当前位置:文档之家› 中考数学复习《锐角三角函数》专项综合练习含答案解析

中考数学复习《锐角三角函数》专项综合练习含答案解析

中考数学复习《锐角三角函数》专项综合练习含答案解析
中考数学复习《锐角三角函数》专项综合练习含答案解析

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ?≈?≈?≈,,.2 1.41,3 1.73≈≈)

【答案】AB 的长约为0.6m . 【解析】 【分析】

作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】

解:作BF CE ⊥于F ,

在Rt BFC ?中, 3.20BF BC sin BCF ?∠≈=,

3.85CF BC cos BCF ?∠≈=,

在Rt ADE ?E 中,3 1.73tan 3AB DE ADE =

==≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=

由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .

【点睛】

考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.

2.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.

【答案】553

【解析】

【分析】

如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.

【详解】

解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.

∵AM⊥CD,

∴∠QMP=∠MPO=∠OQM=90°,

∴四边形OQMP是矩形,

∴QM=OP,

∵OC=OD=10,∠COD=60°,

∴△COD是等边三角形,

∵OP⊥CD,

∠COD=30°,

∴∠COP=1

2

∴QM=OP=OC?cos30°=3

∵∠AOC=∠QOP=90°,

∴∠AOQ=∠COP=30°,

∴AQ=1

OA=5(分米),

2

∴AM=AQ+MQ=5+3

∵OB ∥CD ,

∴∠BOD =∠ODC =60°

在Rt △OFK 中,KO =OF?cos60°=2(分米),FK =OF?sin60°=23(分米), 在Rt △PKE 中,EK =22EF FK -=26(分米), ∴BE =10?2?26=(8?26)(分米),

在Rt △OFJ 中,OJ =OF?cos60°=2(分米),FJ =23(分米),

在Rt △FJE′中,E′J =2263-(2)

=26, ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE =4.

故答案为:5+53,4.

【点睛】

本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.

3.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E 于点D ,连接OD . (1)求证:直线OD 是

E 的切线;

(2)点F 为x 轴上任意一动点,连接CF 交E 于点G ,连接BG :

①当1

an 7

t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求

BG

CF

的最大值. 【答案】(1)见解析;(2)①143,031F ??

???

,2(5,0)F ;② BG CF 的最大值为12.

【解析】 【分析】

(1)连接DE ,证明∠EDO=90°即可;

(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可;

②作GM BC ⊥于点M ,证明1~ANF ABC ??,得1

2

BG CF ≤,从而得解. 【详解】

(1)证明:连接DE ,则:

∵BC 为直径 ∴90BDC ∠=? ∴90BDA ∠=? ∵OA OB = ∴OD OB OA == ∴OBD ODB ∠=∠ ∵

EB ED =

∴EBD EDB ∠=∠

∴EBD OBD EDB ODB ∠+∠=∠+∠ 即:EBO EDO ∠=∠ ∵CB x ⊥轴 ∴90EBO ∠=? ∴90EDO ∠=? ∴直线OD 为

E 的切线.

(2)①如图1,当F 位于AB 上时: ∵1~ANF ABC ??

11

NF AF AN AB BC AC

== ∴设3AN x =,则114,5NF x AF x ==

∴103CN CA AN x =-=- ∴141tan 1037F N x ACF CN x ∠===-,解得:10

31

x = ∴150531

AF x ==

1504333131

OF =-

= 即143,031F ??

???

如图2,当F 位于BA 的延长线上时: ∵2~AMF ABC ??

∴设3AM x =,则224,5MF x AF x == ∴103CM CA AM x =+=+ ∴241

tan 1037

F M x ACF CM x ∠===+ 解得:25

x =

∴252AF x ==

2325OF =+=

即2(5,0)F

②如图,作GM BC ⊥于点M , ∵BC 是直径

∴90CGB CBF ∠=∠=? ∴~CBF CGB ??

8BG MG MG

CF BC == ∵MG ≤半径4=

41

882BG MG CF =≤= ∴BG CF

的最大值为12.

【点睛】

本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.

4.如图(1),在平面直角坐标系中,点A (0,﹣6),点B (6,0).Rt △CDE 中,∠CDE=90°,CD=4,DE=4

,直角边CD 在y 轴上,且点C 与点A 重合.Rt △CDE 沿y 轴

正方向平行移动,当点C 运动到点O 时停止运动.解答下列问题:

(1)如图(2),当Rt △CDE 运动到点D 与点O 重合时,设CE 交AB 于点M ,求∠BME 的度数.

(2)如图(3),在Rt △CDE 的运动过程中,当CE 经过点B 时,求BC 的长.

(3)在Rt △CDE 的运动过程中,设AC=h ,△OAB 与△CDE 的重叠部分的面积为S ,请写出S 与h 之间的函数关系式,并求出面积S 的最大值.

【答案】(1)∠BME=15°; (2BC=4

(3)h≤2时,S=﹣h2+4h+8,

当h≥2时,S=18﹣3h.

【解析】

试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;

(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;

(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.

试题解析:解:(1)如图2,

∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).

∴OA=OB,

∴∠OAB=45°,

∵∠CDE=90°,CD=4,DE=4,

∴∠OCE=60°,

∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,

∴∠BME=∠CMA=15°;

如图3,

∵∠CDE=90°,CD=4,DE=4,

∴∠OBC=∠DEC=30°,

∵OB=6,

∴BC=4;

(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,

∵CD=4,DE=4,AC=h,AN=NM,

∴CN=4﹣FM,AN=MN=4+h﹣FM,

∵△CMN∽△CED,

∴,

∴,

解得FM=4﹣,

∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,

S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.

考点:1、三角形的外角定理;2、相似;3、解直角三角形

5.某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).

【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速

【解析】

分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.

详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,

∴∠PAH=∠CAB–∠CAP=30°,

∵∠PHA=∠PHB=90°,PH=50,∴AH=

tan PH PAH

=3=503,

∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,则PH=BH=50,∴AB=AH+BH=503+50,

∵60千米/时=50

3米/秒,∴时间

50350

3

+

=3+33≈8.1(秒),

即车辆通过AB段的时间在8.1秒以内,可认定为超速.

点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。

6.如图,在△ABC中,∠A=90°,∠ABC=30°,AC=3,动点D从点A出发,在AB边上以每秒1个单位的速度向点B运动,连结CD,作点A关于直线CD的对称点E,设点D运动时间为t(s).

(1)若△BDE是以BE为底的等腰三角形,求t的值;

(2)若△BDE为直角三角形,求t的值;

(3)当S△BCE≤9

2

时,所有满足条件的t的取值范围(所有数据请保留准确值,参考

数据:tan15°=23

【答案】(133

;(23秒或3秒;(3)6﹣3

【解析】

【分析】

(1)如图1,先由勾股定理求得AB的长,根据点A、E关于直线CD的对称,得CD垂直平分AE,根据线段垂直平分线的性质得:AD=DE,所以AD=DE=BD,由3,可得t

的值;

(2)分两种情况:

①当∠DEB=90°时,如图2,连接AE,根据t的值;

②当∠EDB=90°时,如图3,根据△AGC≌△EGD,得AC=DE,由AC∥ED,得四边形CAED 是平行四边形,所以AD=CE=3,即t=3;

(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,

①当△BCE在BC的下方时,

②当△BCE在BC的上方时,

分别计算当高为3时对应的t的值即可得结论.

【详解】

解:(1)如图1,连接AE,

由题意得:AD=t,

∵∠CAB=90°,∠CBA=30°,

∴BC=2AC=6,

∵点A、E关于直线CD的对称,

∴CD垂直平分AE,

∴AD=DE,

∵△BDE是以BE为底的等腰三角形,

∴DE=BD,

∴AD=BD,

∴;

(2)△BDE为直角三角形时,分两种情况:

①当∠DEB=90°时,如图2,连接AE,

∵CD垂直平分AE,

∴AD=DE=t,

∵∠B=30°,

∴BD=2DE=2t,

②当∠EDB=90°时,如图3,

连接CE,

∵CD垂直平分AE,

∴CE=CA=3,

∵∠CAD=∠EDB=90°,

∴AC∥ED,

∴∠CAG=∠GED,

∵AG=EG,∠CGA=∠EGD,

∴△AGC≌△EGD,

∴AC=DE,

∵AC∥ED,

∴四边形CAED是平行四边形,

∴AD=CE=3,即t=3;

综上所述,△BDE为直角三角形时,t的值为3秒或3秒;

(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,

①当△BCE在BC的下方时,过B作BH⊥CE,交CE的延长线于H,如图4,当AC=BH=3时,

此时S△BCE=1

2

AE?BH=

1

2

×3×3=

9

2

易得△ACG≌△HBG,

∴CG=BG,

∴∠ABC=∠BCG=30°,

∴∠ACE=60°﹣30°=30°,

∵AC=CE,AD=DE,DC=DC,∴△ACD≌△ECD,

∴∠ACD=∠DCE=15°,

tan∠ACD=tan15°=t

3

=2﹣3,

∴t=6﹣33,

由图形可知:0<t<6﹣33时,△BCE的BH越来越小,则面积越来越小,②当△BCE在BC的上方时,如图3,CE=ED=3,且CE⊥ED,

此时S△BCE=1

2

CE?DE=

1

2

×3×3=

9

2

,此时t=3,

综上所述,当S△BCE≤9

2

时,t的取值范围是6﹣33≤t≤3.

【点睛】

本题考查三角形综合题、平行四边形的判定和性质、直角三角形的性质、三角形的面积问题、轴对称等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,学会寻找特殊点解决问题,属于中考压轴题.

7.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.

(1)试求抛物线的解析式;

(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;

(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式. 【答案】(1)233

384

y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为3

34

y x =

+或3

34

y x =--.

【解析】 【分析】

(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=4

5

PC ,所以5PA+4PC =5(PA+

4

5

PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=

18

5

,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,

所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可 【详解】

解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0) ∴y =a (x+2)(x ﹣4) 把点C (0,3)代入得:﹣8a =3 ∴a =﹣

38

∴抛物线解析式为y =﹣

38(x+2)(x ﹣4)=﹣38x 2+34

x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ∴∠CDP =∠COB =90° ∵∠DCP =∠OCB ∴△CDP ∽△COB ∴

PC PD

BC OB

= ∵B (4,0),C (0,3)

∴OB =4,OC =3,BC ∴PD =

45

PC ∴5PA+4PC =5(PA+

4

5

PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小 ∵A (﹣2,0),OC ⊥AB ,AE ⊥BC ∴S △ABC =12AB?OC =1

2

BC?AE ∴AE =

6318

55

AB OC BC ?== ∴5AE =18

∴5PA+4PC 的最小值为18.

(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,

∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q

∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90° ∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个 此时,连接FQ ,过点Q 作QG ⊥x 轴于点G

∴∠FQT =90°

∵F 为A (﹣2,0)、B (4,0)的中点 ∴F (1,0),FQ =FA =3 ∵T (﹣4,0) ∴TF =5,cos ∠QFT =

3

5

FQ TF = ∵Rt △FGQ 中,cos ∠QFT =

3

5

FG FQ =

∴FG =

35FQ =95

∴x Q =1﹣9455=-,QG =2

222

912FQ 355FG ??-=-= ???

①若点Q 在x 轴上方,则Q (412

55

-,) 设直线l 解析式为:y =kx+b

∴404125

5k b k b -+=???-+=?? 解得:343k b ?=?

?

?=? ∴直线l :3

34

y x =

+ ②若点Q 在x 轴下方,则Q (41255

--,

) ∴直线l :3

34

y x =-

- 综上所述,直线l 的解析式为3

34

y x =

+或3

34

y x =--

【点睛】

本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论

8.在△ABC中,∠B=45°,∠C=30°,点D是边BC上一点,连接AD,将线段AD绕点A 逆时针旋转90°,得到线段AE,连接DE.

(1)如图①,当点E落在边BA的延长线上时,∠EDC=度(直接填空);

(2)如图②,当点E落在边AC上时,求证:BD=1

2 EC;

(3)当AB=22,且点E到AC的距离等于3﹣1时,直接写出tan∠CAE的值.

【答案】(1)90;(2)详见解析;(3)

633 tan EAC

-

∠=

【解析】

【分析】

(1)利用三角形的外角的性质即可解决问题;

(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;

(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP3,EH=2PH=2x,

由此FH=31,CF=33,由△BAD≌△PAE,得BD=EP3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=3tan∠EAF=23tan∠EAC=

6-33

11

【详解】

(1)如图1中,

∵∠EDC=∠B+∠BED,∠B=∠BED=45°,

∴∠EDC=90°,

故答案为90;

(2)如图2中,作PA⊥AB交BC于P,连接PE.

∵∠DAE=∠BAP=90°,

∴∠BAD=∠PAE,

∵∠B=45°,

∴∠B=∠APB=45°,

∴AB=AP,

∵AD=AE,

∴△BAD≌△PAE(SAS),

∴BD=PE,∠APE=∠B=45°,

∴∠EPD=∠EPC=90°,

∵∠C=30°,

∴EC=2PE=2BD;

(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.

设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,

∴EP3,EH=2PH=2x,

∴FH=31,CF3FH=33

∵△BAD≌△PAE,

∴BD=EP3,AE=AD,

在Rt△ABG中,∵AB=2

∴AG=GB=2,

在Rt△AGC中,AC=2AG=4,

∵AE2=AD2=AF2+EF2,

∴22+(23)231)2+(4﹣3﹣32,整理得:9x2﹣12x=0,

解得x=4

3

(舍弃)或0

∴PH=0,此时E,P,H共点,∴AF=3

∴tan∠EAF=EF

AF 3

31

+

=23

根据对称性可知当点E在AC的上方时,同法可得tan∠EAC 6-33

【点睛】

本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.

9.如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P 处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.

(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)

(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽

略不计,参考数据:tan53°≈4

3

,tan63.4°≈2)

【答案】(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为127.1米【解析】

分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x 的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.

详解:过P作PF⊥BD于F,作PE⊥AB于E,

∵斜坡的坡度i=5:12,

设PF=5x,CF=12x,

∵四边形BFPE为矩形,

∴BF=PEPF=BE.

在RT△ABC中,BC=90,

tan∠ACB=AB BC

∴AB=tan63.4°×BC≈2×90=180,

∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+120x.

在RT△AEP中,

tan∠APE=

18054

90123 AE x

EP x

-

∴x=20

7

∴PF=5x=10014.3

7

≈.

答:此人所在P的铅直高度约为14.3米.

由(1)得CP=13x,

∴CP=13×20

7

≈37.1,BC+CP=90+37.1=127.1.

答:从P到点B的路程约为127.1米.

点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.

10.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.

(1)求证:四边形AGDH为菱形;

(2)若EF=y,求y关于x的函数关系式;

(3)连结OF,CG.

①若△AOF为等腰三角形,求⊙O的面积;

②若BC=3,则30CG+9=______.(直接写出答案).

【答案】(1)证明见解析;(2)y=1

8

x2(x>0);(3)①

16

3

π或8π或(17+2)

π;21.

【解析】

【分析】

(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;

(2)只要证明△AEF∽△ACB,可得AE EF

AC BC

=解决问题;

(3)①分三种情形分别求解即可解决问题;

②只要证明△CFG∽△HFA,可得GF

AF

=

CG

AH

,求出相应的线段即可解决问题;

【详解】

(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,

∵AB是直径,AB⊥GH,

∴EG=EH,

∴DG=DH,

∴AG=DG=DH=AH,

∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,

∵AE⊥EF,

∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,

∴△AEF∽△ACB,

∴AE EF AC BC

=,

∴1

2

4

x y

x

=,

∴y=1

8

x2(x>0).

(3)①解:如图1中,连接DF.

∵GH垂直平分线段AD,

∴FA=FD,

∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,∴AB83,

∴⊙O的面积为16

3

π.

如图2中,当AF=AO时,

相关主题
文本预览
相关文档 最新文档