当前位置:文档之家› 循环伏安法测定铁氰化钾的电化学行为

循环伏安法测定铁氰化钾的电化学行为

循环伏安法测定铁氰化钾的电化学行为
循环伏安法测定铁氰化钾的电化学行为

循环伏安法测定铁氰化钾的电化学行为

一、实验目的

1、学习循环伏安法测定电极反应参数的基本原理及方法。

2、熟悉CHI660电化学工作站的使用。

3、学会使用伏安极谱仪。

4、学会测量峰电流和峰电位。

二、实验原理

循环伏安法(cyclic voltammetry ,CV )是在固定面积的工作电极和参比电极之间加上对称的三角波扫描电压,记录工作电极上得到的电流与施加电位的关系曲线,即循环伏安图。从伏安图的波形、氧化还原峰电流的数值及其比值、峰电位等可以判断电极反应机理。可用来检测物质的氧化还原电位, 考察电化学反应的可逆性和反应机理, 判断产物的稳定性,研究活性物质的吸附和脱附现象; 也可用于反应速率的半定量分析等。

循环伏安在工作电极上施加一个线性变化的循环电压,记录工作电极上得到的电流与施加电压的关系曲线,对溶液中的电活性物质进行分析。由于施加的电压为三角波,这种方法也称为三角波线性扫描极谱法。

U t + - + + -

+ + - +

三角波

图1 电路的接法

一次扫描过程中完成一个氧化和还原过程的循环,称为循环伏安法。

与汞电极相比,物质在固体电极上伏安行为的重现性差,其原因与固体电极的表面状态直接有关,因而了解固体电极表面处理的方法和衡量电极表面被净化的程度,以及测算电极有效表面积的方法,是十分重要的。一般对这类问题要根据固体电极材料不同而采取适当的方法。

循环伏安法控制电极电位φ随时间t 从φi 线性变化增大(或减小)至某电位φτ后,相同速率线性减小(大)归到最初电位φi 。其典型的CV 法响应电流对电位曲线(循环伏安图)如图1示。

图2. 循环伏安曲线图

假如电位从φi 开始以扫描速度υ向负方向扫描, 置φi 较φ (研究电极的标 准电极电位)正得多, 开始时没有法拉第电流, 当电位移向φ 附近时, 还原电流 出现并逐渐增大, 电位继续负移时, 由于电极反应主要受界面电荷传递动力学控 A g /A g c l 铂盘

制, 电流进一步增大, 当电位负移到足够负时, 达到扩散控制电位后, 电流则转至受扩散过程限制而衰减, 使i φ曲线上出现电流峰i pc , 对应的峰电位为φpc 。当电流衰减到某一程度, 电位达φτ 后, 反向扫描, 则原来在电极上的还原产物成为被氧化的电化学活性物质, 若研究的电化学反应是可逆反应, 类似前向扫描原理, 在较φ 稍正的电位下形成氧化电流峰i pa , 对应的峰电位φpa 。

对于固体电极,溶液中有氧化态物质O时,在电极上被还原生成还原态R,即:O + ne-→R;而回扫时R被氧化成O,即:R→ O + ne-。

铁氰化钾离子-亚铁氰化钾离子氧化还原电对的标准电极电位:

循环伏安图的几个重要参数为:阳极峰电流(i pa)、阴极峰电流(i pc)、阳极峰电位(E pa)、阴极峰电位(E pc)。对于可逆反应,阴阳极峰电位的差值,即△E=E pa -E pc ≈56 mV/Z,峰电位与扫描速度无关。而峰电流i p=2.69×105n3/2AD1/2V1/2C,i p 为峰电流(A),n为电子转移数,A为电极面积(cm2),D为扩散系数(cm2/s),V为扫描速度(V/s),C为浓度(mol/L)。由此可见,i p与V1/2和C都是直线关系。对于可逆的电极反应,i pa ≈ i pc。

三. 实验仪器与所需试剂:

仪器:CHI660B电化学工作站、电解池、铂丝辅助电极、饱和甘汞电极做参比电极,Pt工作电极;

试剂:2.0×10-2mol·dm-3铁氰化钾标准溶液,1.0mol·dm-3的氯化钾溶液,蒸馏水。

四、实验步骤:

1、铁氰化钾溶液的配置:

准确移取1.0mL 2.0×10-2mol的铁氰化钾标准溶液于10mL的小烧杯中,加入

1.0mol·dm-3的氯化钾溶液1.0mL,再加入蒸馏水稀释至10mL。

2、电极的制备:

通过电焊把铜导线焊接在镍层上,并且用还原树脂把能导电的部空位包裹住,露出面积大约为1×1 cm2。

3、电化学实验:

(1)打开CHI660B电化学工作站和计算机的电源预热10min;

(2)工作Pt电极和Pt辅助电极,用蒸馏水冲洗净,擦干后放入已经洗净并装有2.0×10-2mol/L溶液的H型电解池中的一边,而在插有饱和甘汞电极的一面加入1.0mol·dm-3的氯化钾溶液,分别安装好各电极后,并按照图1所示接好测量电路(红色夹子为Pt辅助电极、绿色Pt工作电极、白色接甘汞参比电极);(3)打开CHI660B的【Setup】下拉菜单,在Technique项选择Cyclic-V oltmmetry 方法,在parameters项内选择参数。各参数设定如下:

一初始电位(Init E)——设为所测得的开路电位;

—最高电位(High E)—即为开路电位;

—最低电位(Low E)—比起始电位低0.5V;

一终止电位(Final E)——系统给定;

一扫描速率(Scan Rate)——设为0.01 V/S;

一采样间隔(Sample Interval)——设为0.001 V/S;

—初始电位下的极化时间或为停止时间(Quiet Time)——设为2S;

一电流灵敏度(Sensitivity)——设为0.001 (按照合适的进行设置)。

(4)完成上述各项,再仔细检查一遍无误后,点击“OK”键;然后点击工具栏中的运行键,此时仪器开始运行,屏幕上即时显示当时的工作状况和电流对电位的曲线。测量完成后,保存。

四、实验结果分析讨论:

图3为用循环伏安法测定 1.0mL 2.0×10-2mol·dm-3K3Fe(CN)6溶液在1.0mol·dm-3的KCl溶液的电化学行为—循环伏安曲线。从图中可看出,起始电位为+0.3V,电位比较正的目的是为了避免电极接通后Fe(CN)63-发生电解。然后沿电位小的方向(即为负)扫描,当电位至Fe(CN)63-可还原时,即析出电位,将产生阴极电流。其电极反应为:Fe(CN)63- + e = Fe(CN)64-。随着电位的变小,阴极电流迅速增加,直至电极表面的Fe(CN)63-浓度趋近于零,电流达到最高峰。然后迅速衰减,这是因为电极表面附近溶液中的Fe(CN)63-几乎全部因电解转变为Fe(CN)64-而耗尽,及所谓的贫乏效应。当电压扫描至-1.8V处,虽然已经转向开始阳极化扫描,但这时的电极电位仍很小,扩散至电极表面的Fe(CN)63-仍在不断的还原,故仍呈现阴极电流,而不是阳极电流。当电极电位继续正向变化至Fe(CN)64-的析出电位时,聚集在电极表面附近的还原产物Fe(CN)64-被氧化,其

反应为Fe(CN)64--e = Fe(CN)63- 这时产生阳极电流。阳极电流随着扫描电位高(正)移迅速增加,当电极表面的Fe(CN)64-浓度趋近于零时,阳极化电流达到峰值。扫描电位继续正移,电极表面附近的Fe(CN)64-耗尽,阳极电流衰减至最小。当电位扫至+0.3V时,完成一次循环,从而获得了循环伏安图。

同时,在此图中峰电位差值ΔEp= Epa- Epc-=0.235+0.40=0.635;可见,电化学反应的可逆程度很好,那么库仑效率高,循环性能也好,更具有实际应用价值。

图3 1.0mol?dm-3的KCl溶液中2.0×10-2mol·dm-3K3Fe(CN)6电化学行为结果图五、结论

(1)通过应用循环伏安法测定了铁氰化钾的电化学行为,得到了Pt电极Fe(CN)63-与Fe(CN)64-的转化过程。

(2)从循化伏安曲线可知,该Fe(CN)63-与Fe(CN)64-转化的电化学过程是可逆的,并且可逆程度很好,库仑效率高,循环性能也好。

六、参考文献

1.吴浩青,李永舫.嵌入电极反应循环伏安曲线的理论研究化学学报.2001,59

(6),871876.

2.何为,唐先忠,王守绪,王磊. 线性扫描伏安法与循环伏安法实验技术.2005

年10月增刊,126—128

电化学原理实验报告

姓名:张玉德

学号: 200911104112

学院:理学院

专业班级:应用化学091

任课老师:司云森

实验日期:2011 年 4 月26 日

循环伏安法测定铁氰化钾电极反应过程

循环伏安法测定铁氰化钾的电极反应过程 一、实验原理 1.循环伏安法 循环伏安法是将循环变化的电压施加于工作电极和对电极之间,记录工作电极上得到的电流与施加电压的关系曲线。此方法也称为三角波线性电位扫描方法。图1-1表明了施加电压的变化方式。选定电位扫描范围E1~E2 和扫描速率, 从起始电位E1开始扫描到达E2 , 然后连续反向在扫描从E2回到E1。由图1-2 可见,循环伏安图有两个峰电流和两个峰电位。i pc 和 i pa 分别表示阴极峰值电流和阳极峰值电流,对应的阴极峰值电位与阳极峰值电位分别为E pc 和E pa 。 图1-1 循环伏安法的典型激发信号 图1-2 K3Fe(CN)6在KCL 溶液中的循环伏安图 2.判断电极可逆性 根据Nernst 方程,在实验测定温度为298K 时,计算得出 △Ep = Epa- Epc≈59/n mV (1-1) 阳极峰电流ipa 和阴极峰电流ipc 满足以下关系: ipc/ipa ≈1 (1-2) 同时满足以上两式,即可认为电极反应是可逆过程。如果从循环伏安图得出的 △Ep/mv = 55/n ~65/n 范围,也可认为电极反应是可逆的。 3.计算原理 铁氰化钾离子-亚铁氰化钾离子氧化还原电对的标准电极电位 [Fe(CN)6]3- + e - = [ Fe(CN)6]4- Φ=0.36v 电极电位与电极表面活度的Nernst 方程: 峰电流与电极表面活度的Randles-Savcik 方程: i p = 2.69×105n 3/2ACD 1/2v 1/2 二、实验仪器与试剂 0'Ox pa Red C RT In F C ???=+ E / V t / s 阳极 i / μA 阴极 ? / v

循环伏安法判断电极过程

实验七 循环伏安法判断电极过程 一、实验目的 1.初步掌握电化学工作站的使用方法; 2.掌握循环伏安法判断电极过程可逆性的原理和方法。 二、实验原理 循环伏安法(Cyclic Voltammetry)一种常用的电化学研究方法。在电化学、无机化学、有机化学、生物化学的研究领域广泛应用。 CV 法是将循环变化的电压施加于工作电极和参比电极,记录工作电极上得到的电流与施加电压的关系曲线,也叫循环伏安图。根据循环伏安图,可以得到相应的峰参数,进而判断电极过程。图11-9是施加电压与扫描时间的关系曲线,即是三角形波。 图11-10是典型的循环伏安曲线。该图是 2×10-3 mol/L K 3Fe(CN)6 + 0.1 mol/L KCl 溶液在玻碳电极上得到的结果。其电极反应为 可逆性。 (1) 可逆反应 (2) 准可逆反应 (3) 只有一个氧化或还原峰,电极过程为不可逆。 利用下列公式可以计算可逆反应的式电位和还原峰电流 ----→-→+36 46 4636Fe(CN) Fe(CN) Fe(CN)Fe(CN)e e n Epc Epa E Ipc Ipa 058.0,1=-=?≈,1≠Ipc Ipa n Epc Epa E 058 .0≥ -=?2'0Pc Pa E E E +=c AD n i P 2 /12/12/351069.2υ?=

三、仪器与试剂 1. CHI660A型电化学工作站(美国CHI公司); 三电极体系:工作电极为玻碳电极(d =3㎜) 参比电极为饱和甘汞电极(SCE) 辅助电极为铂丝电极; 2. 超声波清洗器(KQ218型,昆山市超声仪器有限公司)。 3. 2×10-3 mol/L K3Fe(CN)6 + 0.1 mol/L KCl 四、实验步骤 1. 工作电极预处理 2. 装溶液 3. 连接三电极 4. 选择参数(E i=0.5V, E n=-0.20V,S=1e-5A/V ),作扫描速率为0.05、0.1、0.2、0.3、 0.5V/s的循环伏安曲线。 五、结果处理 1、列表总结铁氰化钾的测量结果。 2、判断电极反应的可逆性。 3、作i pc对v1/2的关系曲线,由此判断电极反应是受扩散控制的。

循环伏安法判断铁氰化钾K3Fe(CN)6的电极反应过程

循环伏安法判断铁氰化钾K3Fe(CN)6的电极反应过程 一、实验目的 1. 掌握用循环伏安法判断电极反应过程的可逆性 2. 学会使用伏安极谱仪 3. 学会测量峰电流和峰电位 二、实验原理 循环伏安法是用途最广泛的研究电活性物质的电化学分析方法,在电化学、无机化学、有机化学、生物化学等领域得到了广泛的应用。由于它能在很宽的电位范围内迅速观察研究对象的氧化还原行为,因此电化学研究中常常首先进行的是循环伏安行为研究。 循环伏安是在工作电极上施加一个线性变化的循环电压,记录工作电极上得到的电流与施加电压的关系曲线,对溶液中的电活性物质进行分析。由于施加的电压为三角波,这种方法也称为三角波线性扫描极谱法。 典型的循环伏安图如图所示: 选择施加在a点的起始电位E i,然后沿负的电位即正向扫描,当电位负到能够将Ox还原时,在工作电极上发生还原反应:Ox + Ze = Red,阴极电流迅速

增加(b-d),电流在d点达到最高峰,此后由于电极附近溶液中的Ox转变为Red而耗尽,电流迅速衰减(d-e);在f点电压沿正的方向扫描,当电位正到能够将Red氧化时,在工作电极表面聚集的Red将发生氧化反应:Red = Ox + Ze,阳极电流迅速增加(i-j),电流在j点达到最高峰,此后由于电极附近溶液中的Red转变为Ox而耗尽,电流迅速衰减(j-k);当电压达到a点的起始电位E i时便完成了一个循环。 循环伏安图的几个重要参数为:阳极峰电流(i pa)、阴极峰电流(i pc)、阳极峰电位(E pa)、阴极峰电位(E pc)。对于可逆反应,阴阳极峰电位的差值,即△E=E pa-E pc ≈56 mV/Z,峰电位与扫描速度无关。 而峰电流i p=2.69×105n3/2AD1/2V1/2C,i p为峰电流(A),n为电子转移数,A 为电极面积(cm2),D为扩散系数(cm2/s),V为扫描速度(V/s),C为浓度(mol/L)。由此可见,i p与V1/2和C都是直线关系。对于可逆的电极反应,i pa ≈ i pc。 三、仪器和试剂 1. CHI832B 电化学分析仪,三电极系统(金盘电极为工作电极、饱和甘汞电极为参比电极、铂丝电极为辅助电极) 2. 铁氰化钾标准溶液(5.0×10-3 mol/L,含H2SO4溶液0.5 mol/L),10 mL电解杯,10 mL容量瓶 四、实验步骤 1. 打开仪器预热20分钟,打开电脑,打开CHI832B电化学分析仪操作界面。 2. 电极抛光:用AI2O3粉将金盘电极表面抛光,然后用蒸馏水清洗,待用。 3. 将铁氰化钾标准溶液转移至10 mL电解池中,插入三支电极,在“实验”菜单中选择“实验方法”,选择“Cyclic V oltammetry”,点“确定”,设置实验参数:起始电位(+0.6 V);终止电位(-0.2 V);静止时间(2 s);扫描时间(任意扫速);扫描速度(0.1 V/s);灵敏度(1.0×e-5);循环次数(2);点“确定”。从“实验”菜单中选择“开始实验”,观察循环伏安图,记录峰电流和峰电位。 4. 考察峰电流与扫描速度的关系,使用上述溶液,分别以不同的扫描速度:0.1、0.2、0.5 V/s(其他实验条件同上)分别记录从+0.6V~ -0.2V扫描的循环伏安图,记录峰电流。 5. 考察峰电流与浓度的关系,分别准确移取上述溶液1.00、2.00、5.00 mL,置

循环伏安法测定亚铁氰化钾

实验报告 实验课程:仪器分析 学生姓名:崔清玥 学号:41307209 专业班级:化学(创新)1301 实验名称:循环伏安法测定亚铁氰化钾

i —E 曲线 一、实验目的 1、学习固体电极表面的处理方法。 2、掌握循环伏安仪的使用技术。 3、了解扫描速率和浓度对循环伏安图的影响。 二、实验原理 铁氰化钾离子-亚铁氰化钾离子氧化还原电对的标准电极电位 电极电位与电极表面活度的Nernst 方程 峰电流与电极表面活度的Cotroll 方程 其中:i p 为峰电流;n 为电子转移数;D 为扩散系数;v 为电压扫描速度;A 为电极面积;c 为被测物质浓度。 从循环伏安图可获得氧化峰电流i pa 与还原峰电流i pc ,氧化峰电位ψpa 与还原峰电位ψpc 。 对于可逆体系,氧化峰电流i pa 与还原峰电流i pc 绝对值的比值。 i pa /i pc =1 氧化峰电位ψpa 与还原峰电位差ψpc : △ψ=ψpa -ψpc =2.2RT/nf≈0.058/n(V) 条件电位ψθ′ : ψθ′=(ψpa +ψpc )/2 在一定扫描速率下,从起始电位(-0.2 V )正向扫描到转折电位(+0.8 V )期间,溶液中 [Fe(CN)6]4-被氧化生成[Fe(CN)6]3-,产生氧化电流;当负向扫描从转折电位(+0.8 V )变到 原起始电位(-0.2 V )期间,在指示电极表面生成的[Fe(CN)6]3- 被还原生成[Fe(CN)6]4- ,产生还原电流。 为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。实验前电极表面要处理干净。 [] [] 3466Fe(CN)Fe(CN)e - - -+=Red ox ' 0pa ln c c nF RT + =???c v AD n i 2/12/12/35p 1069.2?=

电化学工作站循环伏安法使用说明

电化学工作站循环伏安法使用说明 连接电极:绿夹夹工作电极(W),黄夹夹参比电极(R),红夹夹辅助电极(A)。 1.打开电脑-----打开工作站开关------双击工作站图标运行工作站程序。 点击界面工具栏 “选择电化学方法”按钮。 2.选择线性扫描循环伏安法,点击确定。 3. 点击界面工具栏, “参数设定按钮” 3.1:测试电池等能量实验 的可以在开路电位前面的 方块内点击打钩。 3.2:静止电位:对含有电 容电压的器件,电流瞬间 有变化的工作电极可给以 10秒左右的静置点位,静 置电位和起始电位相符。 一般只用第一折返做终止 电位。做电池、电容器用 到第二折返。 上面是设定的铁氰化钾在玻碳电极下的循环伏安参数 设置完成后点击“确定”。

4.点击界面工具栏“运行按钮” 下面是铁氰化钾在玻碳电极下的循环伏安扫描图 抛光好的工作电极在铁氰化钾中的峰电位差应小于80mV,电流比约等于1. 5.测量: 5.1点击界面工具栏测量按钮

5.2:如果是多圈,点击当前圈的(+)(-)调看多圈的其中某圈。 5.3:点击只显当前圈,可以屏蔽其他多圈的显示。 5.4:点击自动测量,左侧出现各个峰的电位、电流和面积。

5.5:点击自动测量可以显示各个峰的点位和电流,点击1、2、3、4、。。。。可测量各个峰的 测量值。 5.6:峰型不好的也可以采用手动测量。 5.7:只要保存原图,删除没有显示的图就可以保存每一圈的图,只是要把保存的名称改动 一下,比如后面加上1或者2等就可以了。 5.8:如果做得图是差失脉冲伏安法或者是方波伏安法,点击半峰法旁边的小三角,选中高 斯法就可以手动测量了。

铁氰化钾循环伏安法有关性质的测定

实验五铁氰化钾循环伏安法有关性质的测定 一. 实验目的 掌握循环伏安法(CV)基本操作;了解可逆电化学过程及条件电极电位的测定;获得峰电流随电位扫描速度的变化曲线,获得峰电流随溶液浓度的变化函数关系;并学会电化学工作站仪器的使用。 二. 循环伏安法原理 电化学中随着氧化还原反应的进行,会导致电流和电位的变化。其中根据公式峰电流与电位扫描速度的1/2次方、溶液浓度成正比。对于循环伏安法,扫描图像中前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。因此.一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。 三. 实验仪器和药品 铁氰化钾溶液、氯化钾溶液、铝粉、四个25ml容量瓶、电化学工作站,银电极,铂碳电极,银丝电极 四. 实验步骤 打开电脑并将仪器预热20分钟,打开电化学工作站操作界面。将铁氰化钾标准 的循环伏安曲线,看电位差的大小;超过100mv则用粗细的铝粉抛光铂碳电极,使得电位差在70--80以下;确定各参量:起始电位在0.5V左右,扫速为10、20、40、80、160mv/s,灵敏度为10-5--10-6,以标准铁氰化钾溶液测定不同扫速下的伏安曲线,测定并保存;配制4组不同浓度的铁氰化钾溶液:0.1、0.2、0.5、1.0ml 的铁氰化钾标准溶液于容量瓶中,在加入5ml氯化钾溶液,定容;控制参量:扫速为80,每个浓度6段三次扫描,依次对四组溶液测定伏安曲线,导出实验数据和曲线。 五.数据处理 实验参数设定:打磨后电位差为81mv左右,比较合理。 亚铁氰化钾溶液的条件电极电位:

循环伏安法实验报告(有测定电极有效面积)

循环伏安法实验 【实验目的】 学习和掌握循环伏安法的原理和实验技术。 了解可逆波的循环伏安图的特性以及测算玻碳电极的有效面积的方法。 【实验原理】 循环伏安法是在固定面积的工作电极和参比电极之间加上对称的三角波扫 描电压(如图1),记录工作电极上得到的电流与施加电位的关系曲线(如图2),即循环伏安图。从伏安图的波形、氧化还原峰电流的数值及其比值、峰电位等可以判断电极反应机理。 与汞电极相比,物质在固体电极上伏安行为的重现性差,其原因与固体电极的表面状态直接有关,因而了解固体电极表面处理的方法和衡量电极表面被净化的程度,以及测算电极有效表面积的方法,是十分重要的。一般对这类问题要根据固体电极材料不同而采取适当的方法。 对于碳电极,一般以Fe(CN) 63-/4- 的氧化还原行为作电化学探针。首先,固体 电极表面的第一步处理是进行机械研磨、抛光至镜面程度。通常用于抛光电极的 材料有金钢砂、CeO 2、ZrO 2 、MgO和α-Al 2 O 3 粉及其抛光液。抛光时总是按抛 光剂粒度降低的顺序依次进行研磨,如对新的电极表面先经金钢砂纸粗研和细磨 后,再用一定粒度的α-Al 2O 3 粉在抛光布上进行抛光。抛光后先洗去表面污物, 再移入超声水浴中清洗,每次2~3分钟,重复三次,直至清洗干净。最后用乙 醇、稀酸和水彻底洗涤,得到一个平滑光洁的、新鲜的电极表面。将处理好的碳 图2:循环伏安曲线(i—E曲线)

电极放入含一定浓度的K 3Fe(CN)6和支持电解质的水溶液中,观察其伏安曲线。如得到如图2所示的曲线,其阴、阳极峰对称,两峰的电流值相等(i pc / i pa =1),峰峰电位差ΔE p 约为70 mV (理论值约59/n mV ),即说明电极表面已处理好,否则需重新抛光,直到达到要求。 有关电极有效表面积的计算,可根据Randles-Sevcik 公式: 在25°C 时,i p =(2.69×105 )n 3/2 AD o 1/2ν1/2 C o 其中A 为电极的有效面积(cm 2 ),D o 为反应物的扩散系数(cm 2 /s),n 为电极反应的电子转移数,ν为扫速(V/s ),C o 为反应物的浓度(mol/cm 3 ),i p 为峰电流(A )。 【仪器和试剂】 1. CHI 660D 电化学系统,玻碳电极(d = 4mm ) 为工作电极,银/氯化银电极为参比电极,铂片电极为辅助电极; 2. 固体铁氰化钾、H 2SO 4 溶液、高纯水; 3. 100 mL 容量瓶、50 mL 烧杯、玻棒。 【实验内容】 1. 配制5 mM K 3Fe(CN)6 溶液(含0.5 M H 2SO 4),倒适量溶液至电解杯中; 2. 将玻碳电极在麂皮上用抛光粉抛光后,再用蒸馏水清洗干净; 3. 依次接上工作电极(绿)、参比电极(白)和辅助电极(红); 4. 开启电化学系统及计算机电源开关,启动电化学程序,在菜单中依次选择Setup 、Technique 、CV 、Parameter ,输入以下参数: 5. 点击Run 开始扫描,将实验图存盘后,记录氧化还原峰电位E pc 、E pa 及峰电流I pc 、I pa ; 6. 改变扫速为0.05、0.1 和0.2 V/s ,分别作循环伏安图; 7. 将4个循环伏安图叠加比较; Init E (V) 0.8 V Segment 2 High E (V) 0.8 V Smpl Interval (V) 0.001 Low E (V) ?0.2 V Quiet Time (s) 2 Scan Rate (V/s) 0.02 V Sensitivity (A/V) 5e?5

51线性扫描循环伏安法——铁氰化钾溶液的氧化还原曲线

5.1 线性扫描循环伏安法——铁氰化钾溶液的氧化还原曲线 5.1.1 实验原理 铁氰化钾体系( Fe(CN)63-/4-)在中性水溶液中的电化学行为是一个可逆过程,其氧化峰和还原峰对称,两峰的电流值相等,峰峰电位差理论值为59mV体系本身很稳定,通常用于检测电极体系 和仪器系统。 5.1.2 仪器 可选用的仪器有:RST1000 RST2000 RST3000或RST5000系列电化学工作站。 5.1.3 电极与试剂 工作电极:铂圆盘电极、金圆盘电极或玻碳圆盘电极,任选一种。参比电极:饱和甘汞电极。 辅助电极:也称对电极,可选用铂片电极或铂丝电极,电极面积应大于工作电极的5倍。 -2 试剂A:电活性物质,1.00 X 10 mol/LK 3Fe(CN)6水溶液,用于配置各种浓度的实验溶液。试剂B:支持电解质,2.0mol/L KNO 3水溶液,用于提升溶液的电导率。 5.1.4 溶液的配置 在5个50mL容量瓶中,依次加入KNO溶液和K s Fe(CN)6溶液,使稀释至刻度后KNO浓度均为 -4 -4 -4 0.2mol/L,而K3Fe(CN)6浓度依次为1.00 X10 mol/L、2.00 X 10 mol/L、5.00 X 10 mol/L、8.0 X 10-4 mol/L、1.00 X 10-3 mol/L,用蒸馏水定容。 5.1.5 工作电极的预处理 用抛光粉(Al 2O3, 200?300目)将电极表面磨光,然后在抛光机上抛成镜面。最后分别在1:1乙醇、1:1HNO和蒸馏水中超声波清洗。

5.1.6 测量系统搭建 在电解池中放入电活性物质 5.00 x 10-4mol/L铁氰化钾及支持电解质0.20mol/L 硝酸钾溶液。插入工作电极、参比电极、辅助电极。将仪器的电极电缆连接到三支电极上,电缆标识如下: 辅助电极--- 参比电极---- 红色;- 黄色;- 红色; 为防止溶液中的氧气干扰,可通Na除O。 5.1.7 运行线性扫描循环伏安法 溶液: 5.00 x 10-4mol/L 铁氰化钾、0.20mol/L 硝酸钾。 运行RST电化学工作站软件,选择“线性扫描循环伏安法”。 参数设定如下: 静置时间(S):10 起始电位(V):-0.2 终止电位(V) :0.6 扫描速率(V/S) :0.05 采样间隔(V) :0.001 启动运行,记录循环伏安曲线,观察峰电位和峰电流,判断电极活性。如果峰峰电位差过大,则需重新处理工作电极。 量程依电极面积及扫速不同而异。以扫描曲线不溢出、能占到坐标系Y方向的1/3以上为宜。选择合适的量程,有助于减小量化噪声,提高信噪比。 5.1.8 不同扫描速率的实验 溶液: 5.00 x 10-4mol/L 铁氰化钾、0.20mol/L 硝酸钾。 参数设定如下: 静置时间(S):10 起始电位(V):-0.2 终止电位(V) :0.6 采样间隔(V) :0.001 分别设定下列扫描速率进行实验: (1 )扫描速率(V/S) :0.05 (2)扫描速率(V/S) :0.1 (3)扫描速率(V/S) :0.2 (4)扫描速率(V/S) :0.3 (5)扫描速率(V/S) :0.5 实验运行:分别将以上5次实验得到的曲线以不同的文件名存入磁盘。利用曲线叠加功能,可将以上5 条曲线叠加在同一个坐标系画面中。

循环伏安法细则

利用循环伏安确定反应是否为可逆反应 1.氧化峰电流与还原峰电流绝对值相等,即二者绝对值比值始终为一,与扫描速率,换向电势,扩散系数无关。 2.氧化峰与还原峰电位差约为59mV 利用循环伏安确定反应是否为可逆反应 1.氧化峰电流与还原峰电流之比的绝对值等于1 2.氧化峰与还原峰电位差约为(59/n)mV (25摄氏度时) 一般这两个条件即可 判断扩散反应或者是吸附反应: 改变扫描速率,看峰电流是与扫描速率还是它的二次方根成正比~~ 若是与扫描速率成线性,就是表面控制过程~ 与二次方根成线性,就是扩散控制~~ 偶认为,,, 给6楼纠正下,是59/n,n为电子转移量(亚铁-铁,n=1)温度一般是293K下确定,但是一般我们实验时候不是在这个温度下,因此用这个算是有误差的,一般保证其值在100mv以下都算合理的误差,随着扫描速度的变大,这个值 ... 循环伏安测试的基本电位条件设定是根据你的研究电机与参比电极决定 利用循环伏安确定反应是否可逆 1:氧化峰和还原峰的电流比是否相等,若相等则可逆。 有时对同一体系,扫描速率不同也会在一定程度上影响其可逆性的

一般而言,扫速越大其电化学反应电流也就越大。 2:氧化峰和还原峰电位差等于59/nmV,若大于,则是准可逆体系。 这种确定onset potential的方法的依据是什么呢?我看有的文献上直接是作一条切线,但这样误差也很大,很主观随意。不知道Electrochimica Acta 53 (2007) 811–822这篇文献中的这种求onset potential的方法的依据是什么。 Quote: Originally posted by crossin at 2009-4-28 17:29: The onset is defined as the potential at which 10% or 20% of the current value at the peak potential was reached. (Electrochimica Acta 53 (2007) 811–822) 不是“依据(accord)”,而是“定义(define)” 以前我们老师上电极过程动力学的时候说准确的onset potential其实是很难被确定的。 只能估计大致的范围。 求法可以说有好几种,据我所知就有两种,一种是楼上说的切线法,一种是我说的10%或20%法 哪种方法不重要,重要的只在自己的样品之间比。

循环伏安法原理及结果分析

循环伏安法原理及应用小结 1 电化学原理 1.1 电解池 电解池是将电能转化为化学能的一个装置,由外加电源,电解质溶液,阴阳电极构成。 阴极:与电源负极相连的电极(得电子,发生还原反应) 阳极:与电源正极相连的电极(失电子,发生氧化反应) 电解池中,电流由阳极流向阴极。 1.2 循环伏安法 1)若电极反应为O+e-→R,反应前溶液中只含有反应粒子O,且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势(φ平)正得多的起始电势(φi)处开始势作正向电扫描,电流响应曲线则如图0所示。 图0 CV扫描电流响应曲线 2)当电极电势逐渐负移到(φ平)附近时,O开始在电极上还原,并有法拉第电流通过。由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O的表面浓度下降到近于零,电流也增加到最大值Ipc,然后电流逐渐下降。当电势达到(φr)后,又改为反向扫描。 3)随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通过(φ平)时,表面上的电化学平衡应当向着越来越有利于生成R的方向发展。于是R开始被氧化,并且电流增大到峰值氧化电流Ipa,随后又由于R的显著消耗而引起电流衰降。整个曲线称为“循环伏安曲线” 1.3 经典三电极体系 经典三电极体系由工作电极(WE)、对电极(CE)、参比电极(RE)组成。在电化学测试过程中,始终以工作电极为研究电极。 其电路原理如图1,附CV图(图2):扫描范围-0.25-1V,扫描速度50mV/S,起始电位0V。

图1 原理图图2 CBZ的循环伏安扫描图 图2所示CV扫描结果为研究电极上产生的电流随电位变化情况图。 1)横坐标Potential applied(电位)为图1中电压表所测,即 Potential applied=P(WE)-P(RE) 所有的电位数值都是相对于氢离子的电位值,规定在标准情况下,氢离子的电位为0。当恒电位仪向工作电极提供负的电位时,其电源连接情况如图1所示,即工作电极与电源的负极相连,作为阴极工作发生还原反应;反之则作为阳极发生氧化反应。 图3 恒电位仪电路图 图3所示为恒电位仪电路图,我没看明白,请翟老师帮我看看。 2)纵坐标所示电流为工作电极上通过的电流,电流为正(流出电极表面)则有电子流入电极CBZ失电子发生氧化反应;电流为负则电子流出电极,CBZ得电子发生还原反应。 2 电化学工作站操作 工作电极在测试之前应先用较大扫速扫描以活化电极,否则可能出现扫描曲

铁氰化钾溶液的循环伏安法研究

铁氰化钾溶液的循环伏安法研究 1、实验目的 (1)学习固体电极表面的处理方法。 (2)掌握循环伏安仪的使用技术。 (3)了解电位扫描速率和电活性物质浓度对循环伏安图的影响。 2、实验原理 铁氰化钾离子[Fe(CN)6]3-/亚铁氰化钾离子[Fe(CN)6]4-氧化还原电对的电极反应为: 电极电位与电极表面电活性物质浓度间的关系符合Nernst方程式。 在一定扫描速率下,从起始电位(+0.8 V)负向扫描到转折电位(-0.2 V)时,工作电极表面的[Fe(CN)6]3-被还原生成[Fe(CN)6]4-,产生还原电流;当反向扫描从转折电位(-0.2 V)变化到起始电位(+0.8 V)时,在工作电极表面生成的[Fe(CN)6]4-被氧化生成[Fe(CN)6]3-,产生氧化电流。 为了使溶液相传质过程只受扩散控制,应加入支持电解质并在溶液处于静止状态下进行电解。25℃时,在0.10 mol/L KCl 溶液中K3[Fe(CN)6]的扩散系数约为6.3×10-6 cm2 s-1,标准电极反应速率常数约为5.2×10-2 cm s-1,电子转移速率大,为可逆体系。 3、仪器与试剂 天津兰力科LK9805电化学分析仪;玻碳盘电极(Φ3 mm);铂辅助电极;饱和甘汞电极;超声波清洗仪;电解池。 K3[Fe(CN)6]溶液:1.0 mmol/L(含0.10 mol/L KCl)。 KCl溶液:0.10 mol/L。 4、实验步骤 1)玻碳盘工作电极的预处理: 用Al2O3粉末(粒径0.05 μm)将电极表面抛光,然后在蒸馏水中超声波清洗,再用蒸馏水清洗,待用。

2)K3[Fe(CN)6]溶液的循环伏安图: (1)不同扫描速率下K3[Fe(CN)6]溶液的循环伏安图 取1.0 mmol/L K3[Fe(CN)6]溶液20 mL置于电解池中,放入玻璃碳圆盘电极、饱和甘汞电极及铂辅助电极(玻璃碳圆盘电极为工作电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极),设置起始电位为+0.8 V,终止电位为-0.2 V,扫描速率(v)分别为10、25、50、75、100、150、200、250、500 mV s-1,进行循环伏安扫描,记录下循环伏安图中氧化峰、还原峰的峰电位和峰电流(i pa、i pc、E Pa、E Pc)。 (2)不同浓度K3[Fe(CN)6]溶液的循环伏安图 将0.10 mol/L KCl溶液和1.0 mmol/L K3[Fe(CN)6]溶液按照一定体积比例配制成20 mL混合溶液,体积比分别为2:18;5:15,10:10;15:5;18:2。放入玻璃碳圆盘电极、饱和甘汞电极及铂辅助电极(玻璃碳圆盘电极为工作电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极),设置起始电位为+0.8 V,终止电位为-0.2 V,进行循环伏安扫描,记录下循环伏安图中氧化峰、还原峰的峰电位和峰电流(i pa、i pc、E Pa、E Pc)。 5、数据处理 (1)从K3[Fe(CN)6]溶液的循环伏安图,测量i pa、i pc、E Pa、E Pc值。 (2)分别以i pa和i pc对K3[Fe(CN)6]溶液浓度作图,说明峰电流与浓度的关系。(3)分别以i pa和i pc对v1/2作图,说明峰电流与扫描速率间的关系。 (4)计算i pa/i pc值以及ΔE P,说明K3[Fe(CN)6]在KCl溶液中的电极过程的可逆性。 6、思考题 1. K3[Fe(CN)6与K4[Fe(CN)6溶液的循环伏安图是否相同?为什么? 2. 请简要阐述循环伏安法的原理和作用。

循环伏安法原理及结果分析

循环伏安法原理及结果 分析 Revised as of 23 November 2020

循环伏安法原理及应用小结 1 电化学原理 电解池 电解池是将电能转化为化学能的一个装置,由外加电源,电解质溶液,阴阳电极构成。 阴极:与电源负极相连的电极(得电子,发生还原反应) 阳极:与电源正极相连的电极(失电子,发生氧化反应) 电解池中,电流由阳极流向阴极。 循环伏安法 1)若电极反应为O+e-→R,反应前溶液中只含有反应粒子O,且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势(φ平)正得多的起始电势(φi)处开始势作正向电扫描,电流响应曲线则如图0所示。 图0 CV扫描电流响应曲线 2)当电极电势逐渐负移到(φ平)附近时,O开始在电极上还原,并有法拉第电流通过。由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O的表面浓度下降到近于零,电流也增加到最大值Ipc,然后电流逐渐下降。当电势达到(φr)后,又改为反向扫描。 3)随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通过(φ平)时,表面上的电化学平衡应当向着越来越有利于生成R的方向发展。于是R开始被氧化,并且电流增大到峰值氧化电流Ipa,随后又由于R的显着消耗而引起电流衰降。整个曲线称为“循环伏安曲线”

经典三电极体系 经典三电极体系由工作电极(WE)、对电极(CE)、参比电极(RE)组成。在电化学测试过程中,始终以工作电极为研究电极。 其电路原理如图1,附CV图(图2):扫描范围,扫描速度50mV/S,起始电位0V。 图1 原理图图2 CBZ的循环伏安扫描图图2所示CV扫描结果为研究电极上产生的电流随电位变化情况图。 1)横坐标Potential applied(电位)为图1中电压表所测,即 Potential applied=P(WE)-P(RE) 所有的电位数值都是相对于氢离子的电位值,规定在标准情况下,氢离子的电位为0。当恒电位仪向工作电极提供负的电位时,其电源连接情况如图1所示,即工作电极与电源的负极相连,作为阴极工作发生还原反应;反之则作为阳极发生氧化反应。 图3 恒电位仪电路图 图3所示为恒电位仪电路图,我没看明白,请翟老师帮我看看。 2)纵坐标所示电流为工作电极上通过的电流,电流为正(流出电极表面)则有电子流入电极CBZ失电子发生氧化反应;电流为负则电子流出电极,CBZ得电子发生还原反应。 2 电化学工作站操作 工作电极在测试之前应先用较大扫速扫描以活化电极,否则可能出现扫描曲线持续波动的现象; 3 数据挖掘

实验一 循环伏安法判断电极过程

实验一循环伏安法判断电极过程 一.实验目的 1.学习和掌握循环伏安法的原理和实验技术。 2.了解可逆波的循环伏安图的特性以及测算玻碳电极的有效面积的方法。 3.学会使用电化学工作站 二.实验原理 循环伏安法是在固定面积的工作电极和参比电极之间加上对称的三角波扫描电压,记录工作电极上得到的电流与施加电位的关系曲线,即循环伏安图。从伏安图的波形、氧化还原峰电流的数值及其比值、峰电位等可以判断电极反应机理。 与汞电极相比,物质在固体电极上伏安行为的重现性差,其原因与固体电极的表面状态直接有关,因而了解固体电极表面处理的方法和衡量电极表面被净化的程度,以及测算电极有效表面积的方法,是十分重要的。一般对这类问题要根据固体电极材料不同而采取适当的方法。 对于碳电极,一般以Fe(CN)63-/4-的氧化还原行为作电化学探针。首先,固体电极表面的第一步处理是进行机械研磨、抛光至镜面程度。通常用于抛光电极的材料有金钢砂、CeO2、ZrO2、MgO和α-Al2O3粉及其抛光液。抛光时总是按抛光剂粒度降低的顺序依次进行研磨,如对新的电极表面先经金钢砂纸粗研和细磨后,再用一定粒度的α-Al2O3粉在抛光布上进行抛光。抛光后先洗去表面污物,再移入超声水浴中清洗,每次2~3分钟,重复三次,直至清洗干净。最后用乙醇、稀酸和水彻底洗涤,得到一个平滑光洁的、新鲜的电极表面。将处理好的碳电极放入含一定浓度的K3Fe(CN)6和支持电解质的水溶液中,观察其伏安曲线。如得到如图所示的曲线,其阴、阳极峰对称,两峰的电流值相等(i pc/i pa=1),峰峰电位差ΔE p约为70mV(理论值约60 mV),即说明电极表面已处理好,否则需要重新抛光,直到达到要求。 有关电极有效表面积的计算,可根据Randles-Sevcik公式: 在25℃时,i p=(2.69×105)n3/2AD o1/2v1/2C o 其中A为电极的有效面积(cm2),D o为反应物的扩散系数(cm2/s),n为电极反

实验报告-循环伏安法测定亚铁氰化钾

循环伏安法测定亚铁氰化钾 实验目的 (1) 学习固体电极表面的处理方法; (2) 掌握循环伏安仪的使用技术; (3) 了解扫描速率和浓度对循环伏安图的影响 实验原理 铁氰化钾离子[Fe(CN)6]3--亚铁氰化钾离子[Fe(CN)6]4-氧化还原电对的标准电极电位为 [Fe(CN)6]3- + e -= [Fe(CN)6]4- φθ= 0.36V(vs.NHE) 电极电位与电极表面活度的Nernst 方程式为 φ=φθ+ RT/Fln(C Ox /C Red ) -0.2 0.00.20.4 0.60.8 -0.0005 -0.0004-0.0003-0.0002-0.00010.0000 0.00010.00020.0003i pa i pc I /m A E /V vs.Hg 2Cl 2/Hg,Cl - 起始电位:(-0.20V) 终止电位:(0.80 V) 溶液中的溶解氧具有电活性,用通入惰性气体除去。 仪器与试剂 MEC-16多功能电化学分析仪(配有电脑机打印机);金电极;铂丝电极;饱和甘汞电极; 容量瓶:250 mL 、100mL 各2个,25 mL 7个。 移液管:2、5、10mL 、20mL 各一支。 NaCl 溶液、K 4[Fe(CN)6]、、Al 2O 3粉末(粒径0.05 μm ) 实验步骤

1、指示电极的预处理 金电极用金相砂纸细心打磨,超声波超声清洗,蒸馏水冲洗备用。 2、溶液的配制 配制0.20 mol/L NaCl溶液250mL,再用此溶液配制0.10 mol/L的K4[Fe(CN)6]溶液100mL备用。 3、支持电解质的循环伏安图 在电解池中,放入25mL 0.2 mol·L-1 NaCl溶液,插入电极,以新处理的铂电极为工作电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极,进行循环伏安仪设定,扫描速率为0.1V/s;起始电位为-0.20V,终止电位为0.80V。开始循环伏安扫描. 4、K4 [Fe(CN)6]溶液的循环伏安图 在-0.20至0.80V电位范围内,以0.1V/s的扫描速度分别作0.01 mol·L-1、0.02 mol·L-1、0.04 mol·L-1、0.06 mol·L-1、0.08 mol·L-1的K4 [Fe(CN)6]溶液(均含支持电解质NaCl浓度为0.20mol·L-1)循环伏安图 5、不同扫描速率K4 [Fe(CN)6]溶液的循环伏安图 在0.08 mol·L-1 K4 [Fe(CN)6]溶液中,以0.1V/s、0.15 V/s、0.2V/s、0.25 V/s、0.3V/s、0.35V/s,在-0.20至0.80V电位范围内扫描,做循环伏安图 数据处理 1、从K4[Fe(CN)6]溶液的循环伏安图,测量i pa、i pc值。 -1;起始电位为-0.20V,终止电位为0.80V) 2、分别以i pa和i pc对K4[Fe(CN)6]溶液浓度c作图,说明峰电流与浓度的关系。

循环伏安法标定电极

仪器分析实验(电分析) 2004.02 注意事项: 1.电分析共四个实验:电位法测量水溶液的pH 值 (1.32)、氟离子选择电极测定饮用水中 的氟 (1.33) 、库仑滴定法测定砷 (1.35)以及循环伏安法 (本讲义); 2.组号为单数的同学第一周作1.32 和1.33; 双数的同学作1.35 及循环伏安法; 3.实验两人一组,自由组合; 循环伏安法 【目的】 学习和掌握循环伏安法的原理和实验技术。了解可逆波的循环伏安图的特性以及测算玻碳电极的有效面积的方法。 【原理】 循环伏安法是在固定面积的工作电极和参比电极之间加上对称的三角波扫描电压,记录工作电极上得到的电流与施加电位的关系曲线,即循环伏安图。从伏安图的波形、氧化还原峰电流的数值及其比值、峰电位等可以判断电极反应机理。 与汞电极相比,物质在固体电极上伏安行为的重现性差,其原因与固体电极的表面状态直接有关,因而了解固体电极表面处理的方法和衡量电极表面被净化的程度,以及测算电极有效表面积的方法,是十分重要的。一般对这类问题要根据固体电极材料不同而采取适当的方法。 对于碳电极,一般以Fe(CN)63-/4-的氧化还原行为作电化学探针。首先,固体电极表面的第一步处理是进行机械研磨、抛光至镜面程度。通常用于抛光电极的材料有金钢砂、CeO2、ZrO2、MgO和α-Al2O3粉及其抛光液。抛光时总是按抛光剂粒度降低的顺序依次进行研磨,如对新的电极表面先经金钢砂纸粗研和细磨后,再用一定粒度的α-Al2O3粉在抛光布上进行抛光。抛光后先洗去表面污物,再移入超声水浴中清洗,每次2~3分钟,重复三次,直至清洗干净。最后用乙醇、稀酸和水彻底洗涤,得到一个平滑光洁的、新鲜的电极表面。将处理好的碳电极放入含一定浓度的K3Fe(CN)6和支持电解质的水溶液中,观察其伏安曲线。如得到如图所示的曲线,其阴、阳极峰对称,两峰的电流值相等(i pc / i pa=1),峰峰电位差?E p约为70 mV(理论值约60 mV),即说明电极表面已处理好,否则需重新抛光,直到达到要求。 有关电极有效表面积的计算,可根据Randles-Sevcik公式: 在25°C时,i p=(2.69×105)n3/2AD o1/2ν1/2C o 其中A为电极的有效面积(cm2),D o为反应物的扩散系数(cm2/s),n为电极反应的电子转移数,ν为扫速(V/s),C o为反应物的浓度(mol/cm3),i p为峰电流(A)。 【仪器和试剂】 1.CHI 630A 电化学系统,玻碳电极(d = 4mm) 为工作电极,饱和甘汞电极为参比电极, 铂丝电极为辅助电极; 2.固体铁氰化钾、H2SO4溶液; 3.100mL 容量瓶、50 mL 烧杯、玻棒。

循环伏安法测定电极反应

循环伏安法测定电极反应 一、实验目的 1、学习循环伏安法测定电极反应的基本原理和方法。 2、熟悉电化学工作站的使用并根据所测数据验证并判断电极反应是否是可逆反应。 二、实验原理 伏安分析法是在一定电位下测量体系的电流,得到伏安特性曲线。根据伏安特性曲线进行定性定量分析。循环伏安法是将对称的三角波扫描电压(如图一)施加于电解池的电极上,记录工作电极上的电流随电压变化的曲线。在三角波的前半部分,电极上若发生还原反应(阴极过程),得到一个峰形的阴极波;而在三角波的后半部分,则得到一个峰形的阳极波。一次三角波电压扫描,电极上完成一个氧化还原循环。当工作电极被施加的扫描电压激发时,其上将产生响应电流。以该电流(纵坐标)对电位(横坐标)做图,就得到了循环伏安图(如图二所示)。 图一

图二 E pc、E pa分别为阴极峰值电位与阳极峰值电位。i pc、i pa分别为阴极峰值电流与阳极峰值电流。这里p代表峰值,a代表阳极,c代表阴极。 [Fe(CN)6]3--[Fe(CN)6]4-体系氧化还原电对的标准电极电位为: [Fe(CN)6]3- + e- = [Fe(CN)6]4-φθ= 0.36V 电极电位与电极表面活度的Nernst方程式为:φ=φθ+ nRT/Fln(αOx/αRed)。若已知γ为活度系数,则αOx=γ?C Ox,αRed=γ?C Red。在实验中,通常采用添加离子调节液(如KNO3溶液、Na2SO4溶液等)的方法来固定离子强度,此时γ可视为定值,则φ=φθ+ nRT/Fln(C Ox/C Red)。 用循环伏安法正扫时(由正向负的扫描)为阴极扫描,产生还原电流: Fe(CN)63- + e- = Fe(CN)64- 反扫时(由负向正的扫描)为阳极扫描,产生氧化电流: Fe(CN)64- - e- = Fe(CN)63- 两峰之间的电位差值为: (1) 对于一个体系,循环伏安图中的阴极峰电流是由电极上吸附反应物的还原和溶液中反应物扩散到电极表面还原两部分组成。如果是当吸附反应物引起的还原电流占主要部分,则峰电流与扫描速度v成正比。如果扫描过程中,吸附反应物消耗速度很快,还原电流主要由溶液中的扩散过程所提供,此时电流具有纯扩散电流的性质,即i 与扫描速度的平方根成正比。根据电流与扫描速度关系, p 可以判断电流主要受哪种过程控制。 对扩散控制的体系,循环伏安的峰电流,由Randles–Savcik方程可表示为:

循环伏安测定铁氰化钾

[实验目的] 1) 学习固体电极表面的处理方法。 2) 掌握循环伏安仪的使用技术。 3) 了解扫描速率和浓度对循环伏安图的影响。 [实验原理] 铁氰化钾离子-亚铁氰化钾离子:])([])([6463CN Fe K CN Fe K ? 氧化还原电对的标准电极电位:V 36.00=? 峰电流方程: 循环伏安法产生氧化电流。 为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。 实验前电极表面要处理干净。 在0.10 mol.L -1 NaCl 溶液中[Fe(CN)6]的扩散系数为0.63×10-5 cm.s -1;电子转移速率大,为可逆体系(1.0 mol.L -1 NaCl 溶液中,25℃时,标准反应速率常数为5.2×10-2 cm 〃s -1)。 [注意事项和问题] 1.实验前电极表面要处理干净。 2. 扫描过程保持溶液静止。 3. 若实验中测得的条件电极电位和与文献值有差异,说明其原因。 53/21/21/2 p 2.6910i n ACD v =?i — E 曲线

[实验步骤] 1. 指示电极的预处理 铂电极用Al 2O 3粉末(粒径0.05 μm)将电极表面抛光,然后用蒸馏水超声清洗3min.。 2.配制溶液 配制2?10-2、2?10-3 、8?10-4、2?10-4 mol 〃L -1的K 3[Fe(CN)6]溶液。 3. 不同扫描速率K 3[Fe(CN)6]溶液的循环伏安图 先对10-3mol〃L -1K 3 [Fe(CN)6]溶液(含支持电解质KNO 3浓度为0.50 mol〃L -1, 通氮气除氧5min )以20mV/s 在+0.8至-0.2V 电位范围内扫描循环伏安图。 再对上述溶液以10、40、60、80、100、200mV/s ,在+0.8至-0.2V 电位范围内扫描,分别记录循环伏安图。 4. 不同浓度K 3[Fe(CN)6]溶液的循环伏安图 在10-4、4?10-4、10-2 mol〃L -1 K 3[Fe(CN)6]溶液(均含支持电解质KNO 3浓度为0.50 mol〃L -1, 通氮气除氧5min )中,以20mV/s ,在-0.2至+0.8V 电位范围内扫描,分别记录循环伏安图。 [数据处理] 1) 从循环伏安图上读取以下数据: 2)(0pa pc pa pc pa pc i i ?????+=' 2) 计算: n i i p p pc pa 056.01c a =-=?≈??? 3) 作图并验证一下公式:21ν∝∝p p i C i 3) 说明K 3[Fe(CN)6]在KCl 溶液中电极过程的可逆性。 在一定扫描速率下,从起始电位(+0.8V )正向扫描到转折电位(-0.2 V )期间,溶液中 [Fe(CN)6]3- -被还原生成[Fe(CN)6]4-,产生还原电流;当负向扫描从转折电位(-0.2 V )变到原

相关主题
文本预览
相关文档 最新文档