当前位置:文档之家› 空间向量专题练习答案

空间向量专题练习答案

空间向量专题练习答案
空间向量专题练习答案

空间向量专题练习

一、填空题(本大题共4小题,共20.0分)

1.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为______ .

【答案】

π3或2π

3

【解析】

解:设平面α的法向量为m=(1,0,-1),平面β的法向量为n=(0,-1,1),

则cos<m,n>=

2?2=-1

2

∴<m,n>=2π

3

∵平面α与平面β所成的角与<m,n>相等或互补,

∴α与β所成的角为π

3或2π

3

故答案为:π

3或2π

3

利用法向量的夹角与二面角的关系即可得出.

本题考查了利用用法向量的夹角求二面角的方法,考查了计算能力,属于基础题.

2.平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则平面α的法向量u可以是______ (写出一个即可)

【答案】

(0,1,-1)

【解析】

解:AB=(2,1,1),AC=(3,-1,-1),

设平面α的法向量u=(x,y,z),

则u?AB=2x+y+z=0

u?AC=3x?y?z=0

,令z=-1,y=1,x=0.

∴u=(0,1,-1).

故答案为:(0,1,-1).

设平面α的法向量u=(x,y,z),则u?AB=2x+y+z=0

u?AC=3x?y?z=0

,解出即可.

本题考查了线面垂直与数量积的关系、平面的法向量,属于基础题.

3.已知AB=(1,0,2),AC=(2,1,1),则平面ABC的一个法向量为______ .【答案】

(-2,3,1)

【解析】

解:AB=(1,0,2),AC=(2,1,1),

设平面ABC的法向量为n=(x,y,z),

则n?AB=0

n?AC=0

,即

x+2z=0

2x+y+z=0,取x=-2,则z=1,y=3.

∴n=(-2,3,1).

故答案为:(-2,3,1).

设平面ABC的法向量为n=(x,y,z),则n?AB=0

n?AC=0

,解出即可.

本题考查了平面的法向量、线面垂直与数量积的关系,属于基础题.

4.在三角形ABC中,A(1,-2,-1),B(0,-3,1),C(2,-2,1),若向量n与平面ABC垂直,且|n|=21,则n的坐标为______ .

【答案】

(2,-4,-1)或(-2,4,1)

【解析】

解:设平面ABC的法向量为m=(x,y,z),

则m?AB=0,且m?AC=0,

∵AB=(-1,-1,2),AC=(1,0,2),

∴?x?y+2z=0 x+2z=0,

即x=?2z y=4z,

令z=1,则x=-2,y=4,

即m=(-2,4,1),

若向量n与平面ABC垂直,

∴向量n∥m,

设n=λm=(-2λ,4λ,λ),

∵|n|=21,

∴21?|λ|=21,

即|λ|=1,

解得λ=±1,

∴n的坐标为(2,-4,-1)或(-2,4,1),

故答案为:(2,-4,-1)或(-2,4,1)

根据条件求出平面的法向量,结合向量的长度公式即可得到结论.

本题主要考查空间向量坐标的计算,根据直线和平面垂直求出平面的法向量是解决本题的关键.

二、解答题(本大题共3小题,共36.0分)

5.如图,在四棱锥P-ABCD中,底面ABCD为菱形,

∠BAD=60°,Q为AD的中点.

(1)若PA=PD,求证:平面PQB⊥平面PAD;

(2)点M在线段PC上,PM=1

3

PC,若平面PAD⊥

平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的

大小.

【答案】

解:(1)证明:由题意知:PQ ⊥AD ,BQ ⊥AD ,PQ ∩BQ=Q ,

∴AD ⊥平面PQB ,

又∵AD ?平面PAD ,

∴平面PQB ⊥平面PAD .

(2)∵PA=PD=AD ,Q 为AD 的中点,

∴PQ ⊥AD ,

∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,

∴PQ ⊥平面ABCD ,

以Q 这坐标原点,分别以QA ,QB ,QP 为x ,y ,z 轴,

建立如图所求的空间直角坐标系,

由题意知:Q (0,0,0),A (1,0,0),

P (0,0, 3),B (0, 3,0),C (-2, 3,0)

∴QM =23QP +13QC =(-23, 33,2 33

), 设n 1 是平面MBQ 的一个法向量,则n 1 ?QM =0,n 1 ?QB =0,

∴ 3y =0

?23x + 33y +2 33

z =0,∴n 1 =( 3,0,1),

又∵n 2 =(0,0,1)平面BQC 的一个法向量,

∴cos <n 1 ,n 2 >=12,

∴二面角M-BQ-C 的大小是60°.

【解析】

(1)由题设条件推导出PQ ⊥AD ,BQ ⊥AD ,从而得到AD ⊥平面PQB ,由此能够证明平面PQB ⊥平面PAD .

(2)以Q 这坐标原点,分别以QA ,QB ,QP 为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角M-BQ-C 的大小.

本题考查平面与平面垂直的证明,考查二面角的大小的求法,解题时要认真审题,注意向量法的合理运用.

6.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC=2,点E 是PC 的中点,F 在直线PA 上.

EF ⊥PA ,求PF PA 的值; (1)若(2)求二面角P-BD-E 的大小.

【答案】

解:(1)∵在四棱锥P-ABCD 中,底

面ABCD 是正方形,侧棱PD ⊥底面

ABCD ,

∴以D 为原点,DA 为x 轴,DC 为y

轴,DP 为z 轴,建立空间直角坐标系,

∵PD=DC=2,点E 是PC 的中点,F 在直线PA 上,

∴P (0,0,2),A (2,0,0),C (0,2,0),E (0,1,1),

设F (a ,0,c ),PF =λPA

,则(a ,0,c -2)=λ(2,0,-2)=(2λ,0,-2λ), ∴a =2λ,c =2-2λ,F (2λ,0,2-2λ),

EF

=(2λ,-1,1-2λ),PA =(2,0,-2), ∵EF ⊥PA ,∴EF ?PA =4λ-2+4λ=0,解得λ=14

, ∴PF PA =14.

(2)P (0,0,2),B (2,2,0),D (0,0,0),E (0,1,1),

DP =(0,0,2),DB =(2,2,0),DE

=(0,1,1), 设平面BDP 的法向量n =(x ,y ,z ),

则 n ?DB =2x +2y =0n

?DP =2z =0,取x =1,得n =(1,-1,0), 设平面BDE 的法向量m =(x ,y ,z ),

则 m ?DB =2x +2y =0m

?DE =y +z =0,取x =1,得m =(1,-1,1), 设二面角P-BD-E 的大小为θ,

则cos θ=|m ?n ||m |?|n |= 2? 3= 63. ∴二面角P-BD-E 的大小为arccos 6

3. 【解析】

(1)以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,利用向量法能求出PF

PA 的值.

(2)求出平面BDP 的法向量和设平面BDE 的法向量,由此能求出二面角P-BD-E 的大小.

本题考查线段比值的求法,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

7.如图所示的几何体是由棱台ABC-A 1B 1C 1和棱锥D-AA 1C 1C 拼接而成的组合体,其底面四边形ABCD 是边长为2的菱形,且

∠BAD=60°,BB 1⊥平面ABCD ,

BB 1=2A 1B 1=2.

(Ⅰ)求证:平面AB 1C ⊥平面BB 1D ; (Ⅱ)求二面角A 1-BD-C 1的余弦值.

【答案】

(Ⅰ)证明:∵BB 1⊥平面ABCD ,∴BB 1⊥AC ,

∵ABCD 是菱形,∴BD ⊥AC ,

又BD ∩BB 1=B ,∴AC ⊥平面BB 1D ,

∵AC ?平面AB 1C ,∴平面AB 1C ⊥平面BB 1D ;

(Ⅱ)设BD 、AC 交于点O ,以O 为坐标原点,

以OA为x轴,以OD为y轴,建立如图所示空间直角坐标系.

则B(0,?1,0),D(0,1,0),B1(0,?1,2),A(3,0,0),A1(3

2,?1

2

,2),

C1(?3

2,?1

2

,2),

∴BA1=(3

2,1

2

,2),BD=(0,2,0),BC1=(?3

2

,1

2

,2).

设平面A1BD的法向量n=(x,y,z),

由n?BA1=3

2

x+1

2

y+2z=0

n?BD=2y=0

,取z=3,得n=(?4,0,3),

设平面DCF的法向量m=(x,y,z),

由m?BD=2y=0

m?BC1=?3

2

x+1

2

y+2=0

,取z=3,得m=(4,0,3).

设二面角A1-BD-C1为θ,

则cosθ=|m?n|

|m||n|=13

19

【解析】

(Ⅰ)由BB1⊥平面ABCD,得BB1⊥AC,再由ABCD是菱形,得BD⊥AC,由线面垂直的判定可得AC⊥平面BB1D,进一步得到平面AB1C⊥平面BB1D;

(Ⅱ)设BD、AC交于点O,以O为坐标原点,以OA为x轴,以OD为y轴,建立如图所示空间直角坐标系.求出所用点的坐标,得到平面A1BD与平面DCF的法向量,由两法向量所成角的余弦值可得二面角A1-BD-C1的余弦值.

本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.

平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB =3a, CD =-5a ,且||||AD BC = ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =1 3 CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB =a +2b ,BC = -5a +6b ,CD =7a -2b ,则一定共线的三点是 ( ) A .A 、B 、D B .A 、B 、C C .B 、C 、D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =x AB ,AE =y AC ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB =2AC ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB =(sin α,cos β), α,β∈(-2π,2π),则α+β= * 11.已知a =(1,2) ,b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

空间向量和立体几何练习题及答案.

1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. (1)求证:M为PB的中点; (2)求二面角B﹣PD﹣A的大小; (3)求直线MC与平面BDP所成角的正弦值. 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O, ∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,

线性代数向量空间的练习题

线性代数向量空间的练习题 一、单项选择题 1.设A,B分别为m×n和m×k矩阵,向量组是由A 的列向量构成的向量组,向量组是由的列向量构成的向量组,则必有 A.若线性无关,则线性无关 B.若线性无关,则线性相关 C.若线性无关,则线性无关 D.若线性无关,则线性相关 2.设?1,?2,?3,?4是一个4维向量组,若已知?4可以表为?1,?2,?3的线性组合,且表示法 惟一,则向量组?1,?2,?3,?4的秩为 A.1 B.2 C.D.4 3.设向量组?1,?2,?3,?4线性相关,则向量组中 A.必有一个向量可以表为其余向量的线性组合 B.必有两个向量可以表为其余向量的线性组合 C.必有三个向量可以表为其余向量的线性组合 D.每一个向量都可以表为其余向量的线性组合 4.设有向量组A:?1,?2,?3,?4,其中?1,?2,?3线性无关,则 A.?1,?3线性无关 B.?1,?2,?3,?4线性无关

C.?1,?2,?3,?4线性相关 D.?2,?3,?4线性相关 5.向量组?1,?2,?,?s的秩不为零的充分必要条件是 A.?1,?2,?,?s中没有线性相关的部分组 C.?1,?2,?,?s全是非零向量 B.?1,?2,?,?s中至少有一个非零向量 D.?1,?2,?,?s全是零向量 6.设α1,α2,α3,α4是4维列向量,矩阵A=.如果|A|=2,则|-2A|= A.-3 B.-4 C.D.32 7.设α1,α2,α3,α是三维实向量,则 A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出 C. α1,α2,α3,α4一定线性相关 D. α1,α2,α3一定线性无关 8.向量组α1=,α2=,α3=的秩为 A.1 B.2 C.D.4 9.下列命题中错误的是.. A.只含有一个零向量的向量组线性相关 B.由3个2维向量组成的向量组线性相关 C.由一个非零向量组成的向量组线性相关 D.两个成比例的向量组成的向量组线性相关

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

高二数学-空间向量与立体几何测试题

1 / 10 高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

空间向量与空间角练习题

课时作业(二十) [学业水平层次] 一、选择题 1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( ) A .30° B .150° C .30°或150° D .以上均不对 【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且 异面直线所成角的围为? ????0,π2.应选A. 【答案】 A 2.已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 与直线CD 所成角的余弦值为( ) A.52266 B .-52266 C.52222 D .-52222 【解析】 AB →=(2,-2,-1),CD →=(-2,-3,-3), ∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=53×22=52266, ∴直线AB 、CD 所成角的余弦值为52266 . 【答案】 A

3.正方形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,若PA =AB ,则平面PAB 与平面PCD 的夹角为( ) A .30° B .45° C .60° D .90° 【解析】 如图所示,建立空间直角坐标系,设PA =AB =1.则A (0,0,0),D (0,1,0),P (0,0,1).于是AD → =(0,1,0). 取PD 中点为E , 则E ? ????0,12,12, ∴AE → =? ????0,12,12, 易知AD →是平面PAB 的法向量,AE →是平面PCD 的法向量,∴ cos AD →,AE →=22 , ∴平面PAB 与平面PCD 的夹角为45°. 【答案】 B 4.(2014·师大附中高二检测)如图3-2-29,在空间直角坐标系Dxyz 中,四棱柱ABCD —A 1B 1C 1D 1为长方体,AA 1=AB =2AD ,点E 、F 分别为C 1D 1、A 1B 的中点,则二面角B 1-A 1B -E 的余弦值为( )

平面向量测试题,高考经典试题,附详细答案

平面向量高考经典试题 一、选择题 1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与 b A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与 b 垂直,则=a ( ) A .1 B C .2 D .4 3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ?+?=______; 答案:3 2 ; 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(, sin ),2 m b m α=+其中,,m λα为实数.若2,a b =则m λ 的取值范围是 ( A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 5、(山东理11)在直角ABC ?中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2 AC AC AB =? (B ) 2 BC BA BC =? (C )2AB AC CD =? (D ) 2 2 ()() AC AB BA BC CD AB ???=

6、(全国2 理5)在?ABC 中,已知D 是AB 边上一点,若AD =2DB , CD =CB CA λ+3 1 ,则λ= (A) 3 2 (B) 3 1 (C) - 3 1 (D) - 3 2 7、(全国2理12)设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若 FC FB FA ++=0,则|FA|+|FB|+|FC|= (A)9 (B) 6 (C) 4 (D) 3 8、(全国2文6)在ABC △中,已知D 是AB 边上一点,若 1 23 AD DB CD CA CB λ==+,,则λ=( ) A .23 B .13 C .1 3 - D .2 3 - 9(全国2文9)把函数e x y =的图像按向量(2)=,0a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x + B .e 2x - C .2 e x - D .2 e x + 10、(北京理4)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 11、(上海理14)在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+,3AC i k j =+,则k 的可能值有 A 、1个 B 、2个 C 、3个 D 、4个 12、(福建理4文8)对于向量,a 、b 、c 和实数,下列命题中真命题是 A 若 ,则a =0或b =0 B 若 ,则λ=0或a =0 C 若=,则a =b 或a =-b D 若 ,则b =c 13、(湖南理4)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条

空间向量其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

空间向量练习题

空间向量的概念解析 例1、下列说法中正确的是( ) A.若|a |=|b |,则a,b 的长度相同,方向相同或相反 B.若向量a 是向量b 的相反向量,则|a |=|b | C.空间向量的减法满足结合律 D.在四边形ABCD 中,一定有AB AD AC += 练习 1、给出下列命题:①零向量没有方向;②若两个空间向量相等,则它们的起点相同,终点相同;③若空间向量a,b 满足|a |=|b |,则a=b ;④若空间向量m,n,p 满足m=n,n=p,则m=p ;⑤空间中任意两个单位向量必相等,其中正确命题的个数为( ) A.4 B.3 C.2 D.1 2、下列四个命题: (1)方向相反的两个向量是相反向量 (2)若a,b 满足|a |>|b |,且a,b 同向,则a >b (3)不相等的两个空间向量的模必不相等 (4)对于任何向量a,b ,必有|a+ b |≤|a |+|b | 其中正确命题的序号为( ) A.(1)(2)(3) B.(4) C.(3)(4) D.(1)(4) 空间向量的线性运算 例1、 已知长方体ABCD-A ’B ’C ’D ’ ,化简下列向量表达式,并标出化简结果的向量 (1)AA CB '- (2)AB B C C D '''''++ (3)111222 AD AB A A '+- 练习 1、如图所示,在正方体ABCD-A 1B 1C 1D 1中,下列各式中运算的结果为向量的共有( ) ①1()AB BC CC ++ ②11111()AA A D DC ++ ③111()AB BB BC ++ ④11111()AA A B BC ++ A.1个 B.2个 C.3个 D.4 个

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

(完整版)《平面向量》测试题及答案

《平面向量》测试题 一、选择题 1.若三点P (1,1),A (2,-4),B (x,-9)共线,则( ) A.x=-1 B.x=3 C.x= 2 9 D.x=51 2.与向量a=(-5,4)平行的向量是( ) A.(-5k,4k ) B.(-k 5,-k 4) C.(-10,2) D.(5k,4k) 3.若点P 分所成的比为4 3 ,则A 分所成的比是( ) A.73 B. 37 C.- 37 D.-7 3 4.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为( ) A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=( ) A.103 B.-103 C.102 D.10 6.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( ) A.? ????79,73 B.? ????-73,-79 C.? ????73,79 D.? ????-7 9 ,-73 7.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为( ) A. 3 23 B. 23 3 C.2 D.- 5 2 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( ) A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,- 2 1 ) 9.设四边形ABCD 中,有DC = 2 1 ,且||=|BC |,则这个四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形 10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为( ) A.y=x+10 B.y=x-6 C.y=x+6 D.y=x-10 11.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2 的图像,则a 等于( ) A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1) 12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是( ) A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题 13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b= 。 14.已知:|a|=2,|b|=2,a 与b 的夹角为45°,要使λb-a 垂直,则λ= 。 15.已知|a|=3,|b|=5,如果a ∥b ,则a ·b= 。 16.在菱形ABCD 中,(AB +AD )·(AB -AD )= 。

高中数学典型例题解析汇报平面向量与空间向量

实用文档 文案大全高中数学典型例题第八章平面向量与空间向量 §8.1平面向量及其运算 一、、疑难知识导析 1.向量的概念的理解,尤其是特殊向量“零向量” 向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量; 2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点; 3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆; 4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的; 5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。 二知识导学 1.模(长度):向量AB的大小,记作|AB|。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a?长度相等,方向相反的向量叫做a?的相反向量。记作-a?。 5.向量的加法:求两个向量和的运算。 已知a?,b?。在平面内任取一点,作AB=a?,BC=b,则向量AC 叫做a与b?的和。记作a?+b?。 6. 向量的减法:求两个向量差的运算。 已知a?,b?。在平面内任取一点O,作OA=a?,OB=b?,则向量BA 叫做a?与b?的差。记作a?-b?。 7.实数与向量的积: (1)定义:实数λ与向量a?的积是一个向量,记作λa?,并规定: ①λa?的长度|λa?|=|λ|·|a?|; ②当λ>0时,λa?的方向与a?的方向相同; 当λ<0时,λa?的方向与a?的方向相反; 当λ=0时,λa?=0? (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa?)=(λμ) a?

高中平面向量测试题及答案

一、选择题 1.已知向量a =(1,1),b =(2,x ),若a +b 与4b -2a 平行,则实数x 的值为( ) A .-2 B .0 C .1 D .2 2.已知点A (-1,0),B (1,3),向量a =(2k -1,2),若AB → ⊥a ,则实数k 的值为( ) A .-2 B .-1 C .1 D .2 3.如果向量a =(k,1)与b =(6,k +1)共线且方向相反,那么k 的值为( ) A .-3 B .2 C .-1 7 4.在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB →、BC → 分别为a 、b ,则AH → =( ) a -45b a +45b C .-25a +45b D .-25a -45b 5.已知向量a =(1,1),b =(2,n ),若|a +b |=a ·b ,则n =( ) A .-3 B .-1 C .1 D .3 6.已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC →)( ) A .最大值为8 B .是定值6 C .最小值为2 D .与P 的位置有关 7.设a ,b 都是非零向量,那么命题“a 与b 共线”是命题“|a +b |=|a |+|b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 8.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角为( ) A .30° B .60° C .120° D .150° 9.设O 为坐标原点,点A (1,1),若点B (x ,y )满足????? x 2+y 2-2x -2y +1≥0,1≤x ≤2,1≤y ≤2,则OA →·OB →取得最 大值时,点B 的个数是( ) A .1 B .2 C .3 D .无数 10.a ,b 是不共线的向量,若AB →=λ1a +b ,AC → =a +λ2b (λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为( ) A .λ1=λ2=-1 B .λ1=λ2=1 C .λ1·λ2+1=0 D .λ1λ2-1=0 11.如图,在矩形OACB 中, E 和 F 分别是边AC 和BC 的点,满足AC =3AE ,BC =3BF ,若OC →=λOE →+μOF → 其中λ,μ∈R ,则λ+μ是( )

空间向量及其运算测试题

一、选择题 1 抛物线2 8 1x y - =的准线方程是 ( ) A . 32 1 =x B . 2=y C . 321=y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹 方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) =2OA →-OB →-OC → =15OA →+13OB →+12OC → +MB →+MC → =0 +OA →+OB →+OC →=0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→ . 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-209 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

选修2-1空间向量单元测试题(经典)

第三章 单元质量评估(二) 时限:120分钟 满分:150分 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的) 1.已知空间四边形ABCD ,G 是CD 的中点,连接AG ,则AB →+12(BD →+BC → )=( ) A.AG → B.CG → C.BC → D.12BC → 解析:在△BCD 中,因为G 是CD 的中点,所以BG →=12(BD →+BC →),从而AB →+12(BD →+BC →)=AB →+BG →=AG →,故选A. 答案:A 2.设l 1的方向向量为a =(1,2,-2),l 2的方向向量为b =(-2,3,m ),若l 1⊥l 2,则m 等于( ) A .1 B .2 C.1 2 D .3 解析:∵l 1⊥l 2, ∴a ·b =0,代入可解得m =2. 答案:B 3.已知i ,j ,k 为单位正交基底,a =3i +2j -k ,b =i -j +2k ,则5a 与3b 的数量积等于( )

A .-15 B .-5 C .-3 D .-1 解析:∵i ,j ,k 两两垂直且|i |=|j |=k |=1,∴5a ·3b =(15i +10j -5k )·(3i -3j +6k )=45-30-30=-15. 答案:A 4.已知二面角α—l —β的大小为60°,m ,n 为异面直线,且m ⊥α,n ⊥β,则m ,n 所成的角为( ) A .30° B .60° C .90° D .120° 解析:设m ,n 的方向向量分别为m ,n . 由m ⊥α,n ⊥β知m ,n 分别是平面α,β的法向量. ∵|cos 〈m ,n 〉|=cos60°=12,∴〈m ,n 〉=60°或120°. 但由于两异面直线所成的角的范围为? ? ???0,π2, 故异面直线m ,n 所成的角为60°. 答案:B 5.已知向量a =(1,2,3),b =(-2,-4,-6),|c |=14,若(a +b )·c =7,则a 与c 的夹角为( ) A .30° B .60° C .120° D .150° 解析:设向量a +b 与c 的夹角为α,因为a +b =(-1,-2,-3,),|a +b |=14,cos α= (a +b )·c |a +b ||c | =12, 所以α=60°. 因为向量a +b 与a 的方向相反,所以a 与c 的夹角为120°.故选C.

平面向量及其应用单元测试题 百度文库

一、多选题 1.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列 ABC 有关的结论,正确的是( ) A .cos cos 0A B +> B .若a b >,则cos2cos2A B < C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径 D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++= 2.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3 π ,a =7,则以下判断正确的是( ) A .△ABC 的外接圆面积是493 π ; B .b cos C +c cos B =7; C .b +c 可能等于16; D .作A 关于BC 的对称点A ′,则|AA ′|的最大 值是 3.已知ABC ?是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且 AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( ) A .1A B CE ?=- B .0OE O C += C .32 OA OB OC ++= D .ED 在BC 方向上的投影为 76 4.下列结论正确的是( ) A .已知a 是非零向量,b c ≠,若a b a c ?=?,则a ⊥(-b c ) B .向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a 在b 上的投影向量为 12 b C .点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 是△ABC 的外心 D .以(1,1),(2,3),(5,﹣1),(6,1)为顶点的四边形是一个矩形 5.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、 c ,不解三角形,确定下列判断错误的是( ) A . B =60°,c =4,b =5,有两解 B .B =60°,c =4,b =3.9,有一解 C .B =60°,c =4,b =3,有一解 D .B =60°,c =4,b =2,无解 6.在ABC ?中,角A ,B ,C 所对的边分别为a ,b ,c ,且 ()()()::9:10:11a b a c b c +++=,则下列结论正确的是( ) A .sin :sin :sin 4:5:6A B C = B .AB C ?是钝角三角形

空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++ D.11111()2 AB CD AC ++ 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+= ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果122212 2833e e e e e e =+=+=- ,,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,, 的中点,则2a 等于( ) A.2BA AC · B.2AD BD · C.2FG CA · D.2EF CB · 答案:B 8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122 -,, C.51122 --,, D.51122 ,, 答案:A 9.若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为8 9 ,则λ=( ) A.2 B.2- C.2-或 255 D.2或255 - 答案:C 10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412??- ???,, B.(241),, C.(2141)-,, D.(5133)-,, 答案:D 11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos 3 D.3arccos 6 答案:D 12.给出下列命题: ①已知⊥a b ,则()()a b c c b a b c ++-=···; ②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面; ③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( ) A.1 B.2 C.3 D.4 答案:C 二、填空题 13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则 c = .

空间向量和立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B . 3 C .3 D .2 3 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为11AO AB =另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为1111 33 OA AA AB AC =- -,11AB AB AA =+ 2111126 ,,333 OA AB a OA AB ?= == 则1AB 与底面ABC 所成角的正弦值为 111 12 3 OA AB AO AB ?= . 二、填空题: 1 .(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D --M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11 (),22 AN AC AB EM AC AE =+=-, 11()()22AN EM AB AC AC AE ?=+?-=1 2 故EM AN ,所成角的余弦值 1 6 AN EM AN EM ?= 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

(完整版)高中数学平面向量测试题及答案

平面向量测试题 一、选择题: 1。已知ABCD 为矩形,E 是DC 的中点,且?→?AB =→a ,?→?AD =→b ,则?→ ?BE =( ) (A ) →b +→a 2 1 (B ) →b -→a 2 1 (C ) →a +→b 2 1 (D ) →a -→ b 2 1 2.已知B 是线段AC 的中点,则下列各式正确的是( ) (A ) ?→?AB =-?→?BC (B ) ?→?AC =?→?BC 2 1 (C ) ?→?BA =?→?BC (D ) ?→?BC =?→ ?AC 2 1 3.已知ABCDEF 是正六边形,且?→?AB =→a ,?→?AE =→b ,则?→ ?BC =( ) (A ) )(2 1→→-b a (B ) )(2 1 →→-a b (C ) →a +→b 2 1 (D ) )(2 1→ →+b a 4.设→a ,→b 为不共线向量,?→?AB =→a +2→b ,?→?BC =-4→a -→b ,?→ ?CD = -5→ a -3→ b ,则下列关系式中正确的是 ( ) (A )?→?AD =?→?BC (B )?→?AD =2?→ ?BC (C )?→?AD =-?→ ?BC (D )?→?AD =-2?→ ?BC 5.将图形F 按→ a =(h,k )(其中h>0,k>0)平移,就是将图形F ( ) (A ) 向x 轴正方向平移h 个单位,同时向y 轴正方向平移k 个单位。 (B ) 向x 轴负方向平移h 个单位,同时向y 轴正方向平移k 个单位。 (C ) 向x 轴负方向平移h 个单位,同时向y 轴负方向平移k 个单位。 (D ) 向x 轴正方向平移h 个单位,同时向y 轴负方向平移k 个单位。 6.已知→a =()1,2 1,→ b =(), 2 22 3- ,下列各式正确的是( ) (A ) 2 2?? ? ??=??? ??→ →b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行 7.设→ 1e 与→ 2e 是不共线的非零向量,且k → 1e +→ 2e 与→ 1e +k → 2e 共线,则k 的值是( ) (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,?→?AB =?→?DC ,且?→?AC ·?→ ?BD =0,则四边形ABCD 是( ) (A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形 9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且?→ ?PN =-2?→ ?PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)

相关主题
文本预览
相关文档 最新文档