当前位置:文档之家› 电磁场与电磁波第四版课后思考题

电磁场与电磁波第四版课后思考题

电磁场与电磁波第四版课后思考题
电磁场与电磁波第四版课后思考题

《电磁场与电磁波理论》思考题

第1章思考题

什么是标量什么是矢量什么是矢量的分量

什么是单位矢量什么是矢量的单位矢量

什么是位置矢量或矢径直角坐标系中场点和源点之间的距离矢量是如何表示的什么是右手法则或右手螺旋法则

若两个矢量相互垂直,则它们的标量积应等于什么矢量积又如何

若两个矢量相互平行,则它们的矢量积应等于什么标量积又如何

若两个非零矢量的标量积等于零,则两个矢量应垂直还是平行

若两个非零矢量的矢量积等于零,则两个矢量应垂直还是平行

直角坐标系中矢量的标量积和矢量积如何计算

什么是场什么是标量场什么是矢量场

什么是静态场或恒定场什么是时变场

什么是等值面它的特点有那些

什么是矢量线它的特点有那些

哈密顿算子为什么称为矢量微分算子

标量函数的梯度的定义是什么物理意义是什么

什么是通量什么是环量

矢量函数的散度的定义是什么物理意义是什么

矢量函数的旋度的定义是什么物理意义是什么

什么是拉普拉斯算子标量和矢量的拉普拉斯运算分别是如何定义的

直角坐标系中梯度、散度、旋度和拉普拉斯算子在的表示式是怎样的

三个重要的矢量恒等式是怎样的

什么是无源场什么是无旋场

为什么任何一个梯度场必为无旋场为什么任何一个无旋场必为有位场为什么任何一个旋度场必为无源场为什么任何一个无源场必为旋度场高斯散度定理和斯托克斯定理的表示式和意义是什么

什么是矢量的唯一性定理

在无限大空间中是否存在既无源又无旋的场为什么

直角坐标系中的长度元、面积元和体积元是如何表示的

圆柱坐标系中的长度元、面积元和体积元是如何表示的

球面坐标系中的长度元、面积元和体积元是如何表示的

点电荷的严格定义是什么 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。就可将带电体所带电荷看成集中在带电体的中心上。即将带电体抽离为一个几何点模型,称为点电荷。

研究宏观电磁场时,常用到哪几种电荷的分布模型有哪几种电流分布模型他们是如何定义的 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。

2,3点电荷的电场强度随距离变化的规律是什么电偶极子的电场强度又如何呢

点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。

简述 和 所表征的静电场特性 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。 表明静电场是无旋场。 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。

高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无

布的电场强度。

简述

和 所表征的静电场特性。

表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。

安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即

简述电场与电介质相互作用后发生的现象。

在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场

极化强度的如何定义的极化电荷密度与极化强度又什么关系 单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度

电位移矢量是如何定义的在国际单位制中它的单位是什么 电位移矢量定义为 其单位是库伦/平方米 (C/m 2) 简述磁场与磁介质相互作用的物理现象在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质 ε

ρ/=??E ρ0=??E ρερ/=??

E ρ0=??

E ρ

V

S 00=??B ρJ B ρρ0μ=??0=??B ρJ B ρ

ρ0μ=??0

μC P ρ

??=-p ρn sp e ρρ?=P ρE P E

D ρ

ρρρεε=+=0

中的磁感应强度B 可看做真空中传导电流产生的磁感应强度B 0 和磁化电流产生的磁感应强度B ’ 的叠加,即 磁化强度是如何定义的磁化电流密度与磁化强度又什么关系

单位体积内分子磁矩的矢量和称为磁化强度;磁化电流体密度与磁化强度:

磁化电流面密度与磁化强度: 磁场强度是如何定义的在国际单位制中它的单位是什么

2,14 你理解均匀媒质与非均匀媒质,线性媒质与非线性媒质,各向同性与各向异性媒质的含义么 均匀媒质是指介电常数 或磁介质磁导率 处处相等,不是空间坐标的函数。非均匀媒质是指介电常数

或磁介质的磁导率 是空间坐标的标量函数,线性媒质是 与 的方向无关,

是标量,各向异性媒质是指 和 的方向相同。 什么是时变电磁场

随时间变化的电荷和电流产生的电场和磁场也随时间变化,而且电场和磁场相互关联,密布可分,时变的电场产生磁场,时变的磁场产生电场,统称为时变电磁场。

试从产生的原因,存在的区域以及引起的效应等方面比较传导电流和位移电流

(1) 传导电流是电荷的定向运动,而位移电流的本质是变化着的电场。

(2) 传导的电流只能存在于导体中,而位移电流可以存在于真空,导体,电介质中。

(3) 传导电流通过导体时会产生焦耳热,而位移电流不会产生焦耳热。

写出微分形式、积分形式的麦克斯韦方程组,并简要阐述其物理意义。

传导电流与位移电流之和; 穿过任意闭合曲面的电位移的通量等于该闭合曲面所包围的自由电荷的代数和。

微分形式:

的,磁场是无散度场; 空间任意一点若存在正电荷体密度,则该点发出电位移线,若存在负电荷体密度则电位移线汇聚于该点。

麦克斯韦方程组的4个方程是相互独立的么试简要解释

B B B 0'

+=ρρn

e ρρρ?=M J SM M J M ρρ??=0

ε0εμ

μ)(με)(H E ρρ)(με)(B D ρρ)(H

E ρρρρt ?ρ=??D

ρ

当场量不随时间变化时,电场和磁场又是各自存在的。

电流连续性方程能由麦克斯韦方程组导出吗如果能,试推导出,如果不能,说明原因。

什么是电磁场的边界条件 你能说出理想导体表面的边界条件吗

把电磁场矢量 E , D ,B , H 在不同媒质分界面上各自满足的关系称为电磁场的边界条件,理想导体表面上的边界条件为: 电位是如何定义的 中的负号的意义是什么

由静电场基本方程 和矢量恒等式 可知,电场强度E 可表示为标量函数的梯

度,即 试中的标量函数 称为静电场的电位函数,简称电位。式中负号表示场强放向与该点电位梯度的方向相反。

如果空间某一点的电位为零,则该点的电位为零, 这种说话正确吗为什么

不正确,因为电场强度大小是该点电位的变化率

求解电位函数的泊松方程或拉普拉斯方程时,边界条件有何意义

答 边界条件起到给方程定解得作用。 边界条件起到给方程定解得作用。

电容是如何定义的写出计算电容的基本步骤。

两导体系统的电容为任一导体上的总电荷与两导体之间的电位差之比,即: 其基本计算步骤:1、根据 求得电位差。5求出比值

广义坐标是指系统中各带电导体的形状,尺寸和位置的一组独立几何量,而企图改变某一广义坐标的力就,就为对印该坐标的广义力,广义坐标发生的位移,称为虚位移

恒定电场基本方程的微分形式所表征的恒定电场性质是什么

恒定电场是保守场,恒定电流是闭合曲线

恒定电场和静电场比拟的理论根据是什么静电比拟的条件又是什么

理论依据是唯一性定理,静电比拟的条件是两种场的电位都是拉普拉斯方程的解且边界条件相同 何定义电感你会计算平行双线,同轴的电感

t

?t

J D t J t D J H t D

J H ??-=???=????+?????+??=???????+=??ρρ

ρρρρρρρρρ0)()(s n ρ=?D e ρρ0n =?B e ρρ0n =?E e ρ

ρs

n J H e =?ρ

ρ??=-E ρ

0=??E ρ0=

???μ??=-E ρ?q ρ

在恒定磁场中把穿过回路的磁通量与回路中的电流的比值称为电感系数,简称电感。 写出用磁场矢量B 、H 表示的计算磁场能量的公式。

两种情况下求出的磁场力是相同的

什么是静态场的边值问题用文字叙述第一类、第二类及第三类边值问题。

静态场的边值型问题是指已知场量在场域边界上的值,求场域内的均匀分布问题。第一类边值问题:已知位函数在场域边界面S 上各点的值,即给定

。第二类边值问题:已知位函数在场域

惟一性定理:在场域V 的边界面S 上给定 的值,则泊松方程或拉普拉斯方程在场域V 内有惟一解。意义:

(1)它指出了静态场边值问题具有惟一解得条件。在边界面S 上的任一点只需给定 的值,而不能同时给定两者的值;(2)它为静态场值问题的各种求解方法提供了理论依据,为求解结果的正确性提供了判据。 什么是镜像法其理论依据的是什么镜像法是间接求解边值问题的一种方法,它是用假想的简单电荷分布来等效代替分界面上复杂的电荷分布对电位的贡献。不再求解泊松方程,只需求像电荷和边界内给定电荷共同产生的电位,从而使求解简化。理论依据是唯一性定理和叠加原理。

如何正确确定镜像电荷的分布

(1)所有镜像电荷必须位于所求场域以外的空间中;(2)镜像电荷的个数,位置及电荷量的大小以满足场域边界面上的边界条件来确定。

什么是分离变量法在什么条件下它对求解位函数的拉普拉斯方程有用

分离变量法是求解边值问题的一种经典方法。它是把待求的位函数表示为几个未知函数的乘积,该未知函数仅是一个坐标变量函数,通过分离变量,把原偏微分方程化为几个常微分方程并求解最后代入边界条件求定解。

在直角坐标系的分离变量法中,分离常数k 可以是虚数吗为什么

不可以,k 若为虚数则为无意义的解。

在时变电磁场中是如何引入动态位A 和 的A 和 不唯一的原因何在

根据麦克斯韦方程 和 引入矢量位A 和标量位 ,使得: )(S f 1=S ??

?0

=??B ρ0=??E ρ????????--?=??=t A E A B ρρρρ?

A 和 不唯一的原因在于确定一个矢量场需同时规定该矢量场的散度和旋度,而 只规定了

A 的旋度,没有规定A 的散度 什么是洛仑兹条件为何要引入洛仑兹条件在洛仑兹条件下,A 和 满足什么方程

坡印廷矢量是如何定义的它的物理意义 坡印廷矢量 其方向表示能量的流动方向,大小表示单位时间内穿过与能量流动方向相垂直的单位面积的能量 什么是坡印廷定理它的物理意义是什么

坡印廷定理:它表明体积V 内电磁能量随时间变化的增长率等于场体积V 内的电荷电流所做的总功率之和,等于单位时间内穿过闭合面S 进入体积V 内的电磁能流。

什么是时变电磁场的唯一性定理它有何重要意义

时变电磁场的唯一性定理:在以闭合曲面S 为边界的有界区域V 内,如果给定t=0时刻的电场强度E 和磁场强度H 的初始值,并且在t 大于或等于0时,给定边界面S 上的电场强度E 的切向分量或磁场强度H 的切向分量,那么,在t 大于0时,区域V 内的电磁场由麦克斯韦方程唯一地确定。它指出了获得唯一解所必须满足的条件,为电磁场问题的求解提供了理论依据。

什么是时谐电磁场研究时谐电磁场有何意义

以一定角频率随时间作时谐变化的电磁场称为时谐电磁场。时谐电磁场,在工程上,有很大的应用,而且任意时变场在一定的条件下都可以通过傅里叶分析法展开为不同频率的时谐场的叠加,所以对时谐场的研究有重要意义。

时谐电磁场的复矢量是真实的矢量场吗引入复矢量的意义何在

复矢量并不是真实的场矢量,真实的场矢量是与之相应的瞬时矢量。引入复矢量的意义在于在频率相同的时谐场中可很容易看出瞬时矢量场的空间分布。

试写出复数形式的麦克斯韦方程组。它与瞬时形式的麦克斯韦方程组有何区别

两者对照,复数形式的麦克斯韦方程组没有与 时间相关项

复介电常数的虚部描述了介质的什么特性如果不用复介电常数,如何表示介质的耗损

它描述了电介质的极化存在的极化损耗,可用损耗角正切 来表征电介质的损耗特性 如何解释复数形式的坡印廷定理中的各项的物理意义 ?A

B ρρ??=?J μt A εμA 222ρρ-=??-?ε

ρ?εμ?-=??-?222t H E S ρ

ρρ?=j j 0H J D

E B

D B ωωρ

???=+???=-????=????=?r r r r r r

r

μμδμ''

'=tan

复数形式坡印廷定理为:

式中 分别是单位体积内的磁损耗,介电损耗和焦耳热损耗的平均值,式子右端两项分别表示体积V 内的有功功率和无功功率,左端的面积是穿过闭合面S 的复功率

什么是均匀平面波平面波与均匀平面波有何区别

2H μ21W ρρ=μ2

H 2

1W ρρεε=

DA等相面是平面的波是平面波,在等相面上振幅也相等的平面波是均匀平面波。均匀平面波是平面波的一种特殊情况。

波数是怎样定义的它与波长有什么关系答:在2π的空间空间距离内所包含的波长数,称为波数,通常用k表示。k=

什么是媒质的本征阻抗自由空间中本征阻抗的值为多少答:电场的振幅与磁场的振幅之比,具有阻抗的量纲故称为波阻抗,通常用*表示,由于*的值与煤质参数有关,因此又称为煤质的本征阻抗。自由空间中本征阻抗值120π(约377)欧。

电磁波的相速是如何定义的自由空间中相速的值约为多少答:电磁波的等相位面在空间中的移动速度称为相位速度,简称相速。在自由空间中相速的值为3乘以10的8次方米每秒。在理想介质中均匀平面波的相速是否与频率有关答:在理想介质中,均匀平面波的相速与频率无关,但与介质参数有关。

在理想介质中,均匀平面波有哪些特点答:(1)电场E、磁场H与传播方向#之间互相垂直,是TEM波。(2)电场与磁场的振幅不变。(3)波阻抗为实数,电场与磁场同相位。(4)电磁波的相速与频率无关。(5)电场能量密度等于磁场能量密度。

在导电煤质中,均匀平面波的相速与频率是否有关答:在导电煤质中,均匀平面波的相速与频率有关,在同一种导电煤质中,不同频率的电磁波的相速是不同的。

在导电煤质中均匀平面波的电场与磁场是否同相位答:不相同

在导电煤质中,均匀平面波具有哪些特点答:(1)电场E、磁场H与传播方向#之间互相垂直,是TEM波。

第5章思考题

什么是时谐电磁场什么是时谐电磁场的复振幅和复振幅矢量

如何由时变电磁场的基本方程得到时谐电磁场的基本方程(基本方程的复数形式)如何由时变电磁场的结构方程得到时谐电磁场的结构方程(结构方程的复数形式)如何由时变电磁场的边界条件得到时谐电磁场的边界条件(边界条件的复数形式)时谐电磁场边界条件有哪三种常用形式他们有什么特点

在不同媒质分界面上,永远是连续的是时谐电磁场的哪个分量

在理想导体表面上不存在时谐电磁场的什么分量

垂直于理想导体表面的是时谐电磁场的电力线还是磁力线平行于理想导体表面的是时谐电磁场的电力线还是磁力线

理想导体表面的面电流密度等于时谐电磁场的什么分量理想导体表面面电荷密度等于时谐电磁场的什么分量

什么是导电媒质的复介电常数什么是导电媒质的损耗角正切

时变电磁场的矢量磁位和标量电位是如何定义

什么是洛伦兹条件或洛伦兹规范洛伦兹条件与电流连续性方程是否是一致的

什么情况下矢量磁位和标量电位满足齐次达兰贝尔方程

什么情况下电场强度和磁场强度满足齐次达兰贝尔方程

什么是滞后位什么是超前位为什么在无限大自由空间中只有滞后位

矢量磁位和标量电位的滞后位是怎样的

时谐电磁场的矢量磁位和标量电位是如何定义

如何得到时谐电磁场的矢量磁位和标量电位的洛伦兹条件或洛伦兹规范

如何得到时谐电磁场的矢量磁位和标量电位的亥姆霍兹方程(复波动方程)

如何得到时谐电磁场的矢量磁位和标量电位的滞后位和超前位

瞬时坡印廷矢量是如何定义的它的物理意义是什么它有什么特性

什么是瞬时坡印廷定理的微分形式和积分形式瞬时坡印廷定理的物理意义是什么

什么是平均坡印廷矢量

复坡印廷矢量是如何定义的它的物理意义是什么

天线的作用是什么天线有哪些类型

什么是电基本振子什么是磁基本振子

什么是线天线什么是对称天线什么是半波天线

什么是近区场什么是远区场

电基本振子的近区场有什么特性

电基本振子的远区场有什么特性

磁基本振子的近区场有什么特性

磁基本振子的远区场有什么特性

基本振子和磁基本振子的电场有什么异同点它们谁的辐射能力大

基本振子和磁基本振子的对偶性是怎样的

什么是水平极化天线什么是垂直极化天线

天线的方向性因子、方向函数和方向图指的是什么

什么是天线的E面方向图什么是天线的H面方向图

什么是无方向天线什么是全向天线什么是定向天线

基本振子、磁基本振子和半波天线的方向图有什么特点

什么是天线辐射功率天线的半功率波瓣宽度和零功率波瓣宽度是如何定义的

基本振子和磁基本振子的半功率波瓣宽度和零功率波瓣宽度的大小是怎样的

什么是天线阵它的作用是什么决定天线阵的辐射特性的主要参数有哪些

天线阵方向图相乘原理是指什么

什么是均匀直线式天线阵什么是均匀直线式边射阵什么是均匀直线式端射阵

第6章思考题

什么是平面波什么是柱面波什么是球面波

什么是均匀平面波什么是非均匀平面波

什么是均匀球面波什么是非均匀球面波

什么是横电磁波(TEM波)、横电波(TE波)和横磁波(TM波)

均匀平面波的传播特性有哪些

均匀平面波的传播参数有哪些

什么是均匀平面波的极化均匀平面波的极化有什么特点

什么是线极化什么是圆极化什么是椭圆极化

什么是右旋圆极化波什么是左旋圆极化波

什么情况下均匀平面波是线极化什么情况下均匀平面波是圆极化波

什么情况下均匀平面波是右旋圆极化波什么情况下均匀平面波是左旋圆极化波什么是传播矢量沿任意方向传播的均匀平面波的电磁场的一般形式是怎样的什么是传播常数什么是衰减常数什么是相位常数

导电媒质中传播的均匀平面波具有什么特点

什么是弱导电媒质(低损耗媒质)什么是良导体(强损耗媒质)

什么是趋肤效应什么是趋肤深度(透入深度)

什么是表面阻抗什么是表面电阻什么是表面电抗

导体的热损耗是如何计算的

什么是入射波、反射波、透射波和折射波

什么是垂直入射什么是斜入射

什么是入射面什么是垂直极化斜入射什么是平行极化斜入射(用图表示)

什么是反射系数什么是透射系数(折射系数)

垂直入射的反射系数和透射系数有什么关系

垂直入射到理想导体表面时合成电磁场的振幅分布是怎样的(用图表示)

什么是反射定律什么是折射定律

垂直极化斜入射的反射系数和透射系数(费涅尔公式)有什么关系

平行极化斜入射的反射系数和透射系数(费涅尔公式)有什么关系

什么是驻波比什么是波腹什么是波节什么是行波什么是驻波

什么是无反射(全折射)什么是全反射全反射时是否存在折射波

什么是布儒斯特角非铁磁性媒质分界面的无反射条件是什么

什么是临界角非铁磁性媒质分界面的全反射条件是什么

第7章思考题

什么是波导什么是导波什么是均匀波导(规则波导)

什么是纵向场法什么是纵向场导波方程

什么是横向拉普拉斯算子什么是二维的导波方程

什么是二维的横向哈密顿算子如何得到用纵向场表示的横向场

什么是模式(波型、波或模)波导中传播的模式可以分成哪四种

什么是TEM模TEM模存在的条件是什么TEM模的场在横截面上的分布规律是什么什么是TE模什么是TM模它们的传播条件是什么

什么是传播模式什么是截止模式

截止波数、截止波长和截止频率之间的关系是怎样的

金属波导内TE模和TM模和传播特性与均匀平面波的传播特性有什么不同

波导波长、截止波长和工作波长三者之间的关系是怎样的

相速度、群速度与电磁波的传播速度之间的关系是怎样的

TE模和TM模的波阻抗或波型阻抗是如何定义的它们与均匀平面波的波阻抗有什么不同

什么是色散波什么是几何色散什么是媒质色散

矩形波导中的两个纵向场是如何表示的

矩形波导中的截止参数有什么特点

什么是简并模式和模式简并

什么是主模什么是高次模什么是最低型高次模

什么是截止区什么是单模传播什么是多模传播

矩形波导中的单模传播的条件是什么

什么是场结构(模式图)电力线和磁力线的分布应遵循的规律有哪些

矩形波导内传播模式的场结构的主要特点是什么

矩形波导中各种模式的场结构的规律是什么

圆形波导中的两个纵向场是如何表示的

圆形波导中的截止参数有什么特点

什么是极化简并什么是异模简并

圆波导中的单模传播的条件是什么

圆波导中的三种常用模式的特点是什么

什么是击穿场强什么是功率容量

什么是管壁电流什么是电流线金属波导中的电流线有什么特点

什么是强辐射缝什么是无辐射缝怎样才能得到“强辐射缝”或“无辐射缝”

什么是导体衰减常数什么介质衰减常数是如何计算的

同轴线中可以传播哪些模式为什么

同轴线中的主模是什么模式横截面的场分布有什么特点

同轴线中最低型高次模是什么模式它的截止波长近似值是多少为了抑制同轴线的高次模,使TEM模单模工作的最高频率(最小波长)是多少

第8章思考题

均匀传输线中的主模的等效电压和等效电流是如何定义的

均匀传输线中的高次模的等效电压和等效电流是如何定义的

均匀传输线中的传输功率可以直接利用等效电压和等效电流计算吗为什么

什么是传输线的分布参数效应传输线的分布参数有哪些传输线的分布参数等效电路是如何得到的

什么是均匀传输线什么是非均匀传输线

什么是无耗传输线什么是有耗传输线

什么是传输线基本方程(传输线方程或电报方程)它们与麦克斯韦方程有什么关系什么是传输线上的入射波什么是传输线上的反射波它们与均匀传输线上的电压和电流有什么关系

均匀传输线上的电压和电流的一般表示式有什么特点

已知终端电压和电流的均匀传输线上的电压和电流的表示式是怎样的

决定传输线上电压、电流与位置的关系的是负载阻抗还是信号源

影响传输线上电压和电流的大小(绝对值)的是负载阻抗还是信号源

改变传输线上不同位置电压电流相对值的是负载阻抗还是信号源

什么是特性阻抗什么是特性导纳传输线的特性阻抗(特性导纳)有什么特点

什么是传输线的传播常数什么是传输线的衰减常数什么是传输线的相位常数

均匀传输线中TEM模和非TEM模的平行双线的传播常数有什么异同点

什么是传输线的特征参数什么是传输线的工作参数

什么是传输线的等效阻抗(输入阻抗、阻抗)均匀传输线上的阻抗有什么性质

什么是传输线的电压反射系数什么是传输线的电流反射系数什么是传输线的反射系数均匀传输线上的反射系数有什么性质

传输线上相距二分之一波长的两处的等效阻抗和反射系数有什么关系

传输线上相距四分之一波长的两处的等效阻抗和反射系数有什么关系

传输线上为什么会有三种不同的工作状态行波、驻波和行驻波有什么异同点

什么是传输线的行波系数什么是传输线的驻波比(电压驻波系数)它们与反射系数有什么关系

传输线腹节点的阻抗与行波系数和驻波比有什么关系

如何利用腹节点的位置和大小确定其终端所接负载的反射系数

什么是传输线的行波状态(无反射状态、阻抗匹配状态)什么条件下传输线会工作在行波状态

行波状态时传输线上电压、电流和阻抗的分布是怎样的(画图)

什么是传输线的驻波状态(全反射状态)什么条件下传输线会工作在驻波状态

驻波状态时传输线上电压、电流和阻抗的分布是怎样的(画图)

驻波的瞬时电压和电流是如何变化的

行驻波状态时传输线上电压、电流和阻抗的分布是怎样的(画图)

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场与电磁波习题及答案

. 1 麦克斯韦方程组的微分形式 是:.D H J t ???=+?u v u u v u v ,B E t ???=-?u v u v ,0B ?=u v g ,D ρ?=u v g 2静电场的基本方程积分形式为: 0C E dl =? u v u u v g ? S D ds ρ =?u v u u v g ? 3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为: 3.00n S n n n S e e e e J ρ??=??=???=???=?D B E H r r r r r r r r r 4线性且各向同性媒质的本构关系方程是: 4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=u v u v 5电流连续性方程的微分形式为: 5. J t ρ??=- ?r g 6电位满足的泊松方程为 2ρ?ε?=- ; 在两种完纯介质分界面上电位满足的边界 。 12??= 1212n n εεεε??=?? 7应用镜像法和其它间接方法解静态场边值问题的理 论依据是: 唯一性定理。 8.电场强度E ?的单位是V/m ,电位移D ? 的单位是C/m2 。 9.静电场的两个基本方程的微分形式为 0E ??= ρ?=g D ; 10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 1.在分析恒定磁场时,引入矢量磁位A u v ,并令 B A =??u v u v 的依据是( 0B ?=u v g ) 2. “某处的电位0=?,则该处的电场强度0=E ? ” 的说法是(错误的 )。 3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln( 1 a a D C -= πε )。 4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。 5. N 个导体组成的系统的能量∑==N i i i q W 1 21φ,其中i φ是(除i 个导体外的其他导体)产生的电位。 6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 ) 7. 应用高斯定理求解静电场要求电场具有(对称性)分布。 8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。 8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。 10. 半径为a 的球形电荷分布产生的电场的能量储存于 (整个空间 )。 三、海水的电导率为4S/m ,相对介电常数为81,求频率为1MHz 时,位幅与导幅比值? 三、解:设电场随时间作正弦变化,表示为: cos x m E e E t ω=r r 则位移电流密度为:0sin d x r m D J e E t t ωεεω?==-?r r r 其振幅值为:3 04510.dm r m m J E E ωεε-==? 传导电流的振幅值为:4cm m m J E E σ== 因此: 3112510.dm cm J J -=? 四、自由空间中,有一半径为a 、带电荷量q 的导体球。试求:(1)空间的电场强度分布;(2)导体球的电容。(15分) 四、解:由高斯定理 D S u u v u u v g ?S d q =?得2 4q D r π= 24D e e u u v v v r r q D r π== 空间的电场分布2 04D E e u u v u u v v r q r επε== 导体球的电位 2 0044E l E r e r u u v u u v v u u v g g g r a a a q q U d d d r a πεπε∞∞∞====??? 导体球的电容04q C a U πε==

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨 道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+?B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质的极化强度、体积和表面上单位长度的极化电荷。 解 介质棒距轴线距离为r 处的感应电场为 00 z r r r B φωω=?=?=E v B e e B e 故介质棒的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m = 、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

电磁场与电磁波理论基础自学指导书

电磁场与电磁波理论基础自学指导书 课程简介:电磁场理论是通信技术的理论基础,是通信专业本科学生必须具备的知识结构的重要组成部分之一。使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。培养学生正确的思维方法和分析问题的能力,使学生对"场"与"路"这两种既密切相关又相距甚远的理论有深刻的认识,并学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。为以后的学习和工作打下坚实的理论基础。 第一章矢量分析场论初步 1主要内容 本章从矢量分析入手,介绍了标量场和矢量场的基本概念,学习了矢量的通量、散度以及散度定理,矢量的环流、旋度以及斯托克斯定理,标量的梯度,以及上述的物理量在圆柱和球坐标系下的表达形式,最后介绍了亥姆霍兹定理,该定理说明了研究一个矢量场从它的散度和旋度两方面入手。通过本章的学习,使学生掌握场矢量的散度、旋度和标量的梯度的概念和数学计算为以后的电磁场分析打下基础。 2学习要求 深刻理解标量场和矢量场的概念;深刻理解散度、旋度和梯度的概念、物理意义及相关定理; 熟练使用直角坐标、圆柱坐标和球坐标进行矢量的微积分运算; 了解亥姆霍兹定理的内容。 3重点及难点 重点:在直角坐标、圆柱坐标和球坐标中计算矢量场的散度和旋度、标量场的梯度以及矢量的线积分、面积分和体积分。 难点:正确理解和掌握散度、旋度和梯度的概念及定理,可以借助流体的流量和涡旋等自然界中比较具体而形象的相似问题来理解。 4思考题合作业 1.4, 1.8, 1.9, 1.11, 1.14, 1.16, 1.24 第二章静电场 1主要内容 本章我们从点电荷的库仑定律发,推导出静电场的基本方程(微分表达及积分表达),该基本方程第一组与静电场的散度和通量有关(高斯定律),第二组有关静电场的环量和旋度,推导的过程运用了叠加原理。由静电场的基本方程中的环量和旋度的基本方程,我们引入了电位的概念,并给出了电场强度与电位之间的关系以及电位的计算公式。运用静电场的基本方程及电位可以解决静电场中的场源互求问题(已知源求场或已知场求源)。然后介绍了电偶极子的概念,推导了电偶极子的电场强度与电位的表达式。接着介绍了介质的极化,被极化的分子可等效为电偶极子,所以介质极化产生的电位就可以借用电偶极子的相关结论。由极化介质的电位公式我们推导了介质中的高斯定律,在该定律中引入了一个新的量—

电磁场与电磁波例题详解

电磁场与电磁波例题详解

————————————————————————————————作者:————————————————————————————————日期:

第1章 矢量分析 例1.1 求标量场z y x -+=2)(φ通过点M (1, 0, 1)的等值面方程。 解:点M 的坐标是1,0,1000===z y x ,则该点的标量场值为 0)(0200=-+=z y x φ。其等值面方程为 : 0)(2=-+=z y x φ 或 2)(y x z += 例1.2 求矢量场222zy a y x a xy a A z y x ++=的矢量线方程。 解: 矢量线应满足的微分方程为 : z y dz y x dy xy dx 222== 从而有 ???????==z y dz xy dx y x dy xy dx 2222 解之即得矢量方程???=-=2 2 21c y x x c z ,c 1和c 2是积分常数。 例1.3 求函数xyz z xy -+=22?在点(1,1,2)处沿方向角 3 ,4 ,3 π γπ βπ α= = = 的方向导数。 解:由于 1) 2,1,1(2) 2,1,1(-=-=??==M M yz y x ?, 02) 2,1,1() 2,1,1(=-=??==M M xz xy y ?, 32) 2,1,1() 2,1,1(=-=??==M M xy z z ?, 2 1cos ,22cos ,21cos === γβα 所以

1cos cos cos =??+??+??= ??γ?β?α??z y x l M 例1.4 求函数xyz =?在点)2,1,5(处沿着点)2,1,5(到点)19,4,9(的方向导数。 解:点)2,1,5(到点)19,4,9(的方向矢量为 1734)219()14()59(z y x z y x a a a a a a l ++=-+-+-= 其单位矢量 3147 31433144cos cos cos z y x z y x a a a a a a l ++=++=γβα 5, 10, 2) 2,1,5()2,1,5()2,1,5() 2,1,5() 2,1,5() 2,1,5(==??==??==??xy z xz y yz x ? ?? 所求方向导数 314 123 cos cos cos = ??=??+??+??=?? l z y x l M ?γ?β?α?? 例1.5 已知z y x xy z y x 62332222--++++=?,求在点)0,0,0(和点)1,1,1( 处的梯度。 解:由于)66()24()32(-+-++++=?z a x y a y x a z y x ? 所以 623) 0,0,0(z y x a a a ---=?? ,36) 1,1,1(y x a a +=?? 例1.6 运用散度定理计算下列积分: ??++-+=S z y x S d z y xy a z y x a xz a I )]2()([2322 S 是0=z 和2 2 22y x a z --=所围成的半球区域的外表面。 解:设:)2()(2322z y xy a z y x a xz a A z y x ++-+= 则由散度定理???=??τ τs S d A d A 可得

电磁场与电磁波(第四版)习题解答

电磁场与电磁波(第四版)习题解答 第1章习题 习题1.1 给定三个矢量A 、B 和C 如下: 23 x y z =+-A e e e . 4y z =-+B e e , 52x z =-C e e , 解: (1 )22323) 12(3)A x y z e e e A a e e e A +-= = = +-++- (2 )2641x y z A B e e e -=+-==(3)(23)(4)11x y z y z A B e e e e e ?=+-?-+=- (4)arccos 135.5A B AB θ?===? (5)1711 cos -=?=??==B B A A B B A A A A AB B θ (6)1 2341310502 x y z x Y Z e e e A C e e e ?=-=---- (7)0 4185205 02 x y z x Y Z e e e B C e e e ?=-=++- ()(23)(8520)42x Y Z x Y Z A B C e e e e e e ??=+-?++=- 1 23104041 x y z x Y Z e e e A B e e e ?=-=---- ()(104)(52)42x Y Z x Z A B C e e e e e ??=---?-=- (8)()10142405502 x y z x Y Z e e e A B C e e e ??=---=-+-

()1 235544118520 x y z x Y Z e e e A B C e e e ??=-=-- 习题1.4给定两矢量 234x y z =+-A e e e 和 456x y z =-+B e e e ,求它们之间的夹角和 A 在 B上的分量。 解: 29)4(32222=-++=A 776)5(4222=+-+=B 31)654()432(-=+-?-+=?z y x z y x e e e e e e B A 则A 与B 之间的夹角为 131772931cos =???? ???-=???? ? ? ???=ar B A B A arcis AB θ A 在B 上的分量为 532.37731cos -=-=?=???==B B A B A B A A A A AB B θ 习题1.9用球坐标表示的场2 25r r =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ; (2)求在直角坐标中点(3,4,5) --处E 与矢量2 2x y z = -+B e e e 构成的夹角。 解: (1)由已知条件得到,在点(-3,4,-5)处, r ===2 2525 0.550 E r = == 2 105 43252532z y x r e e e r r r e E -+-===

电磁场与电磁波(第三版)课后答案第1章

第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B ;(4)A B θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= = =e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 ( 4 ) 由 c o s AB θ =1 1 2 3 8 = A B A B , 得 1 c o s A B θ- =(135.5- = (5)A 在B 上的分量 B A =A c o s AB θ = =- A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 1 230 4 1 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123P P P ?是否为一直角三角形; (2)求三角形的面积。

《电磁场与电磁波》经典例题

一、选择题 1、以下关于时变电磁场的叙述中,正确的是( ) A 、电场是无旋场 B 、电场和磁场相互激发 C 、电场与磁场无关 2、区域V 全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是( ) A 、能量流出了区域 B 、能量在区域中被消耗 C 、电磁场做了功 D 、同时选择A 、C 3、两个载流线圈之间存在互感,对互感没有影响的的是( ) A 、线圈的尺寸 B 、两个线圈的相对位置 C 、线圈上的电流 D 、空间介质 4、导电介质中的恒定电场E 满足( ) A 、0??=E B 、0??=E C 、??=E J 5、用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是( ) A 、镜像电荷是否对称 B 、电位方程和边界条件不改变 C 、同时选择A 和B 6、在静电场中,电场强度表达式为3(32)()y x z cy ε=+--+x y z E e e e ,试确定常数 ε的值是( ) A 、ε=2 B 、ε=3 C 、ε=4 7、若矢量A 为磁感应强度B 的磁矢位,则下列表达式正确的是( ) A 、=?B A B 、=??B A C 、=??B A D 、2=?B A 8、空气(介电常数10εε=)与电介质(介电常数204εε=)的分界面是0z =平面, 若已知空气中的电场强度124= +x z E e e 。则电介质中的电场强度应为( ) A 、1216=+x z E e e B 、184=+x z E e e C 、12=+x z E e e 9、理想介质中的均匀平面波解是( ) A 、TM 波 B 、TEM 波 C 、TE 波 10、以下关于导电媒质中传播的电磁波的叙述中,正确的是( ) A 、不再是平面波 B 、电场和磁场不同相 C 、振幅不变 D 、以T E 波的形式传播 二、填空 1、一个半径为α的导体球作为电极深埋地下,土壤的电导率为 σ,略去地面的影响,则电极的接地电阻R = 2、 内外半径分别为a 、b 的无限长空心圆柱中均匀的分布着轴向电流I ,设空间离轴距离为()r r a <的某点处,B= 3、 自由空间中,某移动天线发射的电磁波的磁场强度

电磁场与电磁波课后答案

第一章 矢量分析 重点和难点 关于矢量的定义、运算规则等内容可让读者自学。应着重讲解梯度、散度、旋度的物理概念和数学表示,以及格林定理和亥姆霍兹定理。至于正交曲面坐标系一节可以略去。 考虑到高年级同学已学过物理学,讲解梯度、散度和旋度时,应结合电学中的电位、积分形式的高斯定律以及积分形式的安培环路定律等内容,阐述梯度、散度和旋度的物理概念。详细的数学推演可以从简,仅给出直角坐标系中的表达式即可。讲解无散场和无旋场时,也应以电学中介绍的静电场和恒定磁场的基本特性为例。 至于格林定理,证明可免,仅给出公式即可,但应介绍格林定理的用途。 前已指出,该教材的特色之一是以亥姆霍兹定理为依据逐一介绍电磁场,因此该定理应着重介绍。但是由于证明过程较繁,还要涉及? 函数,如果学时有限可以略去。由于亥姆霍兹定理严格地定量描述了自由空间中矢量场与其散度和旋度之间的关系,因此应该着重说明散度和旋度是产生矢量场的源,而且也是惟一的两个源。所以,散度和旋度是研究矢量场的首要问题。 此外,还应强调自由空间可以存在无散场或无旋场,但是不可能存在既无散又无旋的矢量场。这种既无散又无旋的矢量场只能存在于局部的无源区中。 重要公式 直角坐标系中的矢量表示:z z y y x x A A A e e e A ++= 矢量的标积:代数定义:z z y y x x B A B A B A ++=?B A 几何定义:θcos ||||B A B A =? 矢量的矢积:代数定义:z y x z y x z y x B B B A A A e e e B A =? 几何定义:θsin ||B ||A e B A z =? 标量场的梯度:z y x z y ??+??+??=?Φ ΦΦΦe e e x 矢量场的散度:z A y A x A z y x ??+??+??= ??A 高斯定理:???=??S V V d d S A A 矢量场的旋度:z y x z y A A A z y x ?? ???? = ??e e e A x ; 斯托克斯定理: ???=???l S d d )(l A S A

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案 第1章 矢量分析 1、如果矢量场F 的散度处处为0,即0F ??≡,则矢量场是无散场,由旋涡源所 产生,通过任何闭合曲面S 的通量等于0。 2、如果矢量场F 的旋度处处为0,即0F ??≡,则矢量场是无旋场,由散度源所 产生,沿任何闭合路径C 的环流等于0。 3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是: 散度(高斯)定理:S V FdV F dS ??=?? ?和 斯托克斯定理: s C F dS F dl ???=??? 。 4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。( √ ) 5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。( √ ) 6、标量场的梯度运算和矢量场的旋度运算都是矢量。( √ ) 7、梯度的方向是等值面的切线方向。( × ) 8、标量场梯度的旋度恒等于0。( √ ) 9、习题, 。

第2章 电磁场的基本规律 (电场部分) 1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。 2、在国际单位制中,电场强度的单位是V/m(伏特/米)。 3、静电系统在真空中的基本方程的积分形式是: V V s D dS dV Q ρ?==? ?和 0l E dl ?=?。 4、静电系统在真空中的基本方程的微分形式是:V D ρ??=和0E ??=。 5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。 6、在两种媒质分界面的两侧,电场→ E 的切向分量E 1t -E 2t =0;而磁场→ B 的法向分量 B 1n -B 2n =0。 7、在介电常数为 的均匀各向同性介质中,电位函数为 22 11522 x y z ?= +-,则电场强度E =5x y z xe ye e --+。 8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。 9、电荷只能在分子或原子范围内作微小位移的物质称为( D )。 A.导体 B.固体 C.液体 D.电介质 10、相同的场源条件下,真空中的电场强度是电介质中的( C )倍。 A.ε0εr B. 1/ε0εr C. εr D. 1/εr 11、导体电容的大小( C )。 A.与导体的电势有关 B.与导体所带电荷有关 C.与导体的电势无关 D.与导体间电位差有关 12、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 22 00001114π4π4π221x y y x x y q q q E e e e e a a q e e εεε? =+++ ?+=+

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题 一、填空题 1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。散度与通量的关系是矢量场中任意一点处通量对体积的变化率。 2、 散度 在直角坐标系的表达式 z A y A x A z y x A A ?? ????++=??= div ; 散度在圆柱坐 标系下的表达 ; 3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。当S 点P 时,存在极限环量密度。 二者的关系 n dS dC e A ?=rot ; 旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。

4.矢量的旋度在直角坐标系下的表达式 。 5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。 梯度的大小为该点标量函数?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达 式 ; 7、直角坐标系下方向导数 u l ??的数学表达式是cos cos cos l αβγ????????uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ???=++=?=???; 8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第1章习题解答

第1章习题解答 1.4 计算下列标量场u 的梯度u ? : (1)234u x y z =; (2)u xy yz zx =++; (3)222323u x y z =-+。 解:(1) 34224233234x y z x y z u u u u e e e e xy z e x y z e x y z x y z ????=++=++??? (2)()()()x y z x y z u u u u e e e e y z e x z e y x x y z ????=++=+++++??? (3)646x y z x y z u u u u e e e e x e y e z x y z ????=++=-+??? 1.6 设()22,,1f x y z x y y z =++。试求在点()2,1,3A 处f 的方向导数最大的方向的单位矢量及其方向导 数。方向导数最小值是多少?它在什么方向? 解: ()2222x y z x y z f f f f e e e e xy e x yz e y x y z ????=++=+++??? 因为410x y z x y z A f f f f e e e e e e x y z ????=++=++??? 所以 ( max 410l x y z f e e e e l ?==++? ( min 410l x y z f e e e e l ?==-++? 1.10 求下列矢量场在给定点的散度值: (1)()x y z A xyz e x e y e z =++ 在()1,3,2M 处; (2)242x y z A e x e xy e z =++ 在()1,1,3M 处; (3)())1222x y z A e x e y e z x y z =++++ 在()1,1,1M 处。 解:(1) 222636y x z M A A A A xyz xyz xyz xyz A x y z ?????=++=++=??=??? (2)42212y x z M A A A A x z A x y z ?????= ++=++??=??? (3)y x z A A A A x y z ?????=++ ??? ( )( )( ) 2222 2222 2222 3 3 3 x y z x x y z y x y z z ++-++-++ -= + + = M A ??=

电磁场与电磁波习题集

电磁场与电磁波 补充习题 1 若z y x a a a A -+=23,z y x a a a B 32+-=,求: 1 B A +;2 B A ?;3 B A ?;4 A 和B 所构成平面的单位法线;5 A 和B 之间较 小的夹角;6 B 在A 上的标投影和矢投影 2 证明矢量场z y x a xy a xz a yz E ++=是无散的,也是无旋的。 3 若z y x f 23=,求f ?,求在)5,3,2(P 的f 2?。 5 假设0x 的区域为电介质,介电常数为03ε,如果空气中的电场强度z y x a a a E 5431++=(V/m ),求电介质中的电场强度。 7 同轴电缆内半径为a ,电压为0V ,外导体半径b 且接地,求导体间的电位分布,内导体的表面电荷密度,单位长度的电容。 10 在一个无源电介质中的电场强度x a z t C E )cos(βω-=V/m ,其中C 为场的幅度,ω为 角频率,β为常数。在什么条件下此场能够存在?其它的场量是什么? 11 已知无源电介质中的电场强度x a kz t E E )cos(-=ωV/m ,此处E 为峰值,k 为常数,求此区域内的磁场强度,功率流的方向,平均功率密度。 12 自由空间的电场表示式为x a z t E )cos(10βω+=V/m ,若时间周期为100ns ,求常数k , 磁场强度,功率流方向,平均功率密度,电场中的能量密度,磁场中的能量密度。 13 已知无源区的电场强度为y a kz t x C E )cos(sin -=ωαV/m ,用相量求磁场强度,场存在的必要条件,每单位面积的时间平均功率流。 14 若自由空间中均匀平面波的磁场强度为x a z t H )30000cos(100β+= A/m , 求相位常数,波长,传播速度,电场强度,单位面积时间平均功率流。 16 决定下面波的极化类型 m a y t a y t E m a e e a e e E m a e a e E z x y z j j x z j j z x j y x j /V )5.0s i n (4)5.0c o s (3/V 916/V 10010010041004300300 ---=-=+=-----ππ 17 电场强度为y x a z t a z t )sin(5)cos(12βωβω--- V/m 的均匀平面波以200M rad/s 在无耗媒质中(1,5.2==r r με)传播,求相应的磁场强度,相位常数,波长,本征阻抗,相

电磁场与电磁波第四版谢处方课后答案

电磁场与电磁波(第四版)谢处方 课后答案 第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ; (8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==+e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ = ==A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1235 02 x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 041502 x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123 PP P ?是否为一直角三角形; (2)求三角形的面积。 解 (1)三个顶点1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e

电磁场与电磁波课后答案第1章

第一章习题解答 给定三个矢量、和如下: 求:(1);(2);(3);(4);(5)在上的分量;(6); (7)和;(8)和。 解(1) (2) (3)-11 (4)由,得 (5)在上的分量 (6) (7)由于 所以 (8) 三角形的三个顶点为、和。 (1)判断是否为一直角三角形; (2)求三角形的面积。 解(1)三个顶点、和的位置矢量分别为 ,, 则,, 由此可见 故为一直角三角形。 (2)三角形的面积 求点到点的距离矢量及的方向。 解,, 则 且与、、轴的夹角分别为 给定两矢量和,求它们之间的夹角和在上的分量。 解与之间的夹角为 在上的分量为 给定两矢量和,求在上的分量。 解 所以在上的分量为 证明:如果和,则; 解由,则有,即 由于,于是得到 故 如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。设为一已知矢量,而,和已知,试求。

解由,有 故得 在圆柱坐标中,一点的位置由定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。 解(1)在直角坐标系中、、 故该点的直角坐标为。 (2)在球坐标系中、、 故该点的球坐标为 用球坐标表示的场, (1)求在直角坐标中点处的和; (2)求在直角坐标中点处与矢量构成的夹角。 解(1)在直角坐标中点处,,故 (2)在直角坐标中点处,,所以 故与构成的夹角为 球坐标中两个点和定出两个位置矢量和。证明和间夹角的余弦为 解由 得到 一球面的半径为,球心在原点上,计算:的值。 解 在由、和围成的圆柱形区域,对矢量验证散度定理。 解在圆柱坐标系中 所以 又 故有 求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。 解(1) (2)对中心在原点的一个单位立方体的积分为 (3)对此立方体表面的积分 故有 计算矢量对一个球心在原点、半径为的球表面的积分,并求对球体积的积分。 解 又在球坐标系中,,所以 求矢量沿平面上的一个边长为的正方形回路的线积分,此正方形的两边分别与轴和轴相重合。再求对此回路所包围的曲面积分,验证斯托克斯定理。 解 又

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第7章习题解答

第7章习题解答 7.6 如题7.6图所示相距为a 的平板金属波导,当/0y ??=时,沿z 方向可传播 TEM 模、TE 模和TM 模。试求:(1)各种模式的场分量;(2)各种模式的传播常数;(3)画出基本模式的场结构及其导体表面的传导电流。 解:(1) 各种模式的场分量 对TEM 模,在均匀波导横截面上的分布规律与同样边界条件下的二维静态场的分布规律是完全一样的。对静电场情况,无限大平板之间的电场强度为均匀电场0E ,则对应的TEM 模中电场为 j t 0e kz x x x E e E e E -== 利用平面波电场与磁场关系,即 j 0t t w 1 e 120π kz z y E H e E e Z -= ?= 对TE 模,0=z E ,而z H 满足的导波方程为 22t c 0z z H k H ?+= 式中2 2 2 c k k γ=+,2 2t 2x ??=?,则上式变成 22c 2 d 0d z z H k H x += 因此波动方程的解为 c c sin cos z H A k x B k x =+ 由0=x 时 0=??x H z 可得到0=A ;由a x =时0=??x H z 可得到c sin 0k x =,即c m k a π= 。因此 πcos z m m x H H a = 式中m H 取决于波源的激励强度。由于波沿着z 方向传播,则j z k γ=,因此 z k ==利用各横向场分量与纵向场分量之间关系可以得到 j 22c c 0 j ππj sin e z x k z z y m E H m m x E H k x k a a ωμωμ-=?==-? j 22c c j j ππsin e 0z k z z z z x m y k H k m m x H H k x k a a H -?=- =?= 对TM 模,0=z H ,而z E 满足的导波方程为 22c 2 d 0d z z E k E x += 因此波动方程的解为 c c sin cos z E A k x B k x =+ 由0=x 时0=z E 可得到0=B ;由a x =时0=z E 可得到c sin 0k x =,即c m k a π=。因此 πsin z m m x E E a = 式中m E 取决于波源的激励强度。利用各横向场分量与纵向场分量之间关系可以得到

相关主题
文本预览
相关文档 最新文档