当前位置:文档之家› 光电检测方法

光电检测方法

光电检测方法

2.1直接探测

2.1.1基本物理过程

直接探测是将待检测的光信号直接入射到光探测器的光敏面上,由光探测器将光信号直接转化为电流或电压,根据不同的要求,再经后续电路处理,最后获得有用的信号。

一般,光探测器前可采用光学天线,在其前端还可经过频率滤波和空间滤波处理。这是为了进一步提高探测效率和减小杂散的背景光。

信号光场可表示为()cos S

E t A t ω=,式中,A 是信号光电场振幅,ω是信号光的频率。则其平均功率P 为

(2.1.1)

光探测器输出的光电流为

(2.1.2)

若光探测器的负载电阻为L

R ,则光探测器输出的电功率为

(2.1.3)

光探测器输出的电功率正比于入射光功率的平方。从而可知,光探测器对光的响应特性包含两层含意,其一是光电流正比于光场振幅的平方,即光的强度;其二是电输出功率正比于入射光功率的平方。如果入射信号光为强度调制(TM )光,调制信号为()d t 。从而得

(2.1.4)

式中第一项为直流项,若光探测器输出有隔直流电容,则输出光电流只包含第二项,这就是直接探测的基本物理过程,需强调指出,探测器响应的是光场的包络,目前,尚无能直接响应光场频率的探测器。

2.1.2信噪比

设入射到光探测器的信号光功率为S P,噪声功率为n P,光探测器输出的信号电功率为P S,输出的噪声功率为P N。可得

(2.1.5)

根据噪声比的定义,则输出功率信噪比为

(2.1.6)

从上式可以看出

I.若,则有

(2.1.7)

输出信噪比等于输入信噪比的平方。由此可见,直接探测系统不适于输入信号比小于1或者微弱光信号的探测。

II.若,则

(2.1.8)

输出信噪比等于输入信噪比的一半,即经光—电转换后信

噪比损失了3dB ,在实际应用中还是可以接受的。

由此可见,直接探测方法不能改善输入信噪比。

如果考虑直接探测系统存在的所以噪声,则输出噪声总功

率为

(2.1.9)

式中,

222N S N B N D i i i ++分别为信号光,背景光和暗电流引起的散粒噪声。2

N T i 为负载电阻的热噪声。

(2.1.10)

当直接探测系统主要为信号光引起的散粒噪声限制(即量子噪声限)时

(2.1.11)

这就是理想的直接探测系统所能达到的最大信噪比极限。

2.1.3噪声等效功率(NEP)

不同的系统有不同的信噪比要求,因而不可能有归一化的

灵敏度指标,为了便于分析和评估探测系统的性能,引入等效噪声功率(NEP )这一指标。它可以反映直接探测系统微弱光辐射的能力。 等效噪声功率为()1P S

N ,时所需的信号功率。在直接探测系

统中往往同时存在多种噪声源,但是,在不同情况下,各种噪声源的噪声电平是不同的,按不同的起主导作用的噪声源分析,可得出一下几种噪声限下的NEP 。

一般情况下的NEP 表示式

(2.1.12)

当热噪声是直接探测系统的主要噪声源,而其他噪声可以

忽略时,我们就说直接探测系统受热噪声限制,这时的NEP 为

(2.1.13)

当散粒噪声为主,其它噪声可以忽略时,则直接探测系统

受散粒噪声限制,这时的NEP 为

(2.1.14)

当背景噪声是直接探测系统的主要噪声源,其它噪声可以忽略时,我们就说直接探测系统受背景噪声限制,这时的NEP 为

(2.1.15)

当入射的信号光波所引起的散粒噪声时直接探测系统的主要噪声源,而其它噪声可以忽略时,直接探测系统受信号噪声限制,这时的NEP为

(2.1.16)

在实际的直接探测系统中,很难实现信号噪声极限探测,因为任何实际的光探测器都不是理想探测器,总会有噪声存在,在直接探测系统中所用的放大器也不可能没有噪声,至多可以做到放大器噪声比光探测器噪声低,再者,背景辐射和暗电流往往是客观存在的,最后,光探测器本身具有的电阻以及负载电阻等都会产生热噪声。所以信号噪声限制的探测只能理解为直接探测系统的理想工作状态。

从以上分析可知,要想达到良好的直接探测效果,在接收光功率受到一定限制的情况下,必须合理的选择光探测器件,尽可能的降低各种噪声,以改善系统的特性。

2.1.4接收光学系统

为了改善直接探测系统的性能,非常直观的分析是应尽可能多的收集信号光功率,为达到此目的,除了在可能条件下选择大的探测器件,往往也采用各种光学系统。

接收光学系统是为了收集尽可能多信号光能量,并使光束直径小于光探测器的直径,入射到光探测器光敏面上,对不同的系统,单位波长单位立体角所接收到的光功率具有不同的表达形式

在一定距离上进行直接探测时,光探测器所能接收到的光功率与下述因素有关:

i.接收系统所能接收到的光功率与距离平方成反比,接收到

的光能量随距离增加而衰减很快

ii.目标反射的光功率愈大,则在同一距离上接收到光功率也愈大,或在同样的接收灵敏度下,系统的作用距离也愈大,用合作目标就是增大接收光功率的方法之一。

iii.光源发散角愈小,接收系统能接收到的光功率愈大,所以,在发射端往往采用准直或会聚透镜系统来准直光束。

iv.接收到的光功率与接收光学系统的口径直接有关,在结构尺寸允许的条件下,增大接收光学系统的口径是有效的办法。

但必须使出,由于大气传输,会引入随机闪烁,在一定程度上,过大的口径,反而会增大噪声。

v.各种光源发射的能量有确定的光谱,除选用与之匹配的光探测器外,光学系统的材料也应与之匹配。若工作距离较长,还应选用处于大气窗口以内的波长。光学系统尽可能选择镜片少的透镜组,如用反射或折反射式系统,以减少镜片对光能的吸收损耗。

2.1.5直接探测方法应用

a)光功率测量

利用光探测器的光电转换特性,可以很容易实现光功率的测

定,这也是直接探测技术的最简单,最直接的应用之一,一个好的光功率计除要求有一定的精度外,还应尽可能做到:

1.能响应宽的光谱范围,以适应对不同光辐射源的测量

2.具有大的动态范围。

光探测器受待测光照射后,将光信号变成电流或电压信号,由于这个电流或电压信号一般都比较微弱,所以,再用一个稳定的线性放大器予以放大,输出至指示仪表,经过校准,即可直接读出光功率的绝对值。

在测量微弱光功率的场合,由于光探测器存在一定的暗电流和漏电流,信号光电流可能被淹没,为此,可在光功率计的探头中,采用斩波的方法,将恒定光变成交变光,经过隔直电容将交流信号与直流的暗电流和漏电流分离出来,再用锁相放大器放大到显示仪表所需电平。

b)条形码阅读器

条形码是印刷在标签上的一系列宽窄不同,距离不等的黑色线宽,这些线条的组合代表着各种信息。对条形码进行读取的装置,实际上就是一种光辐射探测装置,这种装置通常称为阅读器。其核心是光探测器对条纹反射光强变化的直接探测。

条形码阅读器原理框图如下所示:

图2.1.1

条形码阅读器通常由两部分组成:一部分为输入装置,通常称作扫描器;另一部分是译码器。评价条形码扫描器好坏由以下几个指标

1.条纹分辨率高

2.扫描角度适应性强。

3.黑白条纹反光强弱适应性强。

4.光信号抗干扰能力强

而评价译码器,则有:

1.识别编码种类多

2.配接扫描器能力强

3.与微机接口多

4.拒识率与误码率低

由条形码返回的光信号在扫描器中转换成电信号,再送至译码器变成一串编码信号,这个信号由计算机确定所代表的信号特征。

其指标好坏与其光学系统,光源,光探测器和电路选择密切相关。

2.2光外差探测方法

2.2.1简介

在电磁波谱的射频和微波波段,作为一种探测技术,外差接收的优点早已为人们所熟知,并在通信,广播,雷达等领域得到了广泛的应用。近年来,随着激光与红外技术的发展,外差探测技术也广泛用于光学和红外波段。

由于光外差探测是基于两束光在光探测器光敏面上的相干效应,因此,光外差探测又称为光辐射的相干探测,或差拍探测。

2.2.2基本原理

偏振方向相同,传播方向平行且重合的两束光垂直入射到光混频器上。一束是频率为(即原来的)的本振光,另一束是频率为(即原来的)的信号光。光混频器可在频率,,和频(+)及差频(-)处产生输出。但在实际情况下,光频,及(+)极高,其远远超过光外差探测系统的响应速度。因此在光混频器的输出中只需考虑频率较低的差频项,亦即中频项。这个中频信号包含了信号光所携带的全部信息。中频信号经过中频放大器放大,解调器解调,最后得到所需要的信息。

下图所示为光差频探测的原理图

图2.2.1

2.2.3特点

1.有利于微弱光信号的探测。

在光外差探测中,光混频器输出的中频信号功率正比于信号光和本振光平均光功率的乘积。而在直接探测中光探测器输出的光电流正比于信号光的平均光功率,即光探测器输出的电功率正比于信号光平均光功率的平方。

在一般情况下,入射到光探测器上的信号光功率是非常小的(尤其在远距离上的应用,例如光雷达,光通讯等应用),因而,在直接探测中光探测器输出的电信号也是极其微弱的。在光外差探测过程中,尽管信号光功率非常小,但只要本振光功率足够大,仍能得到可观的中频输出。这就是光外差探测对微弱光信号的探测特别有利的原因。

2.可获得全部信息。

在直接探测中,光探测器输出的光电流随信号光的振幅或强度的变化而变化,光探测器对信号光的频率或相位变化不响应,在光外差探测中,光混频器输出的中频光电流的振幅,频率和相位都随信号光的振幅,频率和相位的变化而变化。这使我们能把频率调制和相位调制的信号光像幅度调制或强度调制一样进行解调。

3.具有良好的滤波性能。

在直接探测过程中,光探测器除接收信号光以外,杂散背景光也不可避免的同时入射到光探测器上,为了抑制杂散背景光的干扰,提高信号噪声比,一般都要在光探测器的前面加上窄带虑光片,在光外差探测过程中,只有与本振光混频后所产生的输出仍在中频带宽以内的杂散背景光才能进入探测系统,而其它杂散背景光所引起的噪声则被中频滤波器滤除掉。而且,杂散背景光

不会在原来信号光和本振光所产生的相干项上产生附加的相干项。因此,对于光外差探测来说,杂散背景光的影响可以略去不计,由此可见,光外差探测方法具有良好的滤波性能。

4. 具有高的转换增益。

直接探测过程是一种“包络检测过程”,光外差探测过程是将信号光的频率转换成的转换过程。在直接探测中,光探测器输出的信号功率。在光外差探测中,光混频器输出的中频功率由此可求出光外差探测所提供的中频功率转换增益为

(2.2.1)

在实际应用中,本振光功率 远远大于信号光功率,故光外差的转换增益是很高的。

2.2.4应用

DOAS

各类燃烧器、工业及商用锅炉的烟气排放造成了严重的空气污染, 对烟气中的有毒有害气体进行监测是环境保护工作的一个重要方面, 是控制污染、治理污染的必要前提。

目前, 烟气成分检测手段主要分为电化学方法和光学方法, 一般便携式仪器采用的是电化学方法, 操作方便, 但不能提供完全的在线测量; 能在线测量的仪器大多采用光学方法, 有非分散红外线法、紫外荧光法、分光光度法等, 但仪器造价均很昂贵。

差分吸收光谱方法(Differential Optical Absorption Spetroscopy) 最早由德国Heidelberg 大学环境物理研究所的Ulrich Platt 提出, 主要是利用吸收分子在紫外到可见波段的特征吸收来研究大气层(平流层, 对流层) 的痕量气体成分(23223,,,,,g C H O O N O SO H N H 等) , 通过长光程吸收可以测量到浓度很低的气体成分, 近来也出现了商用的DOA S 系统, 专门用于城

市、地下通道、工业矿区的SO 2、NO x 、O 3、CH4 等有害气体的监测.

将DOA S 技术具体应用到烟气的分析测量中, 利用差分光谱计算方法对2C O 在

300nm 附近的吸收光谱进行浓度反演, 这种分析方法克服了烟气中其它气体成分、烟尘带来的影响,也去除去了光源起伏、光学元件透过率、探测器光谱响应等测量系统带来的影响。 DOAS 原理:

DOA S 方法广泛用于大气研究, 它基于L am bert2Beer 定律3

0()()()e x p (())I I F L C λλλσλ=- (2.2.2)

式中0

()I λ 为光源发出的光强度, ()I λ为经过光程L 的透过强度, C 表示吸收成分的浓度,()σλ是相应的吸收截面, ()F λ代表了由于大气分子散射, 光学系统透过率等引起的强度下降,是没有特征的宽带结构,λ表示波长.

2.3微弱信号检测技术

2.3.1序论

在许多新的研究和应用领域中,都涉及到微弱信号的精密测量。然而,由于任何一个系统都必然存在噪声,而所测量的信号本身又相当微弱,因此,如何把淹没于噪声中的有用信号提取出来的问题越来越引起人们的关注。通常从两条不同的途径来解决:

1. 降低系统的噪声,使被测信号功率S P 大于噪声功率N P ,以达到信躁比大于1

2. 采用相关接收技术,可以保证在S N

P P <的情况下,仍能检测出信号。

在光电探测系统中,噪声来自信号光,背景光,光电探测器及电子电路。系统的干扰主要来自背景光干扰和系统以外的市电,电火花,空间高频电磁场干扰等。通常抑制这些噪声和干扰的方法是:合理压缩系统视场,在光学系统结构上抑制背景光,加适当光谱滤波器,空间滤波器等以抑制背景光干扰。合理选择光信号的调制频率,使信号频率远离市电频率和空间高频电磁波频率,偏离1/f 噪声为主的区域,以使光电探测系统在工作的波

段范围内达到较高的信噪比。此外,在电子学信号处理系统中采用低噪声放大技术,选取适当的电子滤波器限制系统带宽,以抑制内部噪声及外部干扰。保证系统的信噪比大大改善,即使信号交微弱时,也能得到S/N>1的结果。但当信号非常微弱,甚至比噪声小几个数量级或者说信号完全被噪声深深淹没时,再采用上述的方法,就不会有效,必须利用信号和噪声再时间特性方面的差别,也即利用信号和噪声在统计特性上的差别去区别它们,来提取被噪声淹没的极微弱的信号,即采用相关检测原理来提取信号。

2.3.2相关检测原理

利用信号在时间上相关这一特性,可以把深埋于噪声中的周期信号提取出来,这种提取方法称为相关检测或相干接收,是微弱信号检测的基础。

从原则上讲,用通频带很窄的滤波器也可以从噪声中提取信号,但滤波器大的中心频率必须调在信号频率上。对于周期不固定或者频率不能做到绝对恒定的信号,滤波器的通频带不能过窄,因此信躁比的改善不可能太大。相关检测相当于一个跟踪滤波器,因而没有这方面的限制。

信号的相关性用相关函数来描述,它代表线性相关的度量,是随机过程在两个不同时间相关性的一个重要统计参量。在讨论微弱信号检测技术之前,有必要对信号的相关性及相关检测原理作一简单介绍。

a) 相关函数

相关函数分为自相关函数和互相关函数。

1) 自相关函数

自相关函数()xx R τ是度量一个变化或随机过程在t 和t τ-两个时刻线性相关的统计参量,它是t 和t τ-两点间的时间间隔τ的函数,定义为

1()l i m ()()

2T

xx T x R x t x t dt T ττ-→∞=-?

(2.3.1)

式中,τ为延迟时间,T 为观察时间,x(t)表示随机过程的一个样本函数。

根据维纳-肯欣定理,x(t)的功率谱密度()x S

ω与()xx R τ之间满足傅立叶变换关系,即

1()()2j x x x R S e d T ωττωω∞-∞=?

(2.3.2) 分析表明,自相关函数具有下列性质:

I. ()()xx xx R

R ττ=-即()xx R τ为τ的偶函数。 II. ()xx R

τ在原点0τ=处最大,(0)xx R 并且代表x(t)变化量的平均功率。

III. 若变化量x(t)不包含周期性分量,则()xx R

τ将随τ的增加从最大值(0)xx R 逐渐下降,()xx R τ衰减的越快,表示变化量x(t)相关性越小,由于白噪声在不同时期是不相关的,或其相关性很小,所以它的()()xx R t τδ=,随着τ的增加衰减的非常迅速。

IV. 若变化量x(t)为规则函数,即包含有周期信号分量,则自相关函数()xx R τ也将包含有周期性分量。若x(t)为一纯周期信号,则自相关函数将包含原信号的基波与所有谐波。

2) 互相关函数

互相关函数()xy R

τ是度量两个随机过程x(t),y(t)间的相关性函

数,定义为

1()l i m ()()

2T xy T T R x t y t dt ττπ-→∞=-? (2.3.3) 式中τ为所考虑时间轴上两点间的时间间隔。

如果两个随机过程互相完全没有关系,则其互相关函数将为一个常数,并等于两个变化量平均值的乘积,若其中一个变化量平均值为零,则两个变化量互相关函数()xy R

τ将处处为零,即完

全独立不相关。

如果两个变化量是具有相同基波频率的周期函数,则它们的互相关函数将保存它们的基波频率以及两者所共有的谐波。互相关函数中基波及谐波的相位为两个原函数的相位差。 b) 相关检测

简单来说相关检测就是利用信号具有良好的时间相关和不相关,使信号进行积累而噪声不积累的原理,从而把被噪声淹没的信号提取出来。相关检测分为自相关和互相关检测。

1) 自相关检测

如下所示为自相关检测的原理图

图 2.3.1

图中x(t)代表被测信号,它由被测信号()i S t 和噪声信号()i N t 组成,即

()()(i i x t S t N t =+ (2.3.4)

将()x t 经过自相关处理,即把x(t)分成两路信号,其中一路经过延时器D 延迟一段时间τ,表示为()x t τ-,将未经延迟的x(t)与()x t τ-同时送入乘法器,再将其输出经过积分运算处理,最后便得到()x t 的自相关信号()xx R τ 。在实际测量中,只能对()x t 作有限时间的测量,设测量时间从0开始,到T 结束,则短时间相关函数()xx R τ为

01()()()T xx R x t x t dt T ττ=-?

(2.3.5) 将()x t 代入上式,则

()()()()x x s s s n n s n n R R R R R τττττ=+++ (2.3.6)

式中()ss R τ,()nn R τ分别为信号和噪声的自相关函数,

()sn R τ,()ns R τ为信号与噪声的互相关函数,由于信号与噪声互不相关,并假设噪声的平均值为零,则根据相关函数的性质有()()0sn ns R R ττ==,则

()()(x x s s n n R R R τττ=+

(2.3.7) 由于噪声在时间上的不相关性,()

nn R τ随时间τ的增加很快衰减至零,相反,周期信号是相关的,()ss R

τ将随时间τ的增加远大于()nn R τ。这样,被测信号x(t)作自相关处理后,其输出信号的自

相关函数()xx R τ近似为

()()x x s s R R ττ=

(2.3.8) 上式表明,经过自相关处理后,保留了信号,抑制了噪声,这就是相关检测要达到的目的。

自相关检测输出波形:

图2.3.2

2) 互相关检测 与自相关检测类似,互相关检测是利用一个与待测信号()i

S t

同频率的信号y(t),对被噪声干扰的信号()()()i i x t S t N t =+作互相关处理

()()xy sy R R ττ= (2.3.8)

上式表明,最后输出的信号只保留与参考信号()y t τ-相关的信号部分,噪声却被完全抑制掉零了,但在实际测量中,由于测量时间有限,对短时间的互相关函数

01()()()T xy R x t y t dt T ττ=-? ()()ny sy R R ττ=+ (2.3.9)

亦即噪声与参考信号的互相关函数()ny R τ不一定为零,从而使

相关检测产生误差,此外,可以看到,在有限时间测量中产生的干扰,互相关测量比自相关测量要少两项。故互相关检测抑制噪声能力比自相关检测强,这是互相关检测的优点。但互相关检测要求用与被检测信号同频率的参考信号y(t),当被测信号x(t)未知时,要取得与()i

S t 同频率信号是困难的,这时一般就不能采用互相关检测。

2.3.3应用

漂白过程中微弱信号相关检测

卡伯值是纸浆的重要质量指标,是制浆过程控制的关键参数,应用特定波长的单色光源,应用特定波长的单色光源,使其作为入射光源,通过光纤入射到浆管之中,然后合理安排反射光纤的位置,通过光接收装置接收光谱,信号,可以得到反射光信号,从而在线测出纸浆的机理特性,但实际上,由于纸浆对光线的吸收度很高,特别是对于短波长的蓝紫光,经过纸浆的反射后通过光纤耦合到接收装置的光强已经相当微弱,产生的光电流一般为nA 级,采用普通的放大器基本上被噪声所淹没,因此必须对其进行特殊的处理,采用锁相技术放大微弱光谱信号,并开发

出相应的控制与测量软件对测量数据进行分析,同时采用人工神经网络等传感器信息融合技术,提高测量精度。

原理图如下所示

图2.3.3 互相关运算原理

图 2.3.4 检测电路整体原理图

经理论和试验分析发现,利用相关检测原理实现同步检波,排除噪声对系统的干扰等方面等方面起到的决定性的作用:1.检波线性好,分辨率高,即使在微弱小信号的状态下,也不会产生很大的失真。

2.有利于提高接收系统工作的稳定性。因为监测器输出电流中不包含和频分量,可避免检波电路中残留的和频分量对中放级产生的寄生反馈。

在微弱信号的检测系统中,采用具有良好的选频及选相特性的相关放大器,结合必要的隔离,屏蔽措施,可以有效的抑制测量系统的各种噪声和干扰,能够有效的提高整个系统的工作稳定性和可靠性。

常见的光电耦合电路及其应用分析

常见的光电耦合电路及其应用分析 光电耦合电路是设计中常用的将信号进行隔离和转换并再次利用的一种应用,它主要是将输入的电信号通过介质转换成光信号,再根据介质和电路的特性转换成电信号输出,实现“电-光-电”之间的转换。同时将由于电路之间由于电容/电感等元器件或电磁感应等造成的干扰基本上排除。可见光电耦合电路在各位的设计应用中发挥着重要的作用。 光电耦合器是将光电耦合电路进行了集成和封装后得到的ic产品,它把红外光发射器件和红外光接受器件以及信号处理电路等封装在同一管座内的器件。最常用的发光器件就是LED发光二极管了,当输入电信号加到输入端会导致LED发光,光接受器件接受LED的发光的光信号后将其转换成电信号并输出。 光电耦合电路结构独特,可有效抑噪声消除干扰、开关速度快、体积小、可替代变压器隔离等,并可以组成和应用到开光电路、逻辑电路、隔离耦合电路、高压稳压电路、继电器替代电路等,故小编整理和总结了几种常见的光电耦合电路图,并对他们的应用需要和范围进行分析,希望能给大家的学习、掌握和应用这种电路有一定的指导作用。 (1)组成的多谐振荡器电路图 工作流程为接通电源后: A、电容C两端电压不能突变,电阻R数值大于Rl,电源电压Ec主要加在R上,F点电位很低,LED处于截止状态; B、电容充电电压增加导致F点电位逐渐增高,到达一定程度使LED导通发光,光敏三极管导通饱和,输出电压发生跃变使之接近电源电压;(即U0约=Ec) C、电容上存留电荷通过三极管、LED通路快速放电,并对其反向充电到达一定程度后导致LED截止及三极管截止???; D、电容再次通过电阻R和RL放电进行反向充电,LED发光光敏三极管再次饱和,如此循环形成振荡。 作用:多谐振荡器也叫自激多谐振荡器,它的作用是产生交流信号。将直流电变为交流

细菌鉴定及检测方法

细菌鉴定及检测方法 一、启动条件 1、目的样出现坏包,若批次相同,取表现性状相同的任意一包进行细菌初步鉴 定。若批次不同则分别进行细菌初步鉴定。 2、随机样出现坏包,必须进行细菌初步鉴定。 二、胀包 1、记录批次。 2、及时用72%的酒精对样品的外表进行消毒,尽量不损坏封合待以后检查。在 超净台内以无菌操作剪开包装,再避开横竖封处剪开一个圆形或三角形。3、对样品进行微生物划线培养。 3.1采用普通营养琼脂培养基做细菌的划线培养36±1℃、48小时。 3.2分别吸取10毫升样品到两个无菌的小试管中,,分别在80和100℃的水 浴中加热10分钟,冷却用营养琼脂分别做芽孢(36±1℃、72小时) 和耐热芽孢(55±1℃、72小时)的划线培养。 3.3采用普通营养琼脂培养基或快速检测培养基做嗜冷菌/低温菌的划线培 养(4—6℃ 10天或21±0.5℃ 25小时)。 3.4 必须用高盐察氏或虎红琼脂培养基做霉菌和酵母菌的划线培养 (25—28℃ 5--7天) 4、对样品做感官检测。 5、用PH计检测样品的PH值。 6、将样品倒掉,进行包装密封性检查,并进行记录。 7、记录菌落特征。 8、选区不同形态的单一菌落进行坚定。 8.1 革兰氏阴性菌和阳性菌的鉴定: 8.1.1涂片、革兰氏染色、镜检。或结晶紫染色、镜检、氢氧化钾拉 丝试验。 8.1.2革兰氏染色、结晶紫染色方法见《微生物检测》 8.1.3氢氧化钾拉丝试验 在微生物载物片上滴一滴3%氢氧化钾,用接种针从培养皿上的

菌落中挑取微生物,放在氢氧化钾溶液中用力搅拌。7—10秒后,抬 起针头,观察针头和玻片之间是否有丝状物,如果15—20 秒后二者 之间无丝状物,停止搅拌。 判定:无丝状物阳性;有丝状物阴性。 8.2 过氧化氢酶试验(或过氧化氢酶试纸)(产气试验): 试剂:10%过氧化氢溶液 步骤:在微生物载物片上滴一滴10%过氧化氢,用接种针从培养皿上的菌落中挑取微生物,放在过氧化氢溶液中看是否有气体产生。 判定:产气阳性;不产气阴性。 8.3氧化酶试验 试剂:含1%四甲基双噻二胺和99%的乙醇溶液。 步骤:用上述试剂将一张滤纸浸透(或直接采用氧化酶试纸条),然后进行细菌培养物的涂片试验。 判定:30秒内使显色物质变为深蓝色阳性,不变色阴性。 三、酸包 1、发现酸包后,及时将料液快速转入无菌瓶中。 2、记录批次 3、其它项目检测同胀包。

光耦的基本知识

光耦的基本知识 光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的 可靠性。 1.光耦合器的主要优点 信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(S SR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目 的。 十几年来,新型光耦合器不断涌现,满足了各种光控制的要求。其应用范围已扩展到计测仪器,精密仪器,工业用电子仪器,计算机及其外部设备、通信机、信号机和道路情报系统,电力机械等领域。这里侧重介绍该器件的工作特性,驱动和输出电路及部分实际应用电路。近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。下面分别 介绍光耦合器的工作原理及检测方法。 2. 光耦合器的性能及类型 用于传递模拟信号的光耦合器的发光器件为二极管、光接收器为光敏三极管。当有电流通过发光二极管时,便形成一个光源,该光源照射到光敏三极管表面上,使光敏三极管产生集电极电流,该电流的大小与光照的强弱,亦即流过二极管的正向电流的大小成正比。由于光耦合器的输入端和输出端之间通过光信号来传输,因而两部分之间在电气上完全隔离,没有电信号的反馈和干扰,故性能稳定,抗干扰能力强。发光管和光敏管之间的耦合电容小(2pf左右)、耐压高(2.5KV左右),故共模抑制比很高。输入和输出间的电隔离度取决于两部分供电电源间的绝缘电阻。此外,因其输入电阻小(约10Ω),对高内阻源的噪声相当于被短接。因此,由光耦合器构成的模拟信号隔离电路具有优良的电气 性能。

光电隔离

电路中的光耦器件 laozg 发表于- 2011-8-14 10:58:00 3 推荐 一、电路中为什么要使用光耦器件? 电气隔离的要求。A与B电路之间,要进行信号的传输,但两电路之间由于供电级别过于悬殊,一路为数百伏,另一路为仅为几伏;两种差异巨大的供电系统,无法将电源共用; A电路与强电有联系,人体接触有触电危险,需予以隔离。而B线路板为人体经常接触的部分,也不应该将危险高电压混入到一起。两者之间,既要完成信号传输,又必须进行电气隔离; 运放电路等高阻抗型器件的采用,和电路对模拟的微弱的电压信号的传输,使得对电路的抗干扰处理成为一件比较麻烦的事情——从各个途径混入的噪声干扰,有可能反客为主,将有用信号“淹没”掉; 除了考虑人体接触的安全,又必须考虑到电路器件的安全,当光电耦合器件输入侧受到强电压(场)冲击损坏时,因光耦的隔离作用,输出侧电路却能安全无恙。 以上四个方面的原因,促成了光耦器件的研制、开发和实际应用。光耦的基本作用,是将输入、输出侧电路进行有效的电气上的隔离;能以光形式传输信号;有较好的抗干扰效果;输出侧电路能在一定程度上得以避免强电压的引入和冲击。 二、光电耦合器件的一般属性: 1、结构特点:输入侧一般采用发光二极管,输出侧采用光敏晶体管、集成电路等多种形式,对信号实施电-光-电的转换与传输。 2、输入、输出侧之间有光的传输,而无电的直接联系。输入信号的有无和强弱控制了发光二极管的发光强度,而输出侧接受光信号,据感光强度,输出电压或电流信号。 3、输入、输出侧有较高的电气隔离度,隔离电压一般达2000V以上。能对交、直流信号进行传输,输出侧有一定的电流输出能力,有的可直接拖动小型继电器。特殊型光耦器件能对毫伏,甚至微伏级交、直流信号进行线性传输。 4、因光耦的结构特性,输入、输出侧需要相互隔离的独立供电电源,即需两路无“共地”点的供电电源。下述一、二类光耦输入侧由信号电压提供了输入电流通路,但实质上输入信号回路,也是有一个供电支路的;而线性光耦,则输入侧与输出侧一样,是直接接有两种相隔离的供电电源的。 三、在变频器电路中,经常用到的光电耦合器件,有三种类型: 1、一种为三极管型光电耦合器,如PC816、PC817、4N35等,常用于开关电源电路的输出电压采样和误差电压放大电路,也应用于变频器控制端子的数字信号输入回路。结构最为简单,输入侧由一只发光二极管,

IC芯片的检测方法大全

芯片的检测方法 一、查板方法: 1.观察法:有无烧糊、烧断、起泡、板面断线、插口锈蚀。 2.表测法:+5V、GND电阻是否是太小(在50欧姆以下)。 3.通电检查:对明确已坏板,可略调高电压0.5-1V,开机后用手搓板上的IC,让有问题的芯片发热,从而感知出来。 4.逻辑笔检查:对重点怀疑的IC输入、输出、控制极各端检查信号有无、强弱。5.辨别各大工作区:大部分板都有区域上的明确分工,如:控制区(CPU)、时钟区(晶振)(分频)、背景画面区、动作区(人物、飞机)、声音产生合成区等。这对电脑板的深入维修十分重要。 二、排错方法: 1.将怀疑的芯片,根据手册的指示,首先检查输入、输出端是否有信号(波型), 如有入无出,再查IC的控制信号(时钟)等的有无,如有则此IC坏的可能性极大,无控制信号,追查到它的前一极,直到找到损坏的IC为止。 2.找到的暂时不要从极上取下可选用同一型号。或程序内容相同的IC背在上面,开机观察是否好转,以确认该IC是否损坏。

3.用切线、借跳线法寻找短路线:发现有的信线和地线、+5V或其它多个IC不应 相连的脚短路,可切断该线再测量,判断是IC问题还是板面走线问题,或从其它IC上借用信号焊接到波型不对的IC上看现象画面是否变好,判断该IC的好坏。 4.对照法:找一块相同内容的好电脑板对照测量相应IC的引脚波型和其数来确认的 IC是否损坏。 5.用微机万用编程器(ALL-03/07)(EXPRO-80/100等)中的ICTEST软件测试 IC。 三、电脑芯片拆卸方法: 1.剪脚法:不伤板,不能再生利用。 2.拖锡法:在IC脚两边上焊满锡,利用高温烙铁来回拖动,同时起出IC(易伤板,但可保全测试IC)。 3.烧烤法:在酒精灯、煤气灶、电炉上烧烤,等板上锡溶化后起出IC(不易掌握)。4.锡锅法:在电炉上作专用锡锅,待锡溶化后,将板上要卸的IC浸入锡锅内,即可起出IC又不伤板,但设备不易制作。 5.电热风枪:用专用电热风枪卸片,吹要卸的IC引脚部分,即可将化锡后的IC起出(注意吹板时要晃动风枪否则也会将电脑板吹起泡,但风枪成本高,一般约2000元左右)作为专业硬件维修,板卡维修是非常重要的项目之一。拿过来一块有故障的主板,如何判断具体哪个元器件出问题呢?

PC817A光电耦合器

PC817A/B/C--- 电光耦合器 光耦特性与应用 1.概述 光耦合器亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。 光耦的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 十几年来,新型光耦合器不断涌现,满足了各种光控制的要求。其应用范围已扩展到计测仪器,精密仪器,工业用电子仪器,计算机及其外部设备、通信机、信号机和道路情报系统,电力机械等领域。这里侧重介绍该器件的工作特性,驱动和输出电路及部分实际应用电路。 近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。下面分别介绍光耦合器的工作原理及检测方法。 2. 光耦的性能及类型 用于传递模拟信号的光耦合器的发光器件为二极管、光接收器为光敏三极管。当有电流通过发光二极管时,便形成一个光源,该光源照射到光敏三极管表面上,使光敏三极管产生集电极电流,该电流的大小与光照的强弱,亦即流过二极管的正向电流的大小成正比。由于光耦合器的输入端和输出端之间通过光信号来传输,因而两部分之间在电气上完全隔离,没有电信号的反馈和干扰,故性能稳定,抗干扰能力强。发光管和光敏管之间的耦合电容小(2pf左右)、耐压高(2.5KV左右),故共模抑制比很高。输入和输出间的电隔离度取决于两部分供电电源间的绝缘电阻。此外,因其输入电阻小(约10Ω),对高内阻源的噪声相当于被短接。因此,由光耦合器构成的模拟信号隔离电路具有优良的电气性能。 事实上,光耦合器是一种由光电流控制的电流转移器件,其输出特性与普通双极型晶体管的输出特性相似,因而可以将其作为普通放大器直接构成模拟放大电路,并且输入与输出间可实现电隔离。然而,这类放大电路的工作稳定性较差,

光耦参数解释及其设计注意事项

光耦参数解释 1、正向工作电压V (forward voltage ) : V f是指在给定的工作电流下,LED本身的压降。常见的小功率LED通常以l f=10mA来测试正向工作电压,当然不同的LED,测试条件和测试结果也会不一样。 2、正向电流I f:在被测管两端加一定的正向电压时二极管中流过的电流。 3、反向工作电压 V r (reverse voltage :是指原边发光二极管所能承受的最大反向电 压,超过此反向电压,可能会损坏LED。而一般光耦中,这个参数只有5V左右,在存在反压或振荡的条件下使用时,要特别注意不要超过反向电压。如,在使用交流脉冲驱动LED 时,需要增加保护电路。 4、反向电流l r:在被测管两端加规定反向工作电压V r时,二极管中流过的电流。 5、反向击穿电压V br ::被测管通过的反向电流I r为规定值时,在两极间所产生的电压降。 6、结电容C j :在规定偏压下,被测管两端的电容值。 7、电流传输比CTR(current transfer ratio ):指在直流工作条件下,光耦的输出电流与输入电流之间的比值。光耦的CTR类似于三极管的电流放大倍数,是光耦的一个极为重要的参数,它取决于光耦的输入电流和输出电流值及电耦的电源电压值,这几个参数共同决定了光耦工 作在放大状态还是开关状态,其计算方法与三极管工作状态计算方法类似。若输入电流、输出电流、电流传输比设计搭配不合理,可能导致电路不能工作在预想的工作状态。

8、集电极电流l c (collector current):如上图,光敏三极管集电极所流过的电流,通常表示其最大值。 9、输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持IC/IF < CTRminH^( CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。 10、反向击穿电压V ( BR)ce。:发光二极管开路,集电极电流I c为规定值,集电极与发射集间的电压降。 11、反向截止电流I ce。:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。 12、C-E饱和电压V ce(C-E saturation voltage ):光敏三极管的集电极-发射极饱和压降。 13、入出间隔离电容C io :光耦合器件输入端和输出端之间的电容值。 14、入出间隔离电阻:半导体光耦合器输入端和输出端之间的绝缘电阻值。 15、入出间隔离电压Vg :光耦合器输入端和输出端之间绝缘耐压值 16、传输延迟时间T PHL、T PLH :光耦合器在规定工作条件下,发光二极管输入规定电流I FP 的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下 降到1.5V时所需时间为传输延迟时间T p HL。从输入脉冲后沿幅度的50%到输出脉冲电平上 升到1.5V时所需时间为传输延迟时间T PLH。 17、上升时间Tr (Rise Time)&下降时间T f (Fall Time),其定义与典型测试方法如下图所示,它们反映了工作在开关状态的光耦,其开关速度情况。 T£ST CJHCUIT WAVE FORWS AJiusl I F tit pfodux I C- Z A

集成电路的检测方法

集成电路的检测方法 现在的电子产品往往由于一块集成电路损坏,导致一部分或几个部分不能常工作,影响设备的正常使用。那么如何检测集成电路的好坏呢?通常一台设备里面有许多个集成电路,当拿到一部有故障的集成电路的设备时,首先要根据故障现象,判断出故障的大体部位,然后通过测量,把故障的可能部位逐步缩小,最后找到故障所在。 要找到故障所在必须通过检测,通常修理人员都采用测引脚电压方法来判断,但这只能判断出故障的大致部位,而且有的引脚反应不灵敏,甚至有的没有什么反应。就是在电压偏离的情况下,也包含外围元件损坏的因素,还必须将集成块内部故障与外围故障严格区别开来,因此单靠某一种方法对集成电路是很难检测的,必须依赖综合的检测手段。现以万用表检测为例,介绍其具体方法。 我们知道,集成块使用时,总有一个引脚与印制电路板上的“地”线是焊通的,在电路中称之为接地脚。由于集成电路内部都采用直接耦合,因此,集成块的其它引脚与接地脚之间都存在着确定的直流电阻,这种确定的直流电阻称为该脚内部等效直流电阻,简称R内。当我们拿到一块新的集成块时,可通过用万用表测量各引脚的内部等效直流电阻来判断其好坏,若各引脚的内部等效电阻R内与标准值相符,说明这块集成块是好的,反之若与标准值相差过大,说明集成块内部损坏。测量时有一点必须注意,由于集成块内部有大量的三极管,二极管等非线性元件,在测量中单测得一个阻值还不能判断其好坏,必须互换表笔再测一次,获得正反向两个阻值。只有当R内正反向阻值都符合标准,才能断定该集成块完好。 在实际修理中,通常采用在路测量。先测量其引脚电压,如果电压异常,可断开引脚连线测接线端电压,以判断电压变化是外围元件引起,还是集成块内部引起。也可以采用测外部电路到地之间的直流等效电阻(称R外)来判断,通常在电路中测得的集成块某引脚与接地脚之间的直流电阻(在路电阻),实际是R内与R外并联的总直流等效电阻。在修理中常将在路电压与在路电阻的测量方法结合使用。有时在路电压和在路电阻偏离标准值,并不一定是集成块损坏,而是有关外围元件损坏,使R外不正常,从而造成在路电压和在路电阻的异常。这时便只能测量集成块内部直流等效电阻,才能判定集成块是否损坏。根据实际检修经验,在路检测集成电路内部直流等效电阻时可不必把集成块从电路上焊下来,只需将电压或在路电阻异常的脚与电路断开,同时将接地脚也与电路板断开,其它脚维持原状,测量出测试脚与接地脚之间的R内正反向电阻值便可判断其好坏。 例如,电视机内集成块TA7609P瑢脚在路电压或电阻异常,可切断瑢脚和⑤脚(接地脚)然后用万用表内电阻挡测瑢脚与⑤脚之间电阻,测得一个数值后,互换表笔再测一次。若集成块正常应测得红表笔接地时为8.2kΩ,黑表笔接地时为272kΩ的R内直流等效电阻,否则集成块已损坏。在测量中多数引脚,万用表用R×1k挡,当个别引脚R内很大时,换用R ×10k挡,这是因为R×1k挡其表内电池电压只有1.5V,当集成块内部晶体管串联较多时,电表内电压太低,不能供集成块内晶体管进入正常工作状态,数值无法显现或不准确。 总之,在检测时要认真分析,灵活运用各种方法,摸索规律,做到快速、准确找出故障 摘要:判断常用集成电路的质量及好坏 一看: 封装考究,型号标记清晰,字迹,商标及出厂编号,产地俱全且印刷质量较好,(有的 为烤漆,激光蚀刻等) 这样的厂家在生产加工过程中,质量控制的比较严格。 二检: 引脚光滑亮泽,无腐蚀插拔痕迹, 生产日期较短,正规商店经营。 三测: 对常用数字集成电路, 为保护输入端及工厂生产需要,每一个输入端分别对VDD

光电耦合器的发展及应用(精)

光电耦合器的发展及应用 摘要:半导体光电耦合器现已发展成为一类特殊的半导体隔离器件。它体积小、寿命长、无触点、抗干扰、能隔离,并具有单向信号传输和容量连接等功能。文中介绍了光电耦合器的典型结构和特点以及国内外的发展现状,最后给出了半导体电隔离耦合器件的多种应用电路实例。 关键词:发光器件光接收器件输入输出光电耦合器 随着半导体技术和光 电子学的发展,一种 能有效地隔离噪音和 抑制干扰的新型半导 体器件——光电耦合 器于1966年问世了。 光电耦合器的优点是 体积小、寿命长、无 触点、抗干扰能力 强、能隔离噪音、工 作温度宽,输入输出之间电绝缘,单向传输信号及逻辑电路易连接等。光电耦合器按光接收器件可分为有硅光敏器件(光敏二极管、雪崩型光敏二极管、PIN 光敏二极管、光敏三极管等)、光敏可控硅和光敏集成电路。把不同的发光器件和各种光接收器组合起来,就可构成几百个品种系列的光电耦合器,因而,该器件已成为一类独特的半导体器件。其中光敏二极管加放大器类的光电耦合器随着近年来信息处理的数字化、高速化以及仪器的系统化和网络化的发展,其需求量不断增加。 1 光电耦合器的结构特点 光电耦合器的主要结构是把发光器件和光接收器件组装在一个密闭的管壳内,然后利用发光器件的管脚作输入端,而把光接收器的管脚作为输出端。当在输入端加电信号时,发光器件发光。这样,光接收器件由于光敏效应而在光照后产生光电流并由输出端输出。从而实现了以“光”为媒介的电信号传输,而器件的输入和输出两端在电气上是绝缘的。这样就构成了一种中间通过光传输信号的新型半导体电子器件。光电耦合器的封装形式一般有管形、双列直插式和光导纤维连接三种。图1是三种系列的光电耦合器电路图。 光电耦合的主要特点如下: ●输入和输出端之间绝缘,其绝缘电阻一般都大于10 10Ω,耐压一般可超过1kV,有的甚至可以达到10kV以上。

检测鉴定方案

检测鉴定方案 辛集市书香园小区4#楼 检测鉴定方案 一、工程概况: 辛集市书香园小区4#楼位于辛集市教育大道东侧,辛集市一中北邻。该楼为六层砖混结构,一层为储藏间,二至六层为住宅。工程于2006年4月份开工建设,2007年11月份竣工验收,建筑面积平方米。 该工程由辛集市博远房地产开发有限公司开发,河北天艺建筑设计有限公司设计,石家庄中天监理公司监理,辛集市天久住宅建设有限责任公司第七施工处施工。 现该4#楼已入住后多户住宅发现墙体裂缝,为了解该楼建筑工程质量状况,辛集市博远房地产开发有限公司委托河北省建筑工程质量检测中心对该楼工程质量现状进行检测鉴定。 二、依据标准 1、委托书 2、《民用建筑可靠性鉴定标准》(GB50292-1999) 3、《建筑结构检测技术标准》(GB50344-2004) 4、《砌体工程现场检测技术标准》(GB/T50315-2000) 5、《建筑结构荷载规范》(GB50009-2001) 6、《砌体结构设计规范》(GB50003-2001)

7、《建筑抗震设计规范》(GB50011-2001) 8、相关技术资料 三、检测内容 1、基础检测 对该建筑物基础各项工程做法进行检测,纵墙(○17~○18×○A轴处)与横量墙(○A~○B×①轴处)分别开挖一处基础测坑。为便于检测,测坑上部开挖尺寸宜控制在1000mm×1000mm左右,经放坡后测坑底部尺寸应控制在600mm×600mm左右,测坑开挖深度为基础灰土层下皮100mm,测坑内部需将余土清理干净,使基础垫层及大放脚轮廓鲜明,表面无积土。测坑开挖需避开雨水管附近,如测坑周围有堆积物不便开挖,经现场检测人员同意可调换适当位置进行,并做好记录。 检测基础工程实际做法,对其标高、尺寸、材料、损伤等逐一进行检测,检查结果绘制成图并详细记录。 检测工具:洋镐、大锤、铁锹、盒尺、钢尺、水平尺、数字测距仪、数码相机、记录簿等。 检测完毕后及时将测坑进行回填,回填时应分层逐一夯实,恢复表面散水及地面。 2、砌体砂浆强度检测 砂浆强度检测 对该建筑物砌体用砂浆强度进行实地检测,每层随机抽

IGBT的常识及使用注意事项

IGBT的常识及使用注意事项 一、IGBT管简介 IGBT管是绝缘栅双极型晶体管(Isolated Gate Bipolar Transistor)的简称,它是80年代初诞生,90年代迅速发展起来的新型复合电力电子器件IGBT管是由MOSFET场效应晶体管和BJT双极型晶体管复合而成的,其输入级为MOSFET,输出级为PNP型大功率三极管,它融和了这两种器件的优点,既具有MOSFET器件输入阻抗高响应速度快热稳定性好和驱动电路简单的优点,又具有双极型器件通态电压低耐压高和输出电流大的优点,其频率特性介于MOS-FET与功率晶体管之间,可正常工作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位IGBT管的开通和关断是由栅极电压来控制IGBT管的。当栅极加正电压时,OSFET内形成沟道,并为PNP晶体管提供基极电流,从而使IGBT管导通,此时高耐压的IGBT管也具有低的通态压降在栅极上加负电压时,MOSFET内的沟道消失,PNP晶体管的基极电流被切断,IGBT管即关断 IGBT管与MOSFET一样也是电压控制型器件,在它的栅极发射极间施加十几伏的直流电压,只有微安级的漏电流,基本上不消耗功率,显示了输入阻抗大的优点。 二、IGBT管的代换 由于IGBT管工作在大电流高电压状态,工作频率较高,发热量大,因此其故障率较高,又由于其价格较高,故代换IGBT管时,应遵循以下原则:首先,尽量用原型号的代换,这样不仅利于固定安装,也比较简便其次,如果没有相同型号的管子,可用参数相近的IGBT管来代换,一般是用额定电流较大的管子代替额定电流较小的,用高耐压的代替低耐压的,如果参数已经磨掉,可根据其额定功率来代换。 三、IGBT管的保存 保存半导体元件的场合温度与湿度应保持常温常湿状态,不应偏离太大一般地,常温规定为5~35摄氏度,常湿规定为45%~75%在冬天特别干燥的地区,需用加湿机加湿装IGBT管模块的容器,应选用不带静电的容器并尽量远离有腐蚀性气体或灰尘较多的场合在温度发生急剧变化的场所IGBT模块表面可能有结露水的现象,因此IGBT模块应放在温度变化较小的地方。 四、使用注意事项 IGBT管的栅极通过一层氧化膜与发射极实现电隔离由于此氧化膜很薄,IGBT管的UGE 的耐压值为 20V,在IGBT管加超出耐压值的电压时,会导致损坏的危险此外,在栅极发射极间开路时,若在集电极与发射极间加上电压,则随着集电极电位的变化,由于集电极有漏电流流过,栅极电位升高,集电极则有电流流过这时,如果集电极与发射极间存在高电压,则有可能使IGBT管发热乃至损坏在应用中,有时虽然保证了栅极驱动电压没有超过栅极最大额定电压,但栅极连线的寄生电感和栅极与集电极间的电容耦合,也会产生使氧化层损坏的振荡电压为此,通常采用双绞线来传送驱动信号,以减少寄生电感在栅极连线中串联小电阻也可以抑制振荡电压,如果栅极回路不合适或者栅极回路完全不能工作时(栅极处于开路状态),若在主回路上加上电压,则IGBT管就会损坏为防止这类损坏情况发生,应在栅极一发射极之间接一只10千欧左右的电阻。此外,由于IGBT管为MOS结构,对于静电就要十分注意因此,请注意下面几点: (1)在使用模块时,手持分装件时,请勿触摸驱动端子部分当必须要触摸模块端子时,要先将人体或衣服上的静电放电后,再触摸; (2)在用导电材料连接IGBT管的驱动端子时,在配线未接好之前请先不要接上模块; (3)尽量在底板良好接地的情况下操作如焊接时,电烙铁要可靠接地在安装或更换IGBT管时,应十分重视IGBT管与散热片的接触面状态和拧紧程度,为了减少接触热阻,最好在散热器与

关于晶体管输出,达灵顿输出,可控硅输出,高速光耦,施密特输出光耦测试方法以及测试结果判定标准

关于晶体管输出,达灵顿输出,可控硅输出,高速光耦,施密特输出光耦测试方法以及测试结果判定标准 设备简介

使用万用表需要注意:测电流红色表笔就要插入mA孔, 测电压红色表笔就要插入VΩHz孔, 黑笔一直插COM孔 设备:测试座(用以搭载被测材料) 信号发生器(用以提供所需的电压与电流信号) 万用表(用以检测相关参数) 测试线若干(连接上述设备)

测试相关步骤: 1.确定被测光耦类型 2.测试线连接 3.参数设定 4.进行测试 5.判定材料是否OK 测试常识:给电流测电压,给电压测电流 晶体管输出光耦 4N25-4N38系列(注意4N29-33系列为达灵顿输出,请参照下一篇),MOC8106,MOC8204,(H11AA1,H11AA4交流输入) 1. 确定被测光耦类型 晶体管输出光耦主要测试CTR,他的内部原理图如下图所示,因此我们需要给他输入端一个电流,再测输出端的电流(需要在输出端加一个电压) 2. 测试线连接 在测试线连接之前,我们要知道他的测试原理图,晶体管输出光耦测试原理图如下: 电流源电压源万用表

实际连线: 为了方便说明,前面有对各个接口进行标明: 信号发生器:一、二、三、四、五 测试座:1、2、3、4、5、6、7、8 万用表:红笔、黑笔 上述连线说明: 1. 二连 1 2. 一连 2 3. 六连红笔 4. 黑笔连7 5. 四连 6 3.参数设定 信号发生器:左通道10mA,右通道5V 万用表:直流200mA 档位 4.进行测试 放入材料,反向放置,小圆孔朝上 5.判定标准 以厂商的CTR为标准进行判定,进行简单换算就可以知道,万用表上显示是多少mA时材料是OK的,下面是4NXX系列的CTR表,因为CTR=IC(万用表上的电流)/IF*100%,所以IC=CTR*IF

集成电路测试

第一章 集成电路的测试 1.集成电路测试的定义 集成电路测试是对集成电路或模块进行检测,通过测量对于集成电路的输出回应和预期输出比较,以确定或评估集成电路元器件功能和性能的过程,是验证设计、监控生产、保证质量、分析失效以及指导应用的重要手段。 .2.集成电路测试的基本原理 输入Y 被测电路DUT(Device Under Test)可作为一个已知功能的实体,测试依据原始输入x 和网络功能集F(x),确定原始输出回应y,并分析y是否表达了电路网络的实际输出。因此,测试的基本任务是生成测试输入,而测试系统的基本任务则是将测试输人应用于被测器件,并分析其输出的正确性。测试过程中,测试系统首先生成输入定时波形信号施加到被测器件的原始输入管脚,第二步是从被测器件的原始输出管脚采样输出回应,最后经过分析处理得到测试结果。 3.集成电路故障与测试 集成电路的不正常状态有缺陷(defect)、故障(fault)和失效(failure)等。由于设计考虑不周全或制造过程中的一些物理、化学因素,使集成电路不符合技术条件而不能正常工作,称为集成电路存在缺陷。集成电路的缺陷导致它的功能发生变化,称为故障。故障可能使集成电路失效,也可能不失效,集成电路丧失了实施其特定规范要求的功能,称为集成电路失效。故障和缺陷等效,但两者有一定区别,缺陷会引发故障,故障是表象,相对稳定,并且易于测试;缺陷相对隐蔽和微观,缺陷的查找与定位较难。 4.集成电路测试的过程 1.测试设备 测试仪:通常被叫做自动测试设备,是用来向被测试器件施加输入,并观察输出。测试是要考虑DUT的技术指标和规范,包括:器件最高时钟频率、定时精度要求、输入\输出引脚的数目等。要考虑的因素:费用、可靠性、服务能力、软件编程难易程度等。 1.测试界面 测试界面主要根据DUT的封装形式、最高时钟频率、ATE的资源配置和界面板卡形等合理地选择测试插座和设计制作测试负载板。

检测鉴定报告范本

报告编号:××××共8页第1 页工程名称名称要与现有学校名称一致,如与原始资料不符要在括号内注明(原某某学校)工程地点现在名称 委托单位现在名称 鉴定时间×年×月×日至×月×日检验类别委托 鉴定项目安全及抗震鉴定 仪器设备检测所使用设备名称 鉴定依据详见附页 鉴定结论及处理意见 1.鉴定结论 1)有无影响结构安全性缺陷。 2)检测材料强度值是否满足《建筑抗震鉴定标准》规定。 3)抗震构造措施是否满足要求,如不满足,需说明哪里不满足什么标准或规范的要求。 4)安全性等级和试修性评估等级,并注明等级含义。(例:该工程的安全性等级为C su,(安全性不符合标准要求,显著影响整体承载),适修性评估等级为:B'r/ B r (稍难修,改造后的功能尚可达到现行设计标准要求,适修性尚好,宜予修复或改造)。) 2.加固建议 根据鉴定结论,需要加固的项目给出加固建议,如需拆除,则此条改为拆除;如满足各项要求,则无需此条。 (本页以下无正文) 单位名称(盖章) 年月日

报告编号:××××共8页第2 页 1.工程概况 包括建成年份,建筑面积,结构形式,层数,楼板形式,基础形式,基本尺寸;原勘察设计单位,施工单位,监理单位,质检部门,产权所有人等,如果没有资料可查,应注明。 写明鉴定原由。(例:为了保证河北省中小学校舍安全工程顺利实施,按照国务院关于中小学校舍安全工程的统一部署及《全国中小学校舍安全工程实施方案》和《全国中小学校舍安全工程技术指南》的要求,依据《河北省中小学校舍鉴定实施细则》和《河北省中小学校舍安全排查实施细则》,×单位接受委托于×年×月×日~×月×日对以上工程进行了建筑物抗震鉴定与安全性鉴定。) 注明当地设防烈度。 图1该项目正立面图(建筑实体照片) 2.抗震鉴定依据 2.1 该工程设计文件、设计变更及地质勘查报告; 2.2《建筑抗震鉴定标准》(GB 50023-2009); 2.3《民用建筑可靠性鉴定标准》(GB 50292-1999); 2.4《建筑工程抗震设防分类标准》(GB 50223-2008); 2.5《建筑抗震设计规范》(GB 50011-2001)(2008版); 2.6《建筑结构检测技术标准》(GB/T 50344-2004)。 3.鉴定内容、要求及方法 3.1鉴定内容及要求 此次抗震鉴定包括下列内容及要求: 3.1.1搜集该工程的勘察报告、施工和竣工验收的相关原始资料;当资料不全时,应根据鉴定的需要进行补充实测。 3.1.2调查该工程现状与原始资料相符合的程度、施工质量和维护状况,普查相关的非抗震缺陷,工程现状调查又包括如下内容:1)该建筑的使用状况与原设计或竣工时有无不同;2)该建筑存在的缺陷是否仍属于“现状良好”的范围,并从结构受力的角度,检查结构的使用与原设计有无明显的变化;3)检测结构材料的实际强度等级。

光耦参数解释与设计注意事项

一:光耦参数解释 1、正向工作电压f V (forward voltage ):f V 是指在给定的工作电流下,LED 本身的压降。常见的小功率LED 通常以f I =10mA 来测试正向工作电压,当然不同的LED ,测试条件和测试结果也会不一样。 2、正向电流f I :在被测管两端加一定的正向电压时二极管中流过的电流。 3、反向工作电压r V (reverse voltage ):是指原边发光二极管所能承受的最大反向电压,超过此反向电压,可能会损坏LED 。而一般光耦中,这个参数只有5V 左右,在存在反压或振荡的条件下使用时,要特别注意不要超过反向电压。如,在使用交流脉冲驱动LED 时,需要增加保护电路。 4、反向电流r I :在被测管两端加规定反向工作电压r V 时,二极管中流过的电流。 5、反向击穿电压br V ::被测管通过的反向电流r I 为规定值时,在两极间所产生的电压降。 6、结电容j C :在规定偏压下,被测管两端的电容值。 7、电流传输比CTR(current transfer ratio ):指在直流工作条件下,光耦的输出电流与输入电流之间的比值。光耦的CTR 类似于三极管的电流放大倍数,是光耦的一个极为重要的参数,它取决于光耦的输入电流和输出电流值及电耦的电源电压值,这几个参数共同决定了光耦工作在放大状态还是开关状态,其计算方法与三极管工作状态计算方法类似。若输入电流、输出电流、电流传输比设计搭配不合理,可能导致电路不能工作在预想的工作状态。

8、集电极电流c I (collector current ):如上图,光敏三极管集电极所流过的电流,通常表示其最大值。 9、输出饱和压降VCE(sat):发光二极管工作电流IF 和集电极电流IC 为规定值时,并保持IC/IF≤CTRmin 时(CTRmin 在被测管技术条件中规定)集电极与发射极之间的电压降。 10、反向击穿电压ceo )(BR V :发光二极管开路,集电极电流c I 为规定值,集电极与发射集间的电压降。 11、反向截止电流ceo I :发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。 12、C-E 饱和电压ce V (C-E saturation voltage ):光敏三极管的集电极-发射极饱和压降。 13、入出间隔离电容io C :光耦合器件输入端和输出端之间的电容值。 14、入出间隔离电阻io R :半导体光耦合器输入端和输出端之间的绝缘电阻值。 15、入出间隔离电压io V :光耦合器输入端和输出端之间绝缘耐压值 16、传输延迟时间PHL T 、PLH T :光耦合器在规定工作条件下,发光二极管输入规定电流FP I 的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V 时所需时间为传输延迟时间PHL T 。从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V 时所需时间为传输延迟时间PLH T 。 17、上升时间Tr (Rise Time)& 下降时间f T (Fall Time),其定义与典型测试方法如下图所示,它们反映了工作在开关状态的光耦,其开关速度情况。

光耦测量方法

用两个万用表就可以测了。光电耦合器由发光二极管和受光三极管封装组成。如光电耦合器4N25,采用DIP-6封装,共六个引脚,①、②脚分别为阳、阴极,③脚为空脚,④、⑤、⑥脚分别为三极管的e、c、b极。 以往用万用表测光耦时,只分别检测判断发光二极管和受光三极管的好坏,对光耦的传输性能未进行判断。这里以光耦4N25为例,介绍一种测量光耦传输特性的方法。 1.判断发光二极管好坏与极性:用万用表R×1k挡测量二极管的正、负向电阻,正向电阻一般为几千欧到几十千欧,反向电阻一般应为∞。测得电阻小的那次,红笔接的是二极管的负极。 2.判断受光三极管的好坏与放大倍数:将万用表开关从电阻挡拨至三极管hFE挡,使用NPN型插座,将E孔连接④脚发射极,C孔连接⑤脚集电极,B孔连接⑥脚基极,显示值即为三极管的电流放大倍数。一般通用型光耦hFE值为一百至几百,若显示值为零或溢出为∞,则表明三极管短路或开路,已损坏。 3.光耦传输特性的测量:测试具体接线见下图,将数字万用表开关拨至二极管挡位,黑笔接发射极,红笔接集电极,⑥脚基极悬空。这时,表内基准电压2.8V经表内二极管挡的测量电路,加到三极管的c、e结之间。但由于输入二极管端无光电信号而不导通,液晶显示器显示溢出符号。当输入端②脚插入E孔,①脚插入C孔的NPN插座时,表内基准电源2.8V经表内三极管hFE挡的测量电路,使发光二极管发光,受光三极管因光照而导通,显示值由溢出符号瞬间变到188的示值。当断开①脚阳极与C孔的插接时,显示值瞬间从188示值又回到溢出符号。不同的光耦,传输特性与效率也不相同,可选择示值稍小、显示值稳定不跳动的光耦应用。 由于表内多使用9V叠层电池,故给输入端二极管加电的时间不能过长,以免降低电池的使用寿命及测量精度,可采用断续接触法测量。 817是常用的线性光藕,在各种要求比较精密的功能电路中常常被当作耦合器件,具有上下级电路完全隔离的作用,相互不产生影响。 当输入端加电信号时,发光器发出光线,照射在受光器上,受光器接受光线后导通,产生光电流从输出端输出,从而实现了“电-光-电”的转换。普通光电耦合器只能传输数字信号(开关信号),不适合传输模拟信号。线性光电耦合器是一种新型的光电隔离器件,能够传输连续变化的模拟电压或电流信号,这样随着输入信号的强弱变化会产生相应的光信号,从而使光敏晶体管的导通程度也不同,输出的电压或电流也随之不同,817光电耦合器不但可以起到反馈作用还可以起到隔离作用。 主要范围 开关电源、适配器、充电器、UPS、DVD、空调及其它家用电器等产品. 技术资料: 小知识: 一、光电耦合器的种类较多,但在家电电路中,常见的只有4种结构: 1.第一类,为发光二极管与光电晶体管封装的光电耦合器,结构为双列直插4引脚塑封,内部电路见表一,主要用于开关电源电路中。 2.第二类,为发光二极管与光电晶体管封装的光电耦合器,主要区别引脚结构不同,结构为双列直插6引脚塑封,内部电路见表一,也用于开关电源电路中。 3.第三类,为发光二极管与光电晶体管(附基极端子)封装的光电耦合器,结构为双列直插6引脚塑封,内部电路见表一,主要用于A V转换音频电路中。 4.第四类,为发光二极管与光电二极管加晶体管(附基极端子)封装的光电耦合器,结构为双列直插6引脚塑封,内部电路见表一,主要用于A V转换视频电路中。 类别型号 第一类 PC817 PC818 PC810 PC812 PC502 LTV817 TLP521-1 TLP621-1 ON3111 OC617 PS2401-1 GIC5102 第二类 TLP632 TLP532 TLP519 TLP509 PC504 PC614 PC714 PS208B PS2009B PS2018 PS2019

集成电路板维修方法

我们从事电路板维修事业算算也有十几年了,在过年的工作中,有遇到过技术非常了得经验丰富的老技术人员,也有爱好电子维修技术,没日没夜钻研的年轻后背。个人觉得学习好电路板维修技术,经验的积累固然重要,当掌握正确的维修方法和灵活的维修思路,才能够成为已经技术一流的电路板维修技术人员。 本章节主要介绍了一些集成电路板的检查方法,为基础知识供大家藏考。 一集成电路的检测方法 现在的电子产品往往由于一块集成电路损坏,导致一部分或几个部分不能正常工作,影响设备的正常使用。那么如何检测集成电路的好坏呢?通常一台设备里面有许多个集成电路,当拿到一部有故障的集成电路的设备时,首先要根据故障现象,判断出故障的大体部位,然后通过测量,把故障的可能部位逐步缩小,最后找到故障所在。要找到故障所在必须通过检测,通常修理人员都采用测引脚电压方法来判断,但这只能判断出故障的大致部位,而且有的引脚反应不灵

敏,甚至有的没有什么反应。就是在电压偏离的情况下,也包含外围元件损坏的因素,还必须将集成块内部故障与外围故障严格 区别开来,因此单靠某一种方法对集成电路是很难检测的,必须依赖综合的检测手段。 现以万用表检测为例,介绍其具体方法。我们知道集成块使用时,总有一个引脚与印制电路板上的“地”线是焊通的,在电路中称之为接地脚。由于集成电路内部都采用直接耦合,因此,集成块的其它引脚与接地脚之间都存在着确定的直流电阻,这种确定的直流电阻称为该脚内部等效直流电阻,简称R 内。当我们拿到一块新的集成块时,可通过用万用表测量各引脚的内部等效直流电阻 来判断其好坏,若各引脚的内部等效电阻R 内与标准值相符,说明这块集成块是好的,反之若与标准值相差过大,说明集成块内部损坏。 测量时有一点必须注意,由于集成块内部有大量的三极管,二极管等非线性元件,在测量中单测得一个阻值还不能判断其好坏,必须互换表笔再测一次,获得正反向两

相关主题
文本预览
相关文档 最新文档