当前位置:文档之家› 高中物理竞赛基础:简谐振动

高中物理竞赛基础:简谐振动

高中物理竞赛基础:简谐振动
高中物理竞赛基础:简谐振动

第五讲 机械振动和机械波

§5.1简谐振动

5.1.1、简谐振动的动力学特点

如果一个物体受到的回复力回F 与它偏离平衡位置的位移x

大小成正比,方向相反。即满足:K F -=回的关系,那么这个物体的运动就定义为简谐振动根

据牛顿第二是律,物体的加速度

m K m F a -==

回,因此作简谐振动的物体,其加速

度也和它偏离平衡位置的位移大小成正比,方何相反。

现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。

当物体运动到离O 点距离为x 处时,有 mg x x k mg F F -+=-=)(0回

式中0x 为物体处于平衡位置时,弹簧伸长的长度,且有

mg kx =0,因此

kx F =回

说明物体所受回复力的大小与离开平衡位置的位移x 成正比。因回复力指向平衡位置O ,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。

注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。

5.1.2、简谐振动的方程

图5-1-1

图5-1-2

由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0?,那么在时刻t ,参考圆上的质点与O 的连线跟x 的夹角就成为0?ω?+=t ,它在x 轴上的投影点的坐标

)cos(0?ω+=t A x (2)

这就是简谐振动方程,式中0?是t=0时的相位,称为初相:0?ω+t 是t 时刻的相位。

参考圆上的质点的线速度为ωA ,其方向与参考圆相切,这个线速度在x 轴上的投影是

0cos(?ωω+-=t A v ) (3)

这也就是简谐振动的速度

参考圆上的质点的加速度为2

ωA ,其方向指向圆心,它在x 轴上的投影是

02

cos(?ωω+-=t A a ) (4) 这也就是简谐振动的加速度 由公式(2)、(4)可得

x a 2ω-=

由牛顿第二定律简谐振动的加速度为

x m k

m F a -==

因此有

m k

=

2ω (5)

简谐振动的周期T 也就是参考圆上质点的运动周期,所以

k m w T ?==

ππ22

5.1.3、简谐振动的判据

物体的受力或运动,满足下列三条件之一者,其运动即为简谐运动: ①物体运动中所受回复力应满足 kx F -=;

②物体的运动加速度满足 x a 2

ω-=;

③物体的运动方程可以表示为 )cos(0?ω+=t A x 。

事实上,上述的三条并不是互相独立的。其中条件①是基本的,由它可以导出另外两个条件②和③。

§5.2 弹簧振子和单摆

简谐振动的教学中经常讨论的是弹簧振子和单摆,下面分别加以讨论。

5.2.1、弹簧振子

弹簧在弹性范围内胡克定律成立,弹簧的弹力为一个线性回复力,因此弹簧振子的运动是简谐振动,振动周期

k m

T π

2=。

(1)恒力对弹簧振子的作用

比较一个在光滑水平面上振动和另一个竖直悬挂振动的弹簧振子,如果m 和k 都相同(如图5-2-1),则它们的振动

周期T 是相同的,也就是说,一个振动方向上的恒力不会改变振动的周期。

如果在电梯中竖直悬挂一个弹簧振子,弹簧原长0l ,振子的质量为m=1.0kg ,电梯静止时弹簧伸长l ?=0.10m ,从t=0时,开始电梯以g/2

的加速度加速下降

图5-2-1

s t π=,然后又以g/2加速减速下降直至停止试画出弹簧的伸长l ?随时间t 变化的图线。

由于弹簧振子是相对电梯做简谐运动,而电梯是一个有加速度的非惯性系,因此要考虑弹簧振子所受到的惯性力f 。在匀速运动中,惯性力是一个恒力,不会改变振子的振动周期,振动周期

m k T /2/2πωπ==

因为l mg k ?=/,所以

)(2.02s g l T ππ=?=

因此在电梯向下加速或减速运动的过程中,振动的次数都为

)(52.0//次===ππT t n

当电梯向下加速运动时,振子受到向上的惯性力mg/2,在此力和重力mg 的共同作用下,振子的平衡位置在

2//21

1l k mg l ?==

?

的地方,同样,当电梯向下减速运动时,振子的平衡位置在

2/3/23

2l k mg l ?==

?

的地方。在电梯向下加速运动期间,振子正好完成5次全振动,因此两个阶段内振子的振幅都是2/l ?。弹簧的伸长随时间变化的规律如图5-2-2所示,读者可以思考一下,如果电梯第二阶段的匀减速运动不是从5T 时刻而是从4.5T 时刻开始的,那么t l ~?图线将是怎样的?

(2)弹簧的组合 设有几个劲度系数分别为1k 、2k ……n k 的轻弹簧串联起来,组成一个新弹簧组,当这个新弹簧组在F 力作用下伸长时,各弹簧的伸长为1x ,

2图5-2-2

那么总伸长

∑==n

i i

x x 1

各弹簧受的拉力也是F ,所以有 i i k F x /=

==n

i i k F x 1

1

根据劲度系数的定义,弹簧组的劲度系数 x F k /=

即得

==n

i i k k 1

1/1

如果上述几个弹簧并联在一起构成一个新的弹簧组,那么各弹簧的伸长是相同的。要使各弹簧都伸长x ,需要的外力

∑∑====n

i i

n

i i k x x k F 1

1

根据劲度系数的定义,弹簧组的劲度系数

∑===n

i i

k x F

k 1

导出了弹簧串、并联的等效劲度系数后,在解题中要灵活地

应用,如图5-2-3所示的一个振动装置,两根弹簧到底是并联还是串联?这里我们必须抓住弹簧串并联的本质特征:串联的本质特征是每根弹簧受力相同;并联的本质特征是每根弹簧形变相同。由此可见图5-2-3中两根弹簧是串联。

当m 向下偏离平衡位置x ?时,弹簧组伸长了2 x ?,增加的弹力为

212

122k k k k x

xk F +?=?=

图5-2-3

m 受到的合外力(弹簧和动滑轮质量都忽略)

x k k k

k k k k k x

F ?+=+??=∑2

1212121422

所以m 的振动周期

21214)(2k k k k m T +=π

=

2

121)(k k k k m +π

再看如图5-2-4所示的装置,当弹簧1由平衡状态伸长1l ?时,弹簧2由平衡位置伸长了2l ?,那么,由杆的平衡条件一定有(忽略杆的质量)

b l k a l k 2211?=??

1212l b a k k l ???=

?

由于弹簧2的伸长,使弹簧1悬点下降

1

22

212l b a k k b a l x ???=?='? 因此物体m 总的由平衡位置下降了

2

2221111l b a k k x l x ?????

??+?='?+?=?

此时m 所受的合外力

1

22212

2111x b k a k b k k l k F ?+=?=∑

所以系统的振动周期

2

212221)

(2b k k b k a k m T +=π

(3)没有固定悬点的弹簧振子 质量分别为A m 和B m 的两木块A 和B ,用

图5-2-4

一根劲度系数为k 的轻弹簧联接起来,放在光滑的水平桌面上(图5-2-5)。现在让两木块将弹簧压缩后由静止释放,求系统振动的周期。

想象两端各用一个大小为F 、方向相反的力将弹簧压缩,假设某时刻A 、B 各偏离了原来的平衡位置A x 和B x ,因为系统受的合力始终是零,所以应该有

B B A A x m x m = ①

A 、

B 两物体受的力的大小

k x x F F B A B A )(+== ②

由①、②两式可解得

A

B B

A A x m m m k F +=

B

B

B

A B x m m m k

F +=

由此可见A 、B 两物体都做简谐运动,周期都是

)(2B A B

A m m k m m T +=π

此问题也可用另一种观点来解释:因为两物体质心处的弹簧是不动的,所以可以将弹簧看成两段。如果弹簧总长为0l ,左边

一段原长为0l m m m B A B +,劲度系数为k

m m m B B

A +;右边一段原长为0l m m m

B A A +,劲度系数为k

m m m B

B

A +,这样处理所得结果与上述结

果是相同的,有兴趣的同学可以讨论,如果将弹簧压缩之后,不

是同时释放两个物体,而是先释放一个,再释放另一个,这样两个物体将做什么运动?系统的质心做什么运动?

5.2.2、单摆

图5-2-5

图5-2-6

一个质量为m 的小球用一轻质细绳悬挂在天花板上的O 点,小球摆动至与竖直方向夹θ角,其受力情况如图5-2-6所示。其中回复力,即合力的切向分力为

θs i n

?=mg F 回 当θ<5o时,△OAB 可视为直角三角形,切向分力指向平衡位置A ,且

l x

=

θs i n ,所以

x l mg

F =

kx F =回(式中

l mg k =

说明单摆在摆角小于5o时可近似地看作是一个简谐振动,振动的周期为

g l k m T ππ

22==

在一些异型单摆中,l 和g 的含意以及值会发生变化。

(1)等效重力加速度g '

单摆的等效重力加速度g '等于摆球相对静止在平衡位置时,指向圆心的弹力与摆球质量的比值。

如在加速上升和加速下降的升降机中有一单摆,当摆球相对静止在平衡位置时,绳子中张力为)(a g m ±,因此该单摆的等效重力加

速度为g '=a g ±。周期为

a g l T ±=π

2

再如图5-2-7所示,在倾角为θ的光滑斜面上有一单摆,当摆球相对静止在平衡位置

图5-2-7

a

图5-2-8

时,绳中张力为θsin mg ,因此单摆的等效重力加速度为g '=θsin g ,周期为

θπ

sin 2g l T =

又如一节车厢中悬挂一个摆长为l 的单摆,车厢以加速度a 在水平地面上运动(如图5-2-8)。由于小球m 相对车厢受到一个惯性力ma f =,所以它可以“平

衡”在OA 位置,

g a

tga =

,此单摆可以在车厢中以OA 为中心做简谐振动。当

小球相对静止在平衡位置A 处时,绳中张力为2

2g a m +,等效重力加速度

22g a g +=',单摆的周期

222g a l T +=π

(2)等效摆长l '

单摆的等效摆长并不一定是摆球到悬点的距离,而是指摆球的圆弧轨迹的半径。如图5-2-9中的双线摆,其等效摆长不是l ,而是θsin l ,周期

g l T θ

π

s i n 2=

再如图5-2-10所示,摆球m 固定在边长为L 、质量可忽略的等边三角形支架ABC 的顶角C 上,三角支架可围绕固定的AB 边自由转动,AB 边与竖直方向成a 角。

当m 作小角度摆动时,实际上是围绕AB 的中

点D 运动,故等效摆长

图5-2-9

图5-2-10

aM

图5-2-11

L L l 2330cos 0=

='

正因为m 绕D 点摆动,当它静止在平衡位置时,指向D 点的弹力为a mg sin ,等效重力加速度为a g sin ,因此此异型摆的周期

a g L g l T sin 2322ππ

=''=

(3)悬点不固定的单摆

如图5-2-11,一质量为M 的车厢放在水平光滑地面上,车厢中悬有一个摆长为l ,摆球的质量为m 的单摆。显然,当摆球来回摆动时,车厢也将作往复运动,悬点不固定。

由摆球相对于车厢的运动是我们熟悉的单摆,故取车厢为非惯性系,摆球受到重力mg ,摆线拉力N 和惯性力M ma 的作用,如图

分析摆球

N=θθsin cos M ma mg - ①(忽略摆球向心力)

回复力 θθcos sin M ma mg F += ② 分析车厢:

M Ma N =θsin ③

因为θ很小,所以可认为θθ=sin ,1cos =θ,0sin 2

则由①、③式可得

θg M m a M =

把它代入②

θ)1(M m

mg F +

=

摆球偏离平衡位置的位移 l x θ=

所以

x

MI m M mg F )

(+=

因此摆球作简谐振动,周期

g m M ml T )(2+=π

由周期表达式可知:当M ?m 时,

g l

T π2=,因为此时M 基本不动,一般

情况下,

g l T π

2<

高中物理竞赛试题及答案

高中物理竞赛模拟试卷(一) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间 120 分钟. 第Ⅰ卷(选择题 共 40 分) 一、本题共 10 小题,每小题 4 分,共 40 分,在每小题给出的 4 个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得 2 分,有错选或不答的得 0 分. 1.置于水平面的支架上吊着一只装满细砂的漏斗,让漏斗左、右摆动,于是桌面上漏下许多砂子,经过一段时间形成一砂堆,砂堆的纵剖面最接近下图Ⅰ-1中的哪一种形状 2.如图Ⅰ-2所示,甲乙两物体在同一光滑水平轨道上相向运动,乙上连有一段轻弹簧,甲乙相互作用过程中无机械能损失,下列说法正确的有 A.若甲的初速度比乙大,则甲的速度后减到 0 B.若甲的初动量比乙大,则甲的速度后减到0 C.若甲的初动能比乙大,则甲的速度后减到0 D.若甲的质量比乙大,则甲的速度后减到0 3.特技演员从高处跳下,要求落地时必须脚先着地,为尽量保证安全,他落地时最好是采用哪种方法 A.让脚尖先着地,且着地瞬间同时下蹲 B.让整个脚板着地,且着地瞬间同时下蹲 C.让整个脚板着地,且着地瞬间不下蹲 D.让脚跟先着地,且着地瞬间同时下蹲 4.动物园的水平地面上放着一只质量为M 的笼子,笼内有一只质量为 m 的猴子.当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F 1;当猴以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为 F 2(如图Ⅰ-3),关于 F 1 和 F 2 的大小,下列判断中正确的是 A.F 1 = F 2>(M + m )g B.F 1>(M + m )g ,F 2<(M + m )g C.F 1>F 2>(M + m )g D.F 1<(M + m )g ,F 2>(M + m )g 5.下列说法中正确的是 A.布朗运动与分子的运动无关 B.分子力做正功时,分子间距离一定减小 C.在环绕地球运行的空间实验室里不能观察热传递的对流现象 D.通过热传递可以使热转变为功 6.如图Ⅰ-4所示,虚线a 、b 、c 代表电场中的三个等势面,相邻等势面之 图Ⅰ -3 图Ⅰ -4 图Ⅰ-2

大学物理A第九章 简谐振动

第九章 简谐振动 填空题(每空3分) 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。(3:1,2A ) 9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。(0.05m ) 9-3两个同方向同频率的简谐振动的表达式分别为X 1=×10-2cos(T π2t+4 π ) (SI) , X 2=×10-2cos(T π2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=×10-2cos(T π2t+4 π ) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2 A 处所需要的最短时间为_________。( 12 T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4 cos(1π ω+ =t A x m 、 )4 3 cos(32πω+=t A x m ,则合振动的振幅为 。(2 A) 9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2 A 处所需要的最短时间为_________。 ( 6 T ) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、)25.010cos(04.02π-=t x m ,则合振动的振幅为 。 (0.01m ) 质量0.10m kg =的物体,以振幅21.010m -?作简谐振动,其最大加速度为2 4.0m s -?,通过平衡 位置时的动能为 ;振动周期是 。(-3 2.010,10s J π?) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。(3π) 9-10质量为0.1kg 的物体,以振幅21.010m -?作谐振动,其最大加速度为14.0m s -?,则通过最大位移处的势能为 。(3210J -?) 9-11一质点做谐振动,其振动方程为6cos(4)x t ππ=+(SI ),则其周期为 。

高中奥林匹克物理竞赛解题方法之七对称法

例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运 动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:?? ? ??==2 021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320 == 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ? ??==?? ???-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得2 202arcsin 2122sin v dg v dg == θθ 所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬 想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于 三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可. 由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 3 3 = 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为 v v v 2330cos = =' 由此可知三角形收缩到中心的时间为 v a v s t 32='= 此题也可以用递推法求解,读者可自己试解. 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v . 解析:在水平面参考系中建立水平方向的x 轴和y 轴. 由系统的对称性可知中心或者说槽整体将仅在x 轴方向上 运动。设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于

《全国中学生物理竞赛大纲》2020版

《全国中学生物理竞赛大纲2020版》 (2020年4月修订,2020年开始实行) 2011年对《全国中学生物理竞赛内容提要》进行了修订,修订稿经全国中学生物理竞赛委员会第30次全体会议通过,并决定从2020年开始实行。修订后的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。 力学 1.运动学 参考系 坐标系直角坐标系 ※平面极坐标※自然坐标系 矢量和标量 质点运动的位移和路程速度加速度 匀速及匀变速直线运动及其图像 运动的合成与分解抛体运动圆周运动 圆周运动中的切向加速度和法向加速度 曲率半径角速度和※角加速度 相对运动伽里略速度变换 2.动力学 重力弹性力摩擦力惯性参考系 牛顿第一、二、三运动定律胡克定律万有引力定律均匀球壳对壳内和壳外质点的引力公式(不要求导出) ※非惯性参考系※平动加速参考系中的惯性力 ※匀速转动参考系惯性离心力、视重 ☆科里奥利力 3.物体的平衡 共点力作用下物体的平衡 力矩刚体的平衡条件 ☆虚功原理 4.动量 冲量动量质点与质点组的动量定理动量守恒定律※质心 ※质心运动定理 ※质心参考系 反冲运动 ※变质量体系的运动 5.机械能 功和功率

动能和动能定理※质心动能定理 重力势能引力势能 质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)弹簧的弹性势能功能原理机械能守恒定律 碰撞 弹性碰撞与非弹性碰撞恢复系数 6.※角动量 冲量矩角动量 质点和质点组的角动量定理和转动定理 角动量守恒定律 7.有心运动 在万有引力和库仑力作用下物体的运动 开普勒定律 行星和人造天体的圆轨道和椭圆轨道运动 8.※刚体 刚体的平动刚体的定轴转动 绕轴的转动惯量 平行轴定理正交轴定理 刚体定轴转动的角动量定理刚体的平面平行运动9.流体力学 静止流体中的压强 浮力 ☆连续性方程☆伯努利方程 10.振动 简谐振动振幅频率和周期相位 振动的图像 参考圆简谐振动的速度 (线性)恢复力由动力学方程确定简谐振动的频率简谐振动的能量同方向同频率简谐振动的合成 阻尼振动受迫振动和共振(定性了解) 11.波动 横波和纵波 波长频率和波速的关系 波的图像 ※平面简谐波的表示式 波的干涉※驻波波的衍射(定性) 声波 声音的响度、音调和音品声音的共鸣乐音和噪声

高中物理竞赛流程详细解析

高中物理竞赛流程详细解析 高中物理竞赛国内竞赛主要分为:物理竞赛预赛、物理竞赛复赛、物理竞赛决赛三个流程,国际性赛事分为国际物理奥林匹克竞赛和亚洲物理奥林匹克竞赛。 一、全国中学生物理竞赛预赛(CPhO) 1、高中物理竞赛入门级赛事,每年9月上旬举办(也就是秋学期开学),由全国竞赛委员会统一命题,各省市、学校自行组织,所有中学生均可报名; 2、考试形式:笔试,共3小时,5道选择题、每题6分,5道填空题、每题10分,6道大题、每题20分,共计200分; 3、考试主要考力学、热学、电磁学、光学、近代物理等相关内容(回台回复“物竞考纲”查看明细); 4、比赛分别设置了一等奖、二等奖和三等奖,因为预赛主要是各省市为了选拔复赛选手而筹备的,所以一般一等奖可以参加复赛。 5、一般来说,考完试后2~3天即可在考点查询成绩。 二、全国中学生物理竞赛复赛(CPhO) 1、高中阶段最重要的赛事,其成绩对于自主招生及参加清北学科营等有直接影响,每年9月下旬举办(也就是预赛结束后)。 2、复赛分为笔试+实验: 笔试,共3小时,8道大题,每题40分,共计320分; 实验,共90分钟,2道实验,每道40分,共计80分; 总分400分。 3、笔试由全国竞赛委员会统一命题,各省市自行组织、规定考点,大多数省份只有预赛一等奖的同学可以参加; 实验由各省市自行命题,根据笔试成绩组织前几十名左右考生参加(也就是说实验不是所有人都考,只有角逐一等奖的同学才参加),最终根据实验和笔试的总成绩评定出一等奖、二等奖、三等。 4、各省市的实验时间稍有不同,具体可参考当地往年的考试时间。 5、考试内容在预赛的基础上稍有增加,具体考纲后台回复“物竞考纲”查看。 6、比赛设置了一等奖、二等奖、三等奖,也就是我们常说的省一、省二、省三,其中各省省一前几名入选该省省队,可参加决赛。 7、成绩有什么用? 省一等奖可基本满足除清华、北大、复旦以外其他985/211高校的自主招生条件; 省二等奖可满足部分985/211高校的自主招生条件; 省三等奖可满足大部分211学校的自主招生条件。 8、各省省队成员可参加清北金秋营、冬令营,并根据成绩获得降分优惠。

高中物理竞赛的数学基础(自用修改)

普通物理的数学基础 选自赵凯华老师新概念力学 一、微积分初步 物理学研究的是物质的运动规律,因此我们经常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系。这样,微积分这个数学工具就成为必要的了。我们考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的。所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要。至于更系统和更深入地掌握微积分的知识和方法,读者将通过高等数学课程的学习去完成。 §1.函数及其图形 1.1函数自变量和因变量绝对常量和任意常量 1.2函数的图象 1.3物理学中函数的实例 §2.导数 2.1极限 如果当自变量x无限趋近某一数值x0(记作x→x0)时,函数f(x)的数值无限趋近某一确定的数值a,则a叫做x→x0时函数f(x)的极限值,并记作 (A.17)式中的“lim”是英语“limit(极限)”一词的缩写,(A.17)式读作“当x趋近x0时,f(x)的极限值等于a”。 极限是微积分中的一个最基本的概念,它涉及的问题面很广。这里我们不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义。 求极限公式

(2) (3) (4) 等价无穷小量代换 sinx~x; tan~x; 2.2极限的物理意义 (1)瞬时速度 对于匀变速直线运动来说, 这就是我们熟悉的匀变速直线运动的速率公式(A.5)。 (2)瞬时加速度 时的极限,这就是物体在t=t0时刻的瞬时加速度a: (3)水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动。为简单起见,我们假设水渠是直的,这时可以把x坐标轴取为逆水渠走向的方向(见图A-5),于是各处渠底的高度h便是x的函数:

镜像法-高中物理竞赛讲义

镜像法 思路 用假想的镜像电荷代替边界上的感应电荷。 保持求解区域中场方程和边界条件不变。 使用范围:界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 使用范围 界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 步骤 确定镜像电荷的大小和位置。 去掉界面,按原电荷和镜像电荷求解所求区域场。 求解边界上的感应电荷。 求解电场力。 平面镜像1 点电荷对平面的镜像 (a) 无限大接地导体平面上方有点电荷q (b)用镜像电荷-q代替导体平面上方的感应电荷 图4.4.1 点电荷的平面镜像 在无限大接地导体平面(YOZ平面)上方有一点电荷q,距离导体平面的高度为h。 用位于导体平面下方h处的镜像电荷-q代替导体平面上的感应电荷,边界条件维持不变,即YOZ平面为零电位面。 去掉导体平面,用原电荷和镜像电荷求解导体上方区域场,注意不能用原电荷和镜像电荷求解导体下方区域场。

电位: (4.4.2.1 ) 电场强度: (4.4.2.2) 其中, 感应电荷:=> (4.4.2.3) 电场力: (4.4.2.4) 图4.4.2 点电荷的平面镜像图4.4.3 单导线的平面镜像 无限长单导线对平面的镜像 与地面平行的极长的单导线,半径为a,离地高度为h。

用位于地面下方h处的镜像单导线代替地面上的感应电荷,边界条件维持不变。 将地面取消而代之以镜像单导线(所带电荷的电荷密度为) 电位: (4.4.2.5) 对地电容 : (4.4.2.6 平面镜像2 无限长均匀双线传输线对平面的镜 像 与地面平行的均匀双线传输线, 半径为a,离地高度为h,导线间距离为d, 导线一带正电荷+,导线二带负电荷-。 用位于地面下方h处的镜像双 导线代替地面上的感应电荷,边界条件维 持不变。 将地面取消而代之以镜像双导线。 图 4.4.4 无限长均匀传输线对地面的镜像 求解电位: (4.4.2.8) (4.4.2.9)

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高中物理竞赛(解题方法:整体法)

高中奥林匹克物理竞赛解题方法 、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具 有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合 作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多 种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究 分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运 用整体思维可以产生不同凡响的效果,显现“变”的魅力, 把物理问题变繁为简、变难为易。 赛题精讲 例1如图1—1所示,人和车的质量分别为m和M,人用水 平力F拉绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩 擦,若人和车保持相对静止,且水平地面是光滑的,则车的加速度为 ________________________________________________ . 解析:要求车的加速度,似乎需将车隔离出来才能求解,事实 上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用 牛顿第二定律求解即可 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力 向重力与支持力平衡,水平方向绳的拉力为2F,所以有: 2F=(M+m)a,解得: 2F a M m 例2用轻质细线把两个质量未知的小球悬挂起来,如图 1 —2所示,今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右 偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ?在竖直方解析

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

高中物理竞赛方法集锦 等效法

四、等效法方法简介 在一些物理问题中,一个过程的发展、一个状态的确定,往往是由多个因素决定的,在这一决定中,若某些因素所起的作用和另一些因素所起的作用相同,则前一些因素与后一些因素是等效的,它们便可以互相代替,而对过程的发展或状态的确定,最后结果并不影响,这种以等效为前提而使某些因素互相代替来研究问题的方法就是等效法. 等效思维的实质是在效果相同的情况下,将较为复杂的实际问题变换为简单的熟悉问题,以便突出主要因素,抓住它的本质,找出其中规律.因此应用等效法时往往是用较简单的因素代替较复杂的因素,以使问题得到简化而便于求解. 赛题精讲 例1:如图4—1所示,水平面上,有两个竖直的光滑 墙壁A 和B ,相距为d ,一个小球以初速度v 0从两墙 之间的O 点斜向上抛出,与A 和B 各发生一次弹性 碰撞后,正好落回抛出点,求小球的抛射角θ. 解析:将弹性小球在两墙之间的反弹运动,可等效为 一个完整的斜抛运动(见图).所以可用解斜抛运动的 方法求解. 由题意得:g v v t v d θ θθsin 2cos cos 2000? =?= 可解得抛射角 20 2arcsin 21v gd = θ 例2:质点由A 向B 做直线运动,A 、B 间的距离为L ,已知质点在A 点的速度为v 0,加速度为a ,如果将L 分成相等的n 段,质点每通过L/n 的距离加速度均增加a /n ,求质点到达B 时的速度. 解析 从A 到B 的整个运动过程中,由于加速度均匀增加,故此运动是非匀变速直线 运动,而非匀变速直线运动,不能用匀变速直线运动公式求解,但若能将此运动用匀变速直线运动等效代替,则此运动就可以求解. 因加速度随通过的距离均匀增加,则此运动中的平均加速度为 n a n n a an n a n a a a a a 2)13(232)1(2 -= -=-++= += 末 初平 由匀变速运动的导出公式得2 22v v L a B -=平 解得 n aL n v v B )13(2 0-+ = 例3一只老鼠从老鼠洞沿直线爬出,已知爬出速度v 的大小与距老鼠洞中心的距离s 成

高中物理竞赛内容标准

高中物理竞赛内容标准 一、理论基础 力学 物理必修1 本模块是高中物理的第一模块。在本模块中学生,学生将进一步学习物理学的内容和研究方法,了解物理学的思想和研究方法,了解物理学在技术上的应用和物理学对社会的影响。 本模块的概念和规律是进一步学习物理的基础,有关实验在高中物理中具有基础性和典型性。要通过这些实验学习基本的操作技能,体验实验在物理学中的地位及实践人类在认识世界中的作用。 本模块划分两个四主题: ·运动的描述 ·相互作用与运动规律 ·抛体运动与圆周运动 ·经典力学的成就与局限性 (一)运动的描述 1.内容标准 (1)通过史实,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用。 例1 了解亚里士多德、迪卡尔等关于力与运动的主要观点与研究方法。 例2 了解伽利略的实验研究工作,认识伽利略有关实验的科学思想和方法。 (2)通过对质点的认识,了解物理学中物理模型特点,体会物理模型在探索自然规律中的作用。 例3 在日常生活中,物体在哪些情况下可以看做质点? (3)经历匀变速直线运动的实验过程,理解参考糸、位移、时间、时刻、路程、速度、相对速度、加速度的概念及物理量的标矢性,掌握匀变速直线运动的规律,体会实验在发现自然运动规律中作用。 例4 用实验方法和图像方法研究物体的运动。

例5 通过实例描述物体的变速运动,运动的矢量性。 例6 通过史实及实验研究自由落体运动。 (4)能用公式和图像描述匀变速直线运动,掌握微元法,积分法等数学思想在研究物理问题中的重要性。 (5)对过位移、速度、加速度的学习,理解矢量与标量在物理学中重要性。掌握矢量的合成和分解。 例7 通过实例研究物体竖直上抛运动,体会物体在共线条件下的矢量合成与分解。 2.活动建议 (1)通过研究汽车的运行来分析交通事故的原因。 (2)通过实验研究自由落体运动的影响因素。 (3)通过查阅物理学史,了解并讨论伽利略对物体运动的研究在科学发展和人类进步上的重大意义。 (二)相互作用与运动规律 1.内容标准 (1)知道常见的形变,通过实验了解物体的弹性,知道胡克定律。 例1 调查在日常生活和生产中所用弹簧的形状及使用目的。 例2 制作弹簧秤并用胡克定律解释。 (2)通过实验认识滑动摩擦、静摩擦的规律,理解静摩擦力、滑动摩擦力、摩擦角的概念。能用动摩擦因数计算滑动摩擦力。 例3 设计实验测量摩擦力。体会摩擦力与摩擦角的实际意义。 (3)通过实验,理解力的合成与分解,掌握共点的平衡条件,物体平衡的种类。用力的合成与分解分析日常生活中的问题。 例4 通过实验,研究两个共点力在不同夹角时与合力的关系。 例5 调查日常生活和生产中平衡的类型,分析平衡原理。

高中物理竞赛方法集锦

例11:如图13—11所示,用12根阻值均为r的相同的电阻丝构成正立方体框架。试求AG两点间的等效电阻。 解析:该电路是立体电路,我们可以将该立体电路“压扁”,使其变成平面电路,如图13—11—甲所示。 考虑到D、E、B三点等势,C、F、H三点等势,则电路图可等效为如图13—11—乙所示的电路图,所以AG间总电阻为

r r r r R 6 5363=++= 例12:如图13—12所示,倾角为θ的斜面上放一木 制圆制,其质量m=0.2kg ,半径为r ,长度L=0.1m ,圆柱 上顺着轴线OO ′绕有N=10匝的线圈,线圈平面与斜面 平行,斜面处于竖直向上的匀强磁场中,磁感应强度 B=0.5T ,当通入多大电流时,圆柱才不致往下滚动? 解析:要准确地表达各物理量之间的关系, 最好画出正视图,问题就比较容易求解了。如 图13—12—甲所示,磁场力F m 对线圈的力矩 为M B =NBIL ·2r ·sin θ,重力对D 点的力矩为: M G =mgsin θ,平衡时有:M B =M G 则可解得:A NBL mg I 96.12== 例13:空间由电阻丝组成的无穷网络如图13—13 所示,每段电阻丝的电阻均为r ,试求A 、B 间的等效 电阻R AB 。 解析:设想电流A 点流入,从B 点流出,由对称 性可知,网络中背面那一根无限长电阻丝中各点等电 势,故可撤去这根电阻丝,而把空间网络等效为图13—13—甲所示的电路。

(1)其中竖直线电阻r ′分别为两个r 串联和一个r 并联后的电阻值, 所以 r r r r r 3 232=?=' 横线每根电阻仍为r ,此时将立体网络变成平面网络。 (2)由于此网络具有左右对称性,所以以AB 为轴对折,此时网络变为如图13—13—乙所示的网络。 其中横线每根电阻为21r r = 竖线每根电阻为32r r r ='= '' AB 对应那根的电阻为r r 32 =' 此时由左右无限大变为右边无限 大。 (3)设第二个网络的结点为CD ,此后均有相同的网络,去掉AB 时电路为图13—13—丙所示。再设R CD =R n -1(不包含CD 所对应的竖线电阻) 则N B A R R =',网络如图13—13—丁所示。

高中物理竞赛方法集锦微元法针对训练

高中物理竞赛方法集锦微元法针对训练 例18:如图3—17所示,电源的电动热为E ,电容器的 电容为C ,S 是单刀双掷开关,MN 、PQ 是两根位于同 一水平面上的平行光滑长导轨,它们的电阻能够忽略不计, 两导轨间距为L ,导轨处在磁感应强度为B 的平均磁场 中,磁场方向垂直于两导轨所在的平面并指向图中纸面 向里的方向.L 1和L 2是两根横放在导轨上的导体小棒, 质量分不为m 1和m 2,且21m m <.它们在导轨上滑动 时与导轨保持垂直并接触良好,不计摩擦,两小棒的电阻 相同,开始时两根小棒均静止在导轨上.现将开关S 先合向 1,然后合向2.求: 〔1〕两根小棒最终速度的大小; 〔2〕在整个过程中的焦耳热损耗.〔当回路中有电流时,该电流所产生的磁场可忽略不计〕 解析:当开关S 先合上1时,电源给电容器充电,当开关S 再合上2时,电容器通过导体小棒放电,在放电过程中,导体小棒受到安培力作用,在安培力作用下,两小棒开始运动,运动速度最后均达到最大. 〔1〕设两小棒最终的速度的大小为v ,那么分不为L 1、L 2为研究对象得: 111 1v m v m t F i i -'=? ∑=?v m t F i i 111 ① 同理得: ∑=?v m t F i i 222 ② 由①、②得:v m m t F t F i i i i )(212211+=?+?∑∑ 又因为 11Bli F i = 21i i t t ?=? 22Bli F i = i i i =+21 因此 ∑∑∑∑?=?+=?+?i i i i t i BL t i i BL t BLi t BLi )(212211 v m m q Q BL )()(21+=-= 而Q=CE q=CU ′=CBL v 因此解得小棒的最终速度 2221)(L CB m m BLCE v ++= 〔2〕因为总能量守恒,因此热Q v m m C q CE +++=22122)(2 12121 即产生的热量 22122)(2 12121v m m C q CE Q +--=热

高中物理竞赛基础:电路化简

§2. 4、电路化简 2.4.1、 等效电源定理 实际的直流电源 可以看作电动势为 ε,内阻为零的恒压 源与内阻r 的串联, 如图2-4-1所示,这部分电路被称为电压源。 不论外电阻R 如何,总是提供不变电流的理想电源为恒流源。实际电源ε、r 对外电阻R 提供电流I 为 r R r r r R I +? =+=ε ε 其中r /ε 为电源短路电流0I ,因而实际电源可看作是一定的内阻与恒流并 联的电流源,如图2-4-2所示。 实际的电源既可看作电压源,又可看作电流源,电流源与电压源等效的条件是电流源中恒流源的电流等于电压源的短路电流。利用电压源与电流源的等效性可使某些电路的计算简化。 等效电压源定理又叫戴维宁定理,内容是:两端有源网络可等效于一个电压源,其电动势等于网络的开路电压,内 阻等于从网络两端看除电源以外网络的电阻。 如图2-4-3所示为两端有源网络A 与电阻R 的串联,网络A 可视为一电压源, 图2-4-1 图 2-4-2 图2-4-3 图2-4-4

等效电源电动势0ε等于a 、b 两点开路时端电压,等效内阻0r 等于网络中除去电动势的内阻,如图2-4-4所示。 等效电流源定理 又叫诺尔顿定理,内容是:两端有源网络可等效于一个电流源,电流源的0I 等于网络两端短路时流经两端点的电流,内阻等于从网络两端看除电源外网络的电阻。 例4、如图2-4-5所示的电路中, Ω=Ω= Ω=Ω=Ω===0.194 ,5.43,0.101 ,0.12 ,5.01,0.12 ,0.31R R R R r r V V εε (1)试用等效电压源定理计算从电源()22r 、ε正极流出的电流2I ;(2)试用等效电流源定理计算从结点B 流向节点A 的电流1I 。 分析: 根据题意,在求通过2ε电源的电流时,可将ABCDE 部分电路等效为一个电压源,求解通过1R 的电流时,可将上下两个有源支路等效为一个电流源。 解: (1)设ABCDE 等效电压源电动势0ε,内阻0r ,如图2-4-6所示,由等效电压源定理,应有 V R R R r R 5.11321110=+++=εε ()Ω=+++++= 53 21132110R R R r R R r R r 电源00r 、ε与电源22r 、ε串联,故 A r R r I 02.02 400 22-=+++= εε A 2 图2-4-5 图2-4-6

大学物理振动波动例题习题

精品 振动波动 一、例题 (一)振动 1.证明单摆是简谐振动,给出振动周期及圆频率。 2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。当t = 0时, 位移为6cm ,且向x 轴正方向运动。 求: (1) 振动表达式; (2) t = 0.5s 时,质点的位置、速度和加速度; (3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。 3. 已知两同方向,同频率的简谐振动的方程分别为: x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+ 求:(1)合振动的初相及振幅. (2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +? 3 ), 则当? 3为多少时 x 1 + x 3 的振幅最大?又? 3为多少时 x 2 + x 3的振幅最小? (二)波动 1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动, 求:(1)波动方程 (2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。 2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。已知原点的振动曲线如图所示。求:(1)原点的振动表达式; (2)波动表达式; (3)同一时刻相距m 1的两点之间的位相差。 3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。 S 1距P 点3个波长,S 2距P 点21/4个波长。求:两波在P 点引起的合振动振幅。

高中物理竞赛辅导工作计划

高中物理竞赛培训工作计划 为了使奥赛培训工作有条不紊的进行,并力争在2009年全国二十六届物理竞赛中取得优异成绩,现就2007年到2009年的物理竞赛的培训工作,制定如下工作计划。 一、选拔培训队员: 组队工作在高一新生入学后不久就着手进行,先动员学生报名,再举行测试初选。物理初选测试试题命制思想:①为适应物理竞赛培训,题量设置与竞赛一样,为七或八个大题,总分160分;②重点考查学生对已学物理知识的理解与应用;③试题中还包含对学生自学能力的考查(题中详细给出学生还未学习的高中物理规律,让学生依据提供信息解题)、运用数学知识解决物理问题能力的考查、将生活中的问题转化为物理模型的能力的考查等等。经过初选,保留50个左右的学生参加培训。奥赛培训,实行五定(定时间、定场地、定学生、定内容、定辅导老师)。以后通过培训逐步精减队员,到进入奥赛教程培训时,保留10个左右的队员。 二、选好合适的教材与教辅资料 选择能涵盖所有竞赛知识点,难度适当,有内容分析,有解题讲评,有一定量的难度合适的训练题的竞赛书1到2本。另外,结合自己授课安排,推荐学生几本参考书,让学生在有余力的前提下去自学、去查阅。 拟定奥赛培训资料:第一轮使用范小辉编撰的《新编物理奥赛教程》(南京师范大学出版),这本教材知识点归纳详细、题型全面、

难度适中、有详细的习题解答;第二轮使用浙江大学出版的《更高更妙的物理》(沈晨编著)、湖南师范大学出版的《高中物理奥赛经典解题金钥匙》两本教材,以巩固拓宽知识、掌握解题方法技巧、提高学生解题能力。实验教材选用湖南师范大学出版的《高中物理奥赛经典实验教材》(青一平著)。 三、进度安排: 1、高中教材知识学习:从组队开始培训,选择一本高三复习资料书作教材,通过传授与自学相结合,重点培训高中物理主干知识,引入奥赛中创新的思路和解题方法。这一轮从2007年9月底到第二年3月份; 2、第一轮奥赛教程培训:系统地按章节完成全国中学生物理竞赛所涉及到的竞赛内容;教练对教程中的知识点、例题及较难的习题进行认真讲解,掌握竞赛知识,进行题型归类。每完成一个章节,选题对前面章节进行检测,巩固效果。本轮计划用时10个月,到高二第二学期初。 3、第二轮奥赛教程培训:以学生自学为主,进行思维方法的分类与培训。教练的任务是帮助学生解决自学中遇到的问题,同时选题对学生进行测试。计划用时4个月。 4、第三轮赛前强化训练:完成竞赛涉及内容的常规训练;基本做完历届全国中学生物理竞赛预赛、复赛卷;收集典型的、新颖的试题,组编模拟训练试题,强化训练。一直到2009年9月初的预赛,决赛前减少训练量,查漏补缺,调整状态。

大学物理振动习题含答案

一、选择题: 1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ [ ] 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x 1 = A cos(ωt + α)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为: (A) )π21cos(2++=αωt A x (B) ) π2 1cos(2- +=αωt A x (C) ) π23cos(2- +=αωt A x (D) )cos(2π++=αωt A x [ ] 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 (A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ] 4.3396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律 用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ] 5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T '。则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <' (C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为 ) 31 2cos(10 42 π+ π?=-t x (SI)。 从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 8 1 (B) s 6 1 (C) s 4 1 (D) s 3 1 (E) s 2 1 [ ] 7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为: (A) )21/(cos π+=t m k A x (B) )21 /cos(π-=t m k A x (C) )π21/(cos + =t k m A x (D) )21/cos(π- =t k m A x (E) t m /k A x cos = [ ] 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点。若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为 v v 2 1

相关主题
文本预览
相关文档 最新文档