbps(一般简写为1KBps=8Kbps)。ADSL上网时的网速是512Kbps,如果转换成字节,就是512/8=64KBps(即64千字节每秒)。 二、店家检测各类信号强度的方法: 1、移动设备类型:检测设备可以是:iOS系统移动设备、Android 系统移动设备和笔记本电脑。 2、检测软件: 1)iOS系统:SPEEDTEST,可检测Ping值、下载速率、上传速率,功能亮点是可以保存往次检测记录。 2)Android系统:SPEEDTEST,功能和iOS系统的一样,功能亮点是可以保存往次检测记录。 3)WiFi分析仪:可检测WiFi信号强度、信道、寻找AP等功能。

基于LabVIEW的心音信号分析系统设计

基于LabVIEW的心音信号分析系统设计 班级学号:0708112 27 学生姓名:沈鑫 学院:生命科学技术学院

摘要:研究了基于LabVIEW开发平台的心音信号分析系统。该系统首先使用 HKY06A型心音传感器采集和记录心音信号,然后计算归一化平均香农能(NASE) 来提取心音信号的时域特征和利用短时傅立叶变换(STFT),Wigner-Ville分布(WVD)与小波变换(WT)三种时频分析方法来提取心音信号的时频特征。这些特征为心血管疾病的诊断提供了一些重要信息, 帮助初学医师更准确可靠的诊断。通过对44 例心音信号进行测试, 证明该系统在各种心血管疾病的诊断中相当有 效和稳健。 关键词:音信号、LabVIEW、归一化平均香农能、短时傅立叶变换、Wigner-Ville 分布、小波变换。 Abstract: A system of heart sound analysis based on platform of LabVIEW is designed. The heart sounds arc first acquired and recorded using FIKY06A-type heart sound sensor in this system. Then, the signals time-domain features are extracted by calculating the normalized average Shannon energy, and time-frequency features are extracted separately utilizing three kinds of time-frequency analysis method-STFT, WVD and WT. These features can provide some important information for diagnosis of cardiovascular diseases and assist general physicians to come up with more accurate and reliable diagnosis at early stages. Tested with 44 cases of heart sounds, the system have been proved to be quite efficient and robust while diagnosing of a variety of cardiovascular diseases. Key words:heart sounds、LabVIEW normalized average Shannon energy、 short-time Fourier transform 、Wigner-Ville distribution、wavelet transform. 1 引言 心脏的听诊是心脏病诊断以及治疗中不可缺少的一部分, 而且对于初学者或经验不多的人来说, 也是较难掌握的一种技术。目前我国医院部门对心脏疾病的诊断和疗效的评价很大程度上仍依赖于听诊器, 听诊噪声干扰比较严重, 对过于微弱或过于复杂的声音响应不佳, 它一般只被用于初步的、粗略的诊断, 仅凭自己的感觉和经验来判断是远远不够的, 即使是很有经验的医生, 也受主观因素的影响, 可能会发生误诊。 心音是在体表获取声频范围内源于心脏的一种机械性振动。有规律的、时限较短的振动为心音;较长的、不规律的振动为杂音。心音能够反映心脏活动及血液流动的状况, 它含有关于心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量病理信息, 是临床评估心脏功能状态的最基本参数, 是心脏及大血管机械运动的反映。 心音图具有心脏听诊所没有的特点, 从而心音图检查提高了心音和心脏杂音的识别能力, 丰富了听诊, 对心血管疾病的诊断、鉴别、治疗、功能研究、机理探讨、血液动力学改变等多方面提供了相当有价值的资料。心音图的时频分布展示了其在某一特定时间的谱成分, 它通常被看作信号能量在时域和频域中的

一种弱光信号光电检测系统的设计

一种弱光信号光电检测系统的设计 1 引言 光的信息就存在于光强和相位中。而相位信息又是通过干涉转化成强度信息进行测量的,故光强的测量是很重要的检测目标。 光强变化的检测要针对光的变化特性进行设计。第一,入射光从频谱方面分析有单色的,有白光的,有特定光谱的;第二,光强有缓变和快变之分,一天之中日光强度的变化就属于缓变,再快一点的话如屏幕上木一个像素点随动画播放强度的变化,更快的还有人眼无法识别的,这将涉及到器件的响应度;第三,光强有变化幅度的问题,变化幅度有大有小针,这将涉及到器件的灵敏度;第四,光强的静态点,如果静态点在零点,且属于小幅度变化便属于微光检测。本段是对光源的分析,这是设计的目的,理想的检测是能针可以检测任意光强处,光强度的极高频极微弱变化,显然这是无法达到的,只对特定的需求进行设计。 光电检测的第一步是分析光,及其设计目标。第二步是光感应器件。第三步是配套电路。光电器件涉及到半导体,光与物质间的作用和原件制备工艺与技巧等知识,这些会影响器件的性能误差等参数。再根据电子技术知识,通过电路优化消除误差,可得出理想的电路。误差的来源有光电器件的非线性性质,外界温度,放大器件本身的噪声。 能感应光强的器件有:光敏电阻,光电池,光电二极管(PIN管,雪崩管等),复合光电三极管,光电三极管。其中响应最慢的是光敏电阻,他不但惯性大,还具有前历效应。本实验选用光电二极管,它具有较快的动态响应。 光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。通常,光敏电阻器都制成薄片结构,以便吸收更多的光能。当它受到光的照射时,半导体片(光敏层)内就激发出电子—空穴对,参与导电,使电路中电流增强。 光电二极管和普通二极管一样,也是由一个PN结组成的半导体器件,也具有单方向导电特性。但是,在电路中它是通过它把光信号转换成电信号。光电二极管在设计和制作时尽量使PN结的面积相对较大,以便接收入射光。光电二极管是在反向电压作用在工作的,没有光照时,反向电流极其微弱,叫暗电流;有光照时,反向电流迅速增大到几十微安,称为光电流。光的强度越大,反向电流也越大。光强的变化引起光电二极管电流变化,这就可以把光信号转换成电信号,成为光电传感器件。 本试验采用光电二极管,完成对低频微弱光信号的检测。对微弱或极微弱光的检测, 在科学研究,生活应用和军事等领域有广泛的应用。为将微弱光信号转换为电信号以方便后级电路处理, 设计了针对于微弱光信号检测电路。电路由光电转换和前置放大两部分组成。该放大电路设计可有效放大低于1nW的微弱输入信号, 同时对噪声也有很强的抑制作用。 微弱光信号检测的一般办法是通过光电转换器件将微弱的光信号转换成为微弱电信号, 然后再通过电路放大, 将这个微弱电信号转变为可处理的电信号。微弱光信号检测的难点在于光电信都很微弱,所以制作低噪声、高精度光电放大器是关键所在。 现在一般采用光电转换电路和前置放大电路组成放大器的方法, 并且多采用专用集成电路来构建电路。全部采用专用集成电路的方法缺乏灵活性, 在有些应用

心率信号的采集与处理

心率信号的采集与处理 技术分类:医疗电子 | 2009-04-08 1 概述 SoC 技术是一项很重要的电子应用技术,十分适合将其用于生物工程领域。为了满足低电压、低功耗的需要,本次系统设计选择SoC 技术用于生物信号处理。 心率是一项重要的生理指标。它是指单位时间内心脏搏动的次数,是临床常规诊断的生理指标。为了测量心率信号,有许多技术可以应用,例如:血液测量,心声测量,ECG测量等等。在混合信号SoC 的设计中,电路可以被分成两部分,模拟电路部分和数字电路部分。其中模拟电路很容易被数字电路干扰,这是因为数字电路部分本身就是一个高频的噪声源。作为一个混合信号的SoC,怎样处理模拟模块和数字模块的连接问题是一个挑战。所以文中对噪声处理技术也进行了讨论。 在这篇文章里,第二部分给出了系统的设计框图,第三部分对心率信号处理中的问题进行了讨论,第四部分设计了一个心率信号处理的滤波器,第五部分是对其功能和指标的准确性进行了测试,第六部分是总结。 2 心率检测的SoC 系统框图 用混合信号SoC 设计心率信号的处理系统,就需要低功耗和低电压的供给,所以电源电压为3.3V。系统框图如图一所示。

图1 系统框图 在图一中,传感器采用的是红外光电式传感器,用于把原始的心率信号转变为微电压信号。信号调理电路包括放大器、滤波器和比较器。调理电路的输入信号是传感器采集进来的原始心率信号,它的输出信号则是有一定电压幅度的脉冲信号。C51 处理部分是数字信号中央处理单元,它的输入信号是上面提到的脉冲信号,输出的是心率数据,最后通过CPU 核把信号显示出来。CPU 核是EZL-8051。 3 心率信号的采集 将一对红外线发射与接收探头置于动脉一侧,当指尖的血流量随心脏跳动而改变时,红外线接收探头便接收到随心脏周期性地收缩和舒张的动脉搏动光脉冲信号,从而采集到心脏搏动信号。 图2 是单光束直射取样式光电传感器。这类槽型光耦由高功率的红外光电二极管和红外光匹配性能强、透镜敏感度高、集电极电流范围大的光敏三极管组成。由于血液中的血红蛋白对近红外线具有吸收作用的生物效应,因而此类传感器灵敏度高、输出信号稳定。其性能指标如表1 所示。

心音采集与显示课程设计报告讲解

电子课程设计报告 题目《基于51单片机的心音采集系统》 学院生物医学工程学院 专业生物医学工程(仪器) 年级 11级 姓名班福香 学号 11161057 指导老师谢勤岚

目录 一、设计背景 (1) 二、设计目的 (2) 三、设计思路 (2) 四、系统框图 (3) 五、系统主控模块原理 (4) 六、软件设计 (7) 七、结果仿真 (12) 八、报告总结 (13) 九、参考文献 (14)

一、设计背景 随着社会的发展,生活水平提高了,同时生活压力也不断地加重。然而各种心血管疾病发病率也越来越高,收入水平的提高也使得人们对保健的需求和质量的需求和要求也越来越高。近几年来越来越多的医疗仪器被研发。 心音能反应出心脏的生理情况,因此可以通过心音来诊断一个人的心脏十分健康,心音是由心脏搏动工程中各瓣膜的开闭以及心肌和血液运动所产生的震动形成的。它含有关于心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量病理信息,是临床评估心脏功能状态的最基本方法,是心脏及大血管机械运动状况的反映。它是人体最重要的生理信号之一,是临床评估心血管系统功能状态的一种基本方法,是心脏及大血管机械运动状况的反映。在一些心血管疾病尚未发展到足以产生病理形态学改变及临床症状以前,心音中出现的杂音和畸变是重要的诊断信息,可以通过对这些病理特征进行分析而提前对疾病进行预防。 现如今,对于心音信号的采集和处理的相关研究,很多都以在理论上做的很好,甚至已经接近完美,可是由于心音信号微弱,噪声大,所以在实际中对于心音的检测带来较多困难,实际的设计与检测技术还是远不及理论上那么好。因此需要跟多的学员对其进行学习与研究,使得医疗仪器更加的完善和精确。

信号检测在雷达系统方面的应用

信号检测与估计理论在雷达系统方面的应用 摘要:随着互联网应用的普及及发展,信号的检测与估计技术的应用也越来越受到人们的关注。雷达中的信号检测是一个综合性问题,涉及多个学科,多领域知识,所以它是科学领域最为关注的问题。近年来已经开展了大量雷达系统信号实现方法相关的研究课题,其中回波信号的检测和估计是最为重要的方面。本论文就是针对雷达信号检测和估计的精确性问题加以展开的。 关键词:雷达系统,信号估计,信号检测 第一章雷达系统 1.1起源和发展 早期雷达用接收机、显示器并靠人眼观察来完成信号检测和信息提取的工作。接收机对目标的回波信号进行放大、变频和检波等,使之变成能显示的视频信号,送到显示器。人们在显示器的荧光屏上寻找类似于发射波形的信号,以确定有无目标存在和目标的位置。随着雷达探测距离的延伸,回波变弱,放大倍数需要增加。于是,接收机前端产生的噪声和机外各种干扰也随着信号一起被放大,而成为影响检测和估计性能的重要因素。这时,除了降低噪声强度之外,还要研究接收系统频带宽度对发现回波和测量距离精度的影响。这是对雷达检测理论的初期研究。后来,人们开始在各种干扰背景中对各种信号进行检测和估计的理论研究,其中有些结论,如匹配滤波理论,关于滤波、积累、相关之间等效的理论,测量精度极限的理论,雷达模糊理论等,已在实际工作中得到应用. 1.2雷达的概述 雷达的英文名字是radar,是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。

雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。 为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。根据电磁波的传播速度,可以确定目标的距离为:S=CT/2 其中S:目标距离;T:电磁波从雷达到目标的往返传播时间;C:光速 1.3雷达的工作原理 雷达是利用目标对电磁波的反射(或称为二次散射)现象来发现目标并测定其位置的空间任一目标所在位置可用下列三个坐标来确定:1>目标的斜距R;2>方位角a;3>仰角B。同时也就是说根据雷达接收到的信号检查是否含有目标反射回波,并从反射回波中测出有关目标状态的数据。 第二章雷达中的信号检测 雷达的基本任务是发现目标并测定其坐标通常目标的回波信号中总是混杂着噪声和各类干扰而噪声和各种干扰信号均具有随机持性在这种条件下发现目标的问题属于信号检测的范畴信号检测理论就是要解决判断信号是否存在的方法及其最佳处理方式。

相关主题
文本预览
相关文档 最新文档