当前位置:文档之家› 数学分析 第二版 复旦大学数学系 陈传璋等著 课后习题答案

数学分析 第二版 复旦大学数学系 陈传璋等著 课后习题答案

数学分析 第二版 复旦大学数学系 陈传璋等著 课后习题答案
数学分析 第二版 复旦大学数学系 陈传璋等著 课后习题答案

吉林大学离散数学课后习题答案

第二章命题逻辑 §2.2 主要解题方法 2.2.1 证明命题公式恒真或恒假 主要有如下方法: 方法一.真值表方法。即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每

一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。 真值表法比较烦琐,但只要认真仔细,不会出错。 例2.2.1 说明G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。 解:该公式的真值表如下: 表2.2.1 由于表2.2.1中对应公式G所在列的每一取值全为1,故

G恒真。 方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。 例2.2.2 说明G= ((P→R) ∨? R)→ (? (Q→P) ∧ P)是恒真、恒假还是可满足。 解:由(P→R) ∨? R=?P∨ R∨? R=1,以及 ? (Q→P) ∧ P= ?(?Q∨ P)∧ P = Q∧? P∧ P=0 知,((P→R) ∨? R)→ (? (Q→P) ∧ P)=0,故G恒假。 方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。 方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G

欧阳光中数学分析答案

欧阳光中数学分析答案 【篇一:数学分析目录】 合1.1集合1.2数集及其确界第二章数列极限2.1数列极限 2.2数列极限(续)2.3单调数列的极限2.4子列第三章映射和实函数 3.1映射3.2一元实函数3.3函数的几何特性第四章函数极限和连续性4.1函数极限4.2函数极限的性质4.3无穷小量、无穷大量和有界量第五章连续函数和单调函数5.1区间上的连续函数5.2区间上连续函数的基本性质5.3单调函数的性质第六章导数和微分6.1导数概念6.2求导法则6.3高阶导数和其他求导法则6.4微分第七章微分学基本定理及使用7.1微分中值定理7.2taylor展开式及使用7.3lhospital法则及使用第八章导数的使用8.1判别函数的单调性8.2寻求极值和最值8.3函数的凸性8.4函数作图8.5向量值函数第九章积分9.1不定积分9.2不定积分的换元法和分部积分法9.3定积分9.4可积函数类r[a,b] 9.5定积分性质9.6广义积分9.7定积分和广义积分的计算9.8若干初等可积函数类第十章定积分的使用10.1平面图形的面积10.2曲线的弧长10.3旋转体的体积和侧面积10.4物理使用10.5近似求积第十一章极限论及实数理论的补充11.1cauchy收敛准则及迭代法11.2上极限和下极限11.3实数系基本定理第十二章级数的一般理论12.1级数的敛散性12.2绝对收敛的判别法12.3收敛级数的性质12.4abel-dirichlet判别法12.5无穷乘积第十三章广义积分的敛散性13.1广又积分的绝对收敛性判别法13.2广义积分的abel-dirichlet判别法第十四章函数项级数及幂级数14.1一致收敛性14.2一致收敛性的判别14.3一致收敛级数的性质14.4幂级数14.5函数的幂级数展开第十五章fourier级数15.1fourier级数15.2fourier级数的收敛性15.3fourier级数的

数学分析课本(华师大三)习题及答案第二十章

第十章 曲线积分 一、证明题 1.证明:若函数f 在光滑曲线L:x=x(t),y=y(t)(β≤≤αt )上连续,则存在点()L y ,x 00∈,使得,()?L ds y ,x f =()L y ,x f 00? 其中L ?为L 的长。 二、计算题 1.计算下列第一型曲线积分: (1) ()?+L ds y x ,其中L 是以0(0,0),A(1,0)B(0,1)为顶点的三角形; (2) ()?+L 2122ds y x ,其中L 是以原点为中心,R 为半径的右半圆周; (3) ?L xyds ,其中L 为椭圆22a x +22 b y =1在第一象限中的部分; (4) ?L ds y ,其中L 为单位圆22y x +=1; (5) () ?++L 222ds z y x ,其中L 为螺旋线x=acost,y=asinr, z=bt(π≤≤2t 0)的一段; (6) ?L xyzds ,其中L 是曲线x=t,y=3t 232,z=2t 2 1 ()1t 0≤≤的一段; (7) ?+L 22ds z y 2,其中L 是222z y x ++=2a 与x=y 相交的圆周. 2.求曲线x=a,y=at,z=2at 21(0a ,1t 0>≤≤)的质量,设其线密度为a z 2=ρ, 3.求摆线x=a(t -sint),y=a(1-cost)(π≤≤t 0)的重心,设其质量分布是均匀的. 4.若曲线以极坐()θρ=ρ()21θ≤θ≤θ表示,试给出计算 ()?L ds y ,x f 的公式.并用此公式计算下列曲线积分.

(1)? +L y x ds e 22,其中L 为曲线ρ=a ??? ??π≤θ≤40的一段; (2)?L xds ,其中L 为对数螺线θ=ρx ae (x>0)在圆r=a 内的部分. 5.设有一质量分布不均匀的半圆弧,x=rcos θ,y=rsin θ(π≤θ≤0),其线密度θ=ρa (a 为常数),求它对原点(θ,0)处质量为m 的质点的引力. 6.计算第二型曲线积分: (1) ?-L ydx xdy ,其中L 为本节例2的三种情形; (2) ()?+-L dy dx y a 2,其中L 为摞线x=a(t-sint),y=a(1-cost)(π≤≤2t 0)沿t 增加方向的 一段; (3) ?++-L 22y x ydy xdx ,其中L 为圆周222a y x =+,依逆时针方向; (4)?+L xdy sin ydx ,其中L 为y=sinx(π≤≤x 0) 与x 轴所围的闭曲线,依顺时针方向; (5)?++L zdz ydy xdx ,其中L 为从(1,1,1)到(2,3,4)的直线段. 7.质点受力的作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a,0)沿椭圆移动到(0,b),求力所作的功. 8.设质点受力的作用,力的方向指向原点,大小与质点到xy 平面的距离成反比,若质点沿直线x=at,y=bt,z=ct(0c ≠) 从M(a,b,c)到N(2a,2b,2c),求力所作的功. 9.计算沿空间曲线的第二型曲线积分: (1) ?L xyzddz ,其中L 为x 2+y 2+z 2=1与y=z 相交的圆,其方向按曲线依次经过1,2,7,8卦限; (2) ()()() ?-+-+-L 222222dz y x dy x z dx z y ,其中L 为球面x 2+y 2+z 2=1在第一卦限部分的边界线,其方向按曲线依次经过xy 平面部分,yz 平面部分和zx 平面部分 .

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

中国人民大学出版社第四版高等数学一第6章课后习题详解

高等数学一第6章课后习题详解 课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:?? ?<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

∴所围区域D 表达为Y-型:?? ?-<<<<-2 2 422y x y y , ∴23 16 )32 4()4(2 2 32 222= -=--=- - ? y y dy y y S D (由于图形关于X 轴对称,所以也可以解为: 2316 )324(2)4(22 32 22=-=--=? y y dy y y S D ) ★★4.求由曲线 2x y =、24x y =、及直线1=y 所围图形的面积 知识点:平面图形面积 思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4 ∵第一象限所围区域1D 表达为Y-型:? ??<<<

最新同济大学第六版高等数学上下册课后习题答案7-5

同济大学第六版高等数学上下册课后习题 答案7-5

仅供学习与交流,如有侵权请联系网站删除 谢谢4 习题7-5 1. 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程. 解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0. 2. 求过点M 0(2, 9, -6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程. 解 所求平面的法线向量为n =(2, 9, -6), 所求平面的方程为 2(x -2)+9(y -9)-6(z -6)=0, 即2x +9y -6z -121=0. 3. 求过(1, 1, -1)、(-2, -2, 2)、(1, -1, 2)三点的平面方程. 解 n 1=(1, -1, 2)-(1, 1, -1)=(0, -2, 3), n 1=(1, -1, 2)-(-2, -2, 2)=(3, 1, 0), 所求平面的法线向量为 k j i k j i n n n 6930 1332021++-=-=?=, 所求平面的方程为 -3(x -1)+9(y -1)+6(z +1)=0, 即x -3y -2z =0. 4. 指出下列各平面的特殊位置, 并画出各平面: (1)x =0; 解 x =0是yOz 平面. (2)3y -1=0; 解 3y -1=0是垂直于y 轴的平面, 它通过y 轴上的点)0 ,3 1 ,0(. (3)2x -3y -6=0;

仅供学习与交流,如有侵权请联系网站删除 谢谢4 解 2x -3y -6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和-2. (4)03=-y x ; 解 03=-y x 是通过z 轴的平面, 它在xOy 面上的投影的斜率为3 3. (5)y +z =1; 解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1. (6)x -2z =0; 解 x -2z =0是通过y 轴的平面. (7)6x +5-z =0. 解 6x +5-z =0是通过原点的平面. 5. 求平面2x -2y +z +5=0与各坐标面的夹角的余弦. 解 此平面的法线向量为n =(2, -2, 1). 此平面与yOz 面的夹角的余弦为 3 21)2(22||||) ,cos(cos 122^=+-+=??==i n i n i n α; 此平面与zOx 面的夹角的余弦为 3 21)2(22||||) ,cos(cos 122^-=+-+-=??==j n j n j n β; 此平面与xOy 面的夹角的余弦为 3 11)2(21||||) ,cos(cos 122^=+-+=??==k n k n k n γ.

数学分析课本(华师大三版)-习题及答案第四章

第四章 函数的连续性 一、填空题 1.设??? ? ???>+=<=0 11sin 0 0 sin 1 )(x x x x k x x x x f ,若函数)(x f 在定义域内连续,则 =k ; 2.函数?? ?≤>-=0 sin 0 1)(x x x x x f 的间断点是 ; 3.函数x x f =)(的连续区间是 ; 4.函数3 21 )(2--= x x x f 的连续区间是 ; 5.函数) 3(9 )(2--=x x x x f 的间断点是 ; 6.函数) 4)(1(2 )(+++= x x x x f 的间断点是 ; 7.函数) 2)(1(1 )(-+= x x x f 的连续区间是 ; 8.设?????=≠-=-0 0 )(x k x x e e x f x x 在0=x 点连续,则 =k ; 9.函数?? ? ??≤≤+-<≤+-<≤-+=3x 1 31x 0 101 1)(x x x x x f 的间断点是 ; 10.函数0b a 0 )(0 )(2 ≠+?? ?<++≥+=x x x b a x b ax x f .则)(x f 处处连续的充要条件是 =b ; 11.函数?????=≠=-0 0 )(2 1x a x e x f x ,则=→)(lim 0 x f x ,若)(x f 无间断点,则=a ; 12.如果?????-=-≠+-=1 1 11)(2x a x x x x f ,当=a 时,函数)(x f 连续

二、选择填空 1.设)(x f 和)(x ?在()+∞∞-,内有定义,)(x f 为连续函数,且0)(≠x f ,)(x ?有间断点,则( ) A.[])(x f ?必有间断点。 B.[]2 )(x ?必有间断点 C.[])(x f ?必有间断点 D. ) () (x f x ?必有间断点 2.设函数bx e a x x f += )(,在()∞∞-,内连续,且)(lim x f x -∞→0=,则常数b a ,满足( ) A.0,0<>b a C.0,0>≤b a D.0,0<≥b a 3.设x x e e x f 11 11)(-+=,当,1)(;0-=≠x f x 当0=x ,则 A 有可去间断点。 B 。有跳跃间断点。 C 有无穷间断点 D 连续 4.函数n n x x x f 211lim )(++=∞→ A 不存在间断点。 B 存在间断点1-=x C 存在间断点0=x D 存在间断点1=x 5.设????? =≠=???=≠=0 10 1sin )(;0 00 1)(x x x x x g x x x f ,则在点0=x 处有间断点的函数是 A )}(),(max{x g x f B )}(),(min{x g x f C )()(x g x f - D )()(x g x f + 6.下述命题正确的是 A 设)(x f 与)(x g 均在0x 处不连续,则)(x f )(x g 在0x 处必不连续。 B 设)(x g 在0x 处连续,0)(0=x f ,则0 lim x x →)(x f )(x g =0。 C 设在0x 的去心左邻域内)(x f <)(x g ,且-→0 lim x x )(x f =a , -→0 lim x x )(x g =b ,则必有a

数学分析上

数 学 分 析(I ) (周课时5加习题课时2)(共80课时) (1)集合与函数 (6课时) 实数概述,绝对值不等式,区间与邻域,有界集,确界原理,函数概念。 (2)数列极限 (12课时) 数列。数列极限的N -∑定义。收敛数列的性质:唯一性、有界性、保号性、不等式性质、迫敛性、有理运算。子列。数列极限存在的条件;单调有限定理、柯西收敛原理。 ????????????? ??+n n 11、STOLZ 定理。 (3)函数极限 (10课时) 函数极限概念(x x x →∞→与。瞬时函数的极限。δ-∑定义、M -∑定义)函数极限的性质:唯一性、局部有界性、局部保号性、不等式性质、迫敛性、有理运算。 函数极限存在的条件:归结原则、柯西准则。 两个重要极限:1sin lim ,)11(lim 0==+→∞→x x e x x x x 无穷小量与无穷大量及其阶的比较。 (4)函数的连续性 (14课时) 函数在一点的连续性。单侧连续性。间断点及其分类。在区间上连续的函数。连续函数的局部性质:有界性、保号性、连续函数的有理运算、复合函数的连续性。闭区间上连续函数的性质:有界性、取得最大最小值性、介值性、一致连续性。初等函数的连续性。 (5)极限与连续性(续)(15课时) 实数完备性的基本定理:区间套定理、数列的柯西收敛准则、聚点原理、致密性定理、有限覆盖定理、实数完备性基本定理的等价性。闭区间上连续函数性质的说明。实数系。压缩映射原理。 (6)导数与微分 (8课时) 引入问题(切线问题与瞬时速度问题)。导数的定义。单侧导数。导函数。导数的几何意义。和、积、商的导数。反函数的导数。复合函数的导数。初等函数的导数。 微分概念。微分的几何意义。微分的运算法则。一阶微分形式的不变性。微分在近似

大学数学习题一答案

亲爱的朋友,很高兴能在此相遇!欢迎您阅读文档大学数学习题一答案,这篇文档是由我们精心收集整理的新文档。相信您通过阅读这篇文档,一定会有所收获。假若亲能将此文档收藏或者转发,将是我们莫大的荣幸,更是我们继续前行的动力。 大学数学习题一答案 篇一:大学数学课后习题答案 习题1 1.(1)不能(2)不能(3)能(4)不能 2.(1)不正确;因为“年轻人”没有明确的标准,不具有确定性,不能作为元素来组成集合. (2)不正确;对于一个给定的集合,它的元素必须是互异的,即集合中的任何两个元素都是不同的,故这个集合是由3个元素组成的. (3)正确;集合中的元素相同,只是次序不同,它们都表示同一个集合. 3.,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}. 4.(1){0,1,2,3,4}(2){3,4}(3){(1,1),(0,0),(1,1)} 5.(1){x|x23,xZ}(2){x|xx120}(3){(x,y)|yx,yx} 6.(1){1,3}(2){1,2,3,5}(3)(4){1,2,3,4,5,6}(5){2}(6)

(7){4,5,6}(8){1,3,4,5,6}(9){1,2,3,4,5,6}(10){4,6} 7.23 AABBA(AB)B ((AA)(AB))B ((AB))B (AB)B (AB)(BB) (AB)U AB 8.(1)(5,5)(2)(2,0)(3)(,3][1,)(4)(1,2] (5)[4,)(6)(,4) 9.(1)AB{1};AB[0,3];AB[0,1). (2)AB[2,4];AB[1,4];AB[1,2). 10.(1)(,)(2)(,2)(2,). 11.(1)不是.定义域不同(2)不是.定义域不同(3)不是.定义域不同 (4)是.在公共的定义域[1,1]上,yxxyx2 12.(1)(,2)(2,2)(2,)(2)(,1][1,)(3)(1,1]35223252 (4)(,)(5)(2,2)(6)[1,5]

最新数学分析选讲刘三阳-部分习题解答

第一讲 习题解答 习题1-1 1 计算下列极限 ① ()1lim 11,0p n n p n →∞ ?? ??+->?? ??????? 解:原式=()1111110lim lim 110 p p p n n n n n n →∞→∞???? +-+-+ ? ?????=-()()0110lim 0p p n x x →+-+=-()() 01p x x p ='=+= ② () sin sin lim sin x a x a x a →-- 解:原式=()()()()sin sin sin sin lim lim sin x a x a x a x a x a x a x a x a →→---?=---=()sin cos x a x a ='= ③ 1x →,,m n 为自然数 解:原式 = 1 1 x x n m →=' == ④ ( ) lim 21,0n n a →∞ > 解:原式( ) () 10 ln 21lim ln 21 1lim ln 1 lim n x n x a e a n n x n e e e →∞ →?? ??- ? ??-→∞ === =()( ) ()()0ln 21ln 21 ln 21lim 2ln 20 x a a x x a a x x e e e a ---→' -==== ⑤ lim ,0x a x a a x a x a →->- 解:原式=lim x a a a x a a a a x x a →-+--lim lim x a a a x a x a a a x a x a x a →→--=---()()x a x a x a a x ==''=-()ln 1a a a =- ⑥ lim ,0x a a x x a x a a a a a x →->-

复旦版数学分析答案全解ex14-4

习 题 14.4 微分形式的外微分 1. 计算下列微分形式的外微分: (1)1-形式; dy x xydx 22+=ω(2)1-形式xdy ydx sin cos ?=ω; (3)2-形式dz xydx dy zdx ∧?∧=6ω。 解(1)0222=∧+∧+∧=dy xdx dx xdy dx ydx d ω。 (2)dy dx x y dy xdx dx ydy d ∧?=∧?∧?=)cos (sin cos sin ω。 (3)=∧∧?∧∧=dz dx xdy dy dx dz d 6ωdz dy dx x ∧∧+)6(。 2.设ω=+++a x dx a x dx a x dx n n n 111222()()()"是n R 上的1-形式,求d ω。 解 d ω0)(1=∧′=∑=n i i i i i dx dx x a 3.设ω=∧+∧+∧a x x dx dx a x x dx dx a x x dx dx 12323213313121(,)(,)(,)2是3R 上的 2-形式,求d ω。 解 设 323211),(dx dx x x a ∧=ω,由于 0,0323322=∧∧=∧∧dx dx dx dx dx dx , 则有 =1ωd 03233 132221=∧∧??+∧∧??dx dx dx x a dx dx dx x a 。 类似地,设 133122),(dx dx x x a ∧=ω,212133),(dx dx x x a ∧=ω,则 032==ωωd d , 从而 0321=++=ωωωωd d d d 。 4. 在3R 上在一个开区域?=××(,)(,)(,)a b c d e f 上定义了具有连续导数 的函数,,,试求形如 )(1z a )(2x a )(3y a dz x b dy z b dx y b )()()(321++=ω 的1-形式ω,使得 dy dx y a dx dz x a dz dy z a d ∧+∧+∧=)()()(321ω 。 解 由题意,可得 )()(),()(),()(2312 31x a x b z a z b y a y b ?=′?=′?=′, 所以 dx dy y a ))((3∫?=ωdy dz z a ))((1∫?dz dx x a ))((2∫?。 5. 设(∑=∧=n j i j i ij dx dx a 1,ωji ij a a ?=,n j i ,,2,1,"=)是n R 上的2-形式,证 明

数学分析课本(华师大三版)-习题及答案第十七章

第十七章 多元函数微分学 一、证明题 1. 证明函数 ?? ???=+≠++=0y x 0,0y x ,y x y x y)f(x,2222222 在点(0,0)连续且偏导数存在,但在此点不可微. 2. 证明函数 ?? ???=+≠+++=0y x 0,0y x ,y x 1)sin y (x y)f(x,22222222 在点(0,0)连续且偏导数存在,但偏导数在点(0,0)不连续,而f 在原点(0,0)可微. 3. 证明: 若二元函数f 在点p(x 0,y 0)的某邻域U(p)内的偏导函数f x 与f y 有界,则f 在U(p)内连续. 4. 试证在原点(0,0)的充分小邻域内有 xy 1y x arctg ++≈x+y. 5. 试证: (1) 乘积的相对误差限近似于各因子相对误差限之和; (2) 商的相对误差限近似于分子和分母相对误差限之和. 6.设Z=() 22y x f y -,其中f 为可微函数,验证 x 1x Z ??+y 1y Z ??=2 y Z . 7.设Z=sin y+f(sin x-sin y),其中f 为可微函数,证明: x Z ?? sec x + y Z ??secy=1. 8.设f(x,y)可微,证明:在坐标旋转变换 x=u cos θ-v sin θ, y=u sin θ+v cos θ 之下.()2x f +()2 y f 是一个形式不变量,即若 g(u,v)=f(u cos θ-v sin θ,u sin θ+v cos θ). 则必有()2x f +()2y f =()2u g +()2 v g .(其中旋转角θ是常数) 9.设f(u)是可微函数,

同济大学版高等数学课后习题答案第2章

习题2-1 1. 设物体绕定轴旋转, 在时间间隔[0, t]内转过的角度为θ, 从而转角θ是t 的函数: θ=θ(t). 如果旋转是匀速的, 那么称 t θ ω=为该物体旋转的角速度, 如果旋转是非匀速的, 应怎样 确定该物体在时刻t 0的角速度? 解 在时间间隔[t 0, t 0+?t]内的平均角速度ω为 t t t t t ?-?+=??=)()(00θθθω, 故t 0时刻的角速度为 )() ()(lim lim lim 0000 00t t t t t t t t t θθθθωω'=?-?+=??==→?→?→?. 2. 当物体的温度高于周围介质的温度时, 物体就不断冷却, 若物体的温度T 与时间t 的函数关系为T =T(t), 应怎样确定该物体在时刻t 的冷却速度? 解 物体在时间间隔[t 0, t 0+?t]内, 温度的改变量为 ?T =T(t +?t)-T(t), 平均冷却速度为 t t T t t T t T ?-?+=??)()(, 故物体在时刻t 的冷却速度为 )()()(lim lim 00t T t t T t t T t T t t '=?-?+=??→?→?. 3. 设某工厂生产x 单位产品所花费的成本是f(x)元, 此

函数f(x)称为成本函数, 成本函数f(x)的导数f '(x)在经济学中称为边际成本. 试说明边际成本f '(x)的实际意义. 解 f(x +?x)-f(x)表示当产量由x 改变到x +?x 时成本的改变量. x x f x x f ?-?+) ()(表示当产量由x 改变到x +?x 时单位产量 的成本. x x f x x f x f x ?-?+='→?) ()(lim )(0 表示当产量为x 时单位产量的成 本. 4. 设f(x)=10x 2, 试按定义, 求f '(-1). 解 x x x f x f f x x ?--?+-=?--?+-=-'→?→?2 200 )1(10)1(10lim )1()1(lim )1( 20)2(lim 102lim 1002 0-=?+-=??+?-=→?→?x x x x x x . 5. 证明(cos x)'=-sin x . 解 x x x x x x ?-?+='→?cos )cos(lim )(cos 0 x x x x x ???+-=→?2sin )2sin(2lim x x x x x x sin ]2 2sin ) 2 sin([lim 0-=???+-=→?. 6. 下列各题中均假定f '(x 0)存在, 按照导数定义观察下列极限, 指出A 表示什么: (1)A x x f x x f x =?-?-→?) ()(lim 000 ;

华东师大数学分析习题解答1

《数学分析选论》习题解答 第 一 章 实 数 理 论 1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ?=ξinf ,试证: (1)存在数列ξ=?∞ →n n n a S a lim ,}{使; (2)存在严格递减数列ξ=?∞ →n n n a S a lim ,}{使. 证明如下: (1) 据假设,ξ>∈?a S a 有,;且ε+ξ<'<ξ∈'?>ε?a S a 使得,,0.现依 次取,,2,1,1 Λ== εn n n 相应地S a n ∈?,使得 Λ,2,1,=ε+ξ<<ξn a n n . 因)(0∞→→εn n ,由迫敛性易知ξ=∞ →n n a lim . (2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取 Λ,3,2,,1min 1=? ?? ???+ξ=ε-n a n n n , 就能保证 Λ,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □ 2.证明§1.3例6的(ⅱ). 证 设B A ,为非空有界数集,B A S ?=,试证: {}B A S inf ,inf m in inf =. 现证明如下. 由假设,B A S ?=显然也是非空有界数集,因而它的下确界存在.故对任何 B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有 {}{}B A S B A x inf ,inf m in inf inf ,inf m in ≥?≥. 另一方面,对任何,A x ∈ 有S x ∈,于是有

S A S x inf inf inf ≥?≥; 同理又有S B inf inf ≥.由此推得 {}B A S inf ,inf m in inf ≤. 综上,证得结论 {}B A S inf ,inf m in inf =成立. □ 3.设B A ,为有界数集,且?≠?B A .证明: (1){}B A B A sup ,sup m in )sup(≤?; (2){}B A B A inf ,inf m ax )(inf ≥?. 并举出等号不成立的例子. 证 这里只证(2),类似地可证(1). 设B A inf ,inf =β=α.则应满足: β≥α≥∈∈?y x B y A x ,,,有. 于是,B A z ?∈?,必有 {}βα≥?? ?? β≥α≥,max z z z , 这说明{}βα,max 是B A ?的一个下界.由于B A ?亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf m ax inf ≥?成立. 上式中等号不成立的例子确实是存在的.例如:设 )4,3(,)5,3()1,0(,)4,2(=??==B A B A 则, 这时3)(inf ,0inf ,2inf =?==B A B A 而,故得 {}{}B A B A inf ,inf m ax inf >?. □ 4.设B A ,为非空有界数集.定义数集 {}B b A a b a c B A ∈∈+==+,, 证明: (1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.

数学分析复旦大学第四版大一期末考试

数学分析复旦大学第四版大一期末考试 一、填空题(每空1分,共9分) 1. 函数()f x = 的定义域为________________ 2.已知函数sin ,1 ()0,1 x x f x x ??=?-?? ==??-

大学数学课后复习题答案

习题1 1. (1)不能(2)不能(3)能(4)不能 2. (1)不正确;因为“年轻人”没有明确的标准,不具有确定性,不能作为元素来组成集合. (2)不正确;对于一个给定的集合,它的元素必须是互异的,即集合中的任何两个元素都是不同的,故这个集合是由3个元素组成的. (3)正确;集合中的元素相同,只是次序不同,它们都表示同一个集合. 3. φ,}1{,}2{,}3{,}2,1{,}3,1{,}3,2{,}3,2,1{. 4. (1)}4,3,2,1,0{ (2)}4,3{ (3))}1,1(),0,0(),1,1{(-- 5. (1)},32|{Z x x x ∈<- (2)}012|{2=+-x x x (3)},|),{(3x y x y y x == 6. (1)}3,1{ (2)}5,3,2,1{ (3)φ (4)}6,5,4,3,2,1{ (5)}2{ (6)φ (7)}6,5,4{ (8)}6,5,4,3,1{ (9)}6,5,4,3,2,1{ (10)}6,4{ 7. B A U B A B B B A B B A B B A B B A A A B B A A B B A A Y I Y Y I Y Y I Y I Y Y I Y I Y Y I Y I I =======)() ()()())(())()(()(φ 8. (1))5,5(- (2))0,2(- (3)),1[]3,(+∞--∞Y (4)]2,1( (5)),4[+∞ (6))4,(-∞ 9. (1)}1{=B A I ;]3,0[=B A Y ;)1,0[=-B A . (2)]4,2[=B A I ;]4,1[-=B A Y ;)2,1[-=-B A . 10. (1))25,23( (2))2 5,2()2,23(Y . 11. (1)不是.定义域不同 (2)不是.定义域不同 (3)不是.定义域不同 (4)是.在公共的定义域]1,1[-上,2111x y x x y -=?-?+= 12. (1)),2()2,2()2,(+∞---∞Y Y (2)),1[]1,(+∞--∞Y (3)]1,1(-

高等数学复旦大学出版社课后习题答案

1. 解: (1)相等. 因为两函数的定义域相同,都是实数集R ; x =知两函数的对应法则也相同;所以两函数相等. (2)相等. 因为两函数的定义域相同,都是实数集R ,由已知函数关系式显然可得两函数的对应法则也相同,所以两函数相等. (3)不相等. 因为函数()f x 的定义域是{,1}x x x ∈≠R ,而函数()g x 的定义域是实数集R ,两函数的定义域不同,所以两函数不相等. 2. 解: (1)要使函数有意义,必须 400x x -≥?? ≠? 即 40x x ≤?? ≠? 所以函数的定义域是(,0)(0,4]-∞U . (2)要使函数有意义,必须 30lg(1)010x x x +≥?? -≠??->? 即 301x x x ≥-?? ≠??

数学分析课本(华师大三版)-习题及答案第十六章

第十六章 多元函数的极限与连续 一、证明题 1. 证明: 当且仅当存在各点互不相同的点列{p n }?E,p ≠p 0. ∞ →n lim P n =P 0时P 0是E 的聚点. 2. 证明:闭域必是闭集,举例证明反之不真. 3. 证明:点列{p n (x n ,y n )}收敛于p 0(x 0,y 0)的充要条件是∞→n lim x n =x 0和∞ →n lim y n =y 0. 4. 证明: 开集与闭集具有对偶性——若E 为开集,则E c 为闭集;若E 为闭集,则E c 为开集. 5. 证明: (1) 若F 1,F 2为闭集,则F 1∪f 2与F 1∩F 2都为闭集; (2) 若E 1,E 2为开集,则E 1∪E 2与E 1∩E 2都为开集; (3) 若F 为闭集,E 为开集,则F\F 为闭集,E\F 为开集. 6. 试把闭区域套定理推广为闭集套定理,并证明之. 7. 证明定理16.4(有限覆盖定理): 8. 证明: 若1°y)f(x,lim (0,0)y)(x,→存在且等于A; 2°当y 在b 的某邻域内时,存在有(y)y)f(x,lim a x ?=→,则A y)f(x,lim lim a x b y =→→. 9. 试应用ε-δ定义证明: 0y x y x lim 2 22(0,0)y)(x,=+→. 10. 叙述并证明: 二元函数极限存在的唯一性定理,局部有界性定理与局部保号性定理. 11. 叙述并证明二元连续函数的局部保号性. 12.设f(x,y)=() ()?????=+>≠++0y x 0,0p 0y x ,y x x 2222p 22 试讨论它在(0,0)点的连续性. 13. 设f(x,y)定义于闭矩形域S=[a,b]×[c,d],若f 对y 在[c,d]上处处连续.对x 在[a,b]上(且关于y)为一致连续,证明f 在S 上处处连续. 14. 证明:若D ?R 2是有界闭域,f 为D 上连续函数,则f(D)不仅有界(定理16.8)而且是闭区间. 15. 若一元函数?(x)在[a,b]上连续,令 f(x,y)=?(x),(x,y)∈D=[a,b]×(-∞,+∞),试讨论f 在D 上是否连续?是否一致连续? 16. 设(x,y)= xy 11-,(x,y)∈D=[)[)1,01,0?,证明f 在D 上不一致连续.

相关主题
文本预览
相关文档 最新文档