当前位置:文档之家› 材料物理性能汇总

材料物理性能汇总

材料物理性能汇总
材料物理性能汇总

※ 材料的导电性能

1、 霍尔效应

电子电导的特征是具有霍尔效应。

置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两

个面之间产生电动势差,这种现象称霍尔效应。

形成的电场E

H ,称为霍尔场。表征霍尔场的物理参数称为霍尔系数,定义为:

霍尔系数R

H 有如下表达式:e

n R i H 1

±

= 表示霍尔效应的强弱。霍尔系数只与金属中自由电子密度有关 2、 金属的导电机制

只有在费密面附近能级的电子才能对导电做出贡献。

利用能带理论严格导出电导率表达式:

式中: nef 表示单位体积内实际参加传导过程的电子数;

m *为电子的有效质量,它是考虑晶体点阵对电场作用的结果。

此式不仅适用于金属,也适用于非金属。能完整地反映晶体导电的物理本质。

量子力学可以证明,当电子波在绝对零度下通过一个完整的晶体点阵时,它将不受散射而无阻碍的传播,这时

电阻为零。只有在晶体点阵完整性遭到破坏的地方,电子波才受到散射(不相干散射),这就会产生电阻——金属产生电阻的根本原因。由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原子、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。这样,电子波在这些地方发生散射而产生电阻,降低导电性。

3、 马西森定律 (P94题11) 试说明用电阻法研究金属的晶体缺陷(冷加工或高温淬火)时威慑年电阻测量要在低温下进行。

马西森(Matthissen )和沃格特(V ogt )早期根据对金属固溶体中的溶质原子的浓度较小,以致于可以略去它们

之间的相互影响,把金属的电阻看成由金属的基本电阻ρL(T)和残余电阻ρ?组成,这就是马西森定律( Matthissen Rule ),用下式表示:

ρ?是与杂质的浓度、电缺陷和位错有关的电阻率。 ρL(T)是与温度有关的电阻率。

4、 电阻率与温度的关系

金属的温度愈高,电阻也愈大。

若以ρ0和ρt 表示金属在0 ℃和T ℃温度下的电阻率,则电阻与温度关系为:

在t 温度下金属的电阻温度系数:

5、 电阻率与压力的关系

在流体静压压缩时,大多数金属的电阻率降低。

在流体静压下金属的电阻率可用下式计算

式中:ρ0表示在真空条件下的电阻率;p 表示压力;φ是压力系数(负值10-5~10-6 )。 正常金属(铁、钴、镍、钯、铂等),压力增大,金属电阻率下降;反常金属(碱土金属和稀土金属的大部分)

6、 缺陷对电阻率的影响:不同类型的缺陷对电阻率的影响程度不同,空位和间隙原子对剩余电阻率的影响和金属

杂质原子的影响相似。点缺陷所引起的剩余电阻率变化远比线缺陷的影响大。

7、固溶体的电阻率

形成固溶体时电阻率的变化:

当形成固溶体时,合金导电性能降低。因为在溶剂晶格中溶入溶质原于时,溶剂的晶格发生扭曲畸变,破坏了晶格势场的周期性,从而增加了电子散射几率,电阻率增高。所当然的,且原于半径差越大,固溶体电阻也越大。但是,点阵畸变不是固溶体电阻增大的唯一原因。

有序合金电阻率(会分析电阻率的变化)两个因素:

固溶体有序化合金组元化学作用加强电子结合更强导电电子数减少电阻率增加固溶体有序化离子势场更为对称电子散射几率大幅降低电阻率减小

通常,第二个因素的作用占优势,故当合金有序化时,电阻率降低。

8、晶体离子电导

离子电导是带电荷的离子载流子在电场作用下的定向运动。

离子电导分两种情况:本征电导(固有离子电导)、杂质电导。

本征电导:组成晶体点阵的基本离子由于热运动而离开晶格,形成热缺陷,这种热缺陷无论是离子或空位都可以在电场作用下成为导电的载流子,参与导电。

杂质电导:由固定相对较弱的离子运动引起的,主要是杂质离子。

一般情况下,由于杂质离子与晶格联系弱,所以,在较低温度下杂质电导表现显著,而本征电导在高温下才成为导电主要表现。

热缺陷的浓度取决于温度和缺陷的形成能。

离子导电的影响因素:

1)温度的影响:

温度以指数形式影响其电导率。随着温度从低温向高温增加,其电

阻率的对数的斜率会发生变化,即出现拐点。注意,在分析右曲线时,拐

点并不一定是离子导电机制变化,也可能是导电载流子种类发生变化。

2)离子性质、晶体结构的影响(会判断):

晶体熔点高,原子之间的结合力大,导电激活能高,电导率降低。

9、半导体(用能带结构理论解释n、p型半导体的区别)

特点:(p型)靠近价带顶部形成受主能级。(n型)靠近倒带底部形成施主能级。

10、超导体

超导体的两个物理特性:完全导电性、完全抗磁性。

两类超导体的基本特征:

(1)第一类超导体:Hc 和Ic 很低,由于其临界电流密度和临界磁场较低,几乎没有实用的可能性。

(2)第二类超导体:除金属元素钒、锝和铌外,第II类超导体主要包括金属化合物及其合金。

库柏(Cooper)电子对

当电子间有净的吸引作用时,费密面附近的两个电子将形成束缚的电子对的状态,它的能量比两个独立的电子的总能量低,这种电子对状态称为库柏对。

11、电阻的测量方法及应用(特点、适用范围,会选择)

A. 电桥法 测量直流电阻最常用的方法

优点:测量的准确度几乎等于标准量的准确度。

缺点:测量过程中,为获得平衡状态,需进行反复调节,测试速度慢,不能适应大量、快速测量的需要。 直流单电桥测电阻的范围在1Ω~1MΩ之间。双臂电桥(凯尔文电桥),测量直流小电阻。 B. 电位差计法 优点:测金属电阻随温度变化时 C. 直流四探针法(四电极法) 主要用于半导体材料或超导体等低电阻率的测试 D. 电阻法 测量固溶体溶解度曲线、研究合金时效、研究马氏体转变、研究疲劳和裂纹扩展、

研究有序转变、钢的回火及过冷奥氏体分解等。

※ 材料的介电性能

1、 相对介电常数 εr = C/Co 物理意义:反映了电介质材料在静电场中的极化特性

2、 电介质:通常指电阻率大于1010Ω?cm 的一类在电场中以感应而并非传导的方式呈现其电学性能的材料。

在电场作用下建立极化的物质。介电常数ε是表征电介质的最基本的参量。

3、 电介质的极化:在电场作用下,正、负束缚电荷只能在微观尺度上作相对位移,不能作定向运动。正负束缚电

荷间的相对偏移,产生感应偶极矩。在外电场作用下, 电介质内部感生偶极矩的现象,称为电介质的极化。

4、 电介质的极化机制

注意:铁电体中自发极化的产生是不需要外加电场诱导的,完全是由特殊晶体结构诱发的。

极化强度:电介质在电场作用下的极化程度用极化强度矢量P 表示,极化强度P 是电介质单位体积内的感生偶极矩,可表示为: 单位为库仑/米2 (C/m 2)

说明:(1) 真空中 P = 0 ,真空中无电介质。

(2) 导体内 P = 0 ,导体内不存在电偶极子。

(3) 电偶极子排列的有序程度反映了介质被极化的程度,排列愈有序说明极化愈烈。

介电系数是综合反映介质内部电极化行为的一个主要宏观物理量。

5、 电介质极化类型

(包括电子位移极化、);驰豫极化(电子驰豫极化、离子驰豫极化);取向极化;空间电荷极化。

弹性位移极化(瞬时极化)

(1) 电子位移极化:在外电场作用下,原于外围的电子轨道相对于原子核发生位移,原子中的正、负电荷

重心产生相对位移。 响应时间为10-14~10-16 S 可见光频段

(2) 离子位移极化:离子在电场作用下偏移平衡位置的移动,相当于形成一个感生偶极矩;也可以理解为

离子晶体在电场作用下离子间的键合被拉长。 响应时间为10-12~10-13 S 微波频段 注:只有当分子结构有极化时,离子的位移极化才表现的较为突出,在无极性分子中离子位移极化率很小,这时仍以电子极化为主。

驰豫(松弛)极化

概念:当材料中存在着弱联系的电子、离子和偶极子等弛豫质点时,温度造成的热运动使这些质点分布混乱,而电场使它们有序分布,平衡时建立了极化状态。这种极化具有统计性质,称为热弛豫(松弛)极化。

特点: (1)与热运动有关; (2)极化需要克服一定的势垒,因而需要消耗一定的能量。是非弹性的;

(3)不可逆; (4)带电质点热运动距离远。

V P ?=∑μ

lim

包括: (1) 电子驰豫极化αe

T

响应时间为10-2~10-9 S

(2)

离子驰豫极化αa

T 响应时间为10-2~10-5S 无线电频率 取向(转向)极化

概念:指极性介电体的分子偶极矩在外电场作用下,沿外施电场方向转向,而产生宏观偶极矩的极化。 注:介质中存在固有电矩。 响应时间为10-2~10-10S 无线电频率

空间电荷极化

概念:离子多晶体的晶界处、晶体缺陷、微区夹层与不均质结构等存在空间电荷,这些混乱分布的空间电荷,在外电场作用下,趋向于有序化,即空间电荷的正负电荷质点分别向外电场的负、正极方向移动,从而表现为极化。 响应时间:大约几秒到数十分钟,甚至数十小时。

注:只对直流和低频下的强度有贡献。

6

、 损耗因子(P141 题

1)

7、 压电效应(Piezoeletric effect)

<单晶、多晶、陶瓷>

压电性就是指某些晶体材料按所施加的机械应力成比例地产生电荷的能力。

正压电效应-----当对石英晶体在一定方向上施加机械应力时,在其两端表面上会出现数量相等、符号相反的束缚电荷;而且

在一定范围内电荷密度与作用力成正比。

逆压电效应----石英晶体在一定方向的电场作用下,则会产生外形尺寸的变化,在一定范围内,其形变与电场强度成正比。 8、 石英晶体的压电性

当石英晶体未受外力作用时,正、负离子正好分布在正六边形的顶角上,形成三个互成120°夹角的电偶极矩P 1、P 2、P 3。 如图(a)所示。 因为P = qL (q 为电荷量,L 为 正负电荷之间的距离),此时

正负电荷中心重合,电偶极矩的 矢量和等于零,即 P 1+P 2+P 3=0

所以晶体表面不产生电荷,呈电中性。

当晶体受到沿x 方向的压力(F x < 0)作用时,晶体沿x 方向将产生收缩,正、负离子的相对位置随之发生变化,如图(b)所示。此时正、负电荷中心不再重合,电偶极矩P 1减小,P 2、P 3增大,它们在x 方向上的分量不再等于零: (P 1+P 2+P 3)x >0 在y 、z 方向上的分量为: (P 1+P 2+

P 3)y = 0 (P 1+P 2+P 3)z = 0

当晶体受到沿x 方向的拉力(F x >0)作用时,其变化情况如图(c)所示。电偶极矩P 1

增大, P 2、 P 3减小,此时它们在x 、y 、z 三个方向上的分量为 (P 1 +P 2 +P 3) x <0 (P 1+ P 2+ P 3)y =0 (P 1 +P 2 +P 3)z =0

在x 轴的正向出现负电荷,在y 、

z 方向依然不出现电荷。

可见,当晶体受到沿x(电轴)方向的力Fx 作用时,它在x 方向产生正压电效应,而y 、z 方向则不产生压电效应。

晶体在y 轴方向受力F y 作用下的情况与F x 相似。当F y >0时,晶体的形变与图(b )相似;当F y <0时,则与图(

c )相似。由此可见,晶体在y (即机械轴)方向的力 F y 作用下,在x 方向产生正压电效应,在y 、z 方向同样不产生压电效应。

晶体在z 轴方向受力F z 的作用时,因为晶体沿x 方向和沿y 方向所产生的正应变完全相同,所以,正、负电荷中心保持重合,电偶极矩矢量和等于零。这就表明,在沿z (即光轴)方向的力F z 作用下,晶体不产生压电效应。

9、

压电陶瓷的压电效应

εεε''-'=*i

10、压电振子:当向一个具有一定取向和形状制成的有电极的压电晶片(或极化了的压电陶瓷片)输入电场,其

频率与晶片的机械谐振频率一致时。就会使晶片因逆压电效应而产生机械谐振,这种晶片称为压电阵子。

11、影响材料压电性能的因素

晶体结构:压电效应只能在不具有对称中心的晶体内才能发生,具有对称中心的晶体都不具有压电效应。非极

性分子基本不呈现压电性,空间电荷不均一分布的有可能出现压电性。

压电材料的预极化:所谓预极化就是在宏观不呈现压电效应的压电陶瓷上加上一个强直流电,使陶瓷中的电畴

沿电场方向取向排列。

时间、温度:升高温度会使压电性能下降。

12、材料的热释电性

概念:某些晶体除了由于应力产生电荷以外,温度的变化也可以引起电极状态的改变,因此当均匀加热时,这

类晶体能够产生极化而形成偶极子。这种效应称为热释电效应(Pyroelectric effect)。

热释电效应是由于晶体中存在自发极化而引起的。

注:(1)具有对称中心的晶体不可能具有热释电性。

(2)具有压电性的晶体不一定就具有热释电性,仅当晶体中存在有与其它极轴都不同的唯一极轴时,才可能有热膨胀引起晶体总电矩的改变,从而表现为热释电性。

13、材料的铁电性

电滞回线(图见下右图)及几个重要参量:饱和极化强度Ps、剩余极化强度Pr、矫顽电场Ec、居里温度Tc

电畴:由于电退极化场与极化方向反向,使静电能升高。在受机械约束时,伴随着自发极化的应变还将使应

变能增加,所以整体均匀极化的状态不稳定,晶体趋向于分成多个小区域。每个区域内部电偶极子沿同一方向,但不同小区域的电偶极子方向不同,这每个小区域称为电畴(简称畴)。

14、材料的铁电性、压电性和热释电性关系(左图)

※材料的磁性能(这章整得不够精确)

1、磁性的产生原因:

注:物质的磁性不是由电子的轨道磁矩和自

旋磁矩本身所产生,而是由外加磁场作用下

电子绕核运动所感生的附加磁场造成的。

2、磁性的分类

抗磁性:没有固有原子磁矩

顺磁性:有固有磁矩,没有相互作用

铁磁性:有固有磁矩,直接交换相互作用

亚铁磁性:有磁矩,间接交换相互作用

反铁磁性:有磁矩,直接交换相互作用

注:任何物质在外场作用下均具有抗磁效应,但只有原子的电子壳层完全填满了的电子物质,抗磁性才能表现出来。(它出现在没有原子磁矩的材料中)

注:A.材料的顺磁性来源于原子的固有磁矩。产生顺磁性的条件就是原子的固有磁矩不为零。

B.在以下几种情况下,原子或正离子具有固有磁矩。(1)具有奇数个电子的原子或点阵缺陷;(2)内壳层未被填满的原子或离子。金属中主要有过渡族金属(d壳层没有填满电子)和稀土族金属(f壳层没有填满电子)。

C.顺磁性物质的磁化率是抗磁性物质磁化率的1~103倍,所以在顺磁性物质中抗磁性被掩了。

3、铁磁性、亚铁磁性材料的特性

磁化曲线

铁磁体的形状各向异性是由退磁场引起的。

4、磁致伸缩

概念:铁磁体在磁场中磁化,其形状和尺寸都会发生变化,这种现象称为磁致伸缩。

可分为两类:正磁致伸缩是材料在磁化方向伸长,而在垂直于磁化方向缩短,例如铁。

负磁致伸缩是材料在磁化方向缩短,而在垂直于磁化方向伸长,例如镍。

5、铁磁性产生的条件

①原子内部要有未填满的电子壳层;(原子本征磁矩不为零)

②a/d大于3使交换积分A为正。(要有一定的晶体结构)

6、原子间什么力使其自发磁化?

是静电力,而不是磁力。因为与热运动的能量相比,磁相互作用的能量是太小了。海森堡(Beisenberg)和佛兰克

尔(Frank)按照量子论证明,物质内部相邻原子的电子之间有一种来源于静电的相互交换作用,由于这种交换作用对系统能量的影响,迫使各原子的磁炬平行或反平行排列。

7、反铁磁性和亚铁磁性

如果A<0 ,则E1 > E2,即电子自旋反平行排列为稳定态。

如果相邻原子磁矩相等,由于原子磁矩反平行排列,原子磁矩相互抵消,自发磁化强度等于零,这样一种特性

就是反铁磁性。

如果相邻原子磁矩不相等,则自发磁化强度不等于零,这一特性就是亚铁磁性。

8、磁畴:铁磁物质内部存在很强的“分子场”,在“分子场”的作用下,原子磁矩趋于同向平行排列,即自发磁化至饱和,称为自发磁化;铁磁体内自发磁化分成若干个小区域(这种自发磁化至饱和的小区域称为磁畴),由于各个区域(磁畴)的磁化方向各不相同,其磁性被此相互抵消,所以大块铁磁体对外不显示磁性。

9、磁畴壁的迁移磁化(大题)

畴壁只是元磁矩方向逐渐改变的过渡层。所谓畴壁的右移,实际上是右畴靠近畴壁的一层元磁矩,由原来朝下

的方向开始转动,相继进入畴壁区。与此同时,畴壁区各元磁矩也发生转动,且最左边一层磁矩最终完成了转动过程,脱离畴壁区而加入左畴的行列。

壁移磁化本质上也是一种元磁矩的转动过程,但只是靠近畴壁的元磁矩局部地先后转动,而且从一个磁畴磁化

方向到相邻磁畴磁化方向转过的角度是一定

磁化曲线分布示意图(右图)

10、增加磁导率的几个影响因素(待定)

磁导率随冷加工形变而下降

晶粒愈细,磁导率愈小

为提高材料磁导率.就必须减少夹杂物的数量,减

小内应力。

降低磁晶各向异性能也可提高磁导率

要增加磁导率,应使材料具有较小的磁致伸缩和磁

弹性能

11、影响畴壁迁移的因素:

(a)铁磁材料中夹杂物、第二相、空隙的数量及其分布。

(b)其次是内应力起伏的大小和分布,起伏愈大,分布愈不均匀,对畴壁迁移阻力愈大。为提高材料磁导率.就

必须减少夹杂物的数量,减小内应力。

(c)磁晶各向异性能的大小。因为壁移实质上是原子磁矩的转动,它必然要通过难磁化方向,故降低磁晶各

向异性能也可提高磁导率。

(d)磁致伸缩和磁弹性能也影响壁移过程,因为壁移也会引起材料某一方向的伸长,另一方向则要缩短,故

要增加磁导率,应使材料具有较小的磁致伸缩和磁弹性能。

12、影响合金铁磁性和亚铁磁性的因素(会判断)

温度:在低于居里温度的条件下,各类铁磁和亚铁磁性均随温度升高而有所下降,知道居里温度附近,有一个

急剧下降。

加工硬化:磁导率显著下降,且形变量越大.下降也越多。矫顽力则相反,它随形变量增大而增大。剩磁感应

的变化较为复杂,在临界压缩范围(5%—8%)急剧下降,而在压缩量增加时反而上升。

凡涉及到磁饱和的参量均与加工硬化无关。

晶粒大小:晶粒细化对磁性的影响与加工硬化相同,铁素体的晶粒越细,磁导率越低,而矫顽力相磁滞损耗越

大。这是因为晶界是妨碍技术磁化的一个因素。

合金化:如果铁磁金属中溶入顺磁或抗磁金属形成置换固溶体,饱和磁化强度Ms总是要降低,且随着溶质原

子浓度的增加而下降。

14、复数磁导率μ

μ ’定义为弹性磁导率,代表了磁性材料中储存能量的磁导率

μ”称为损耗磁导率,它与磁性材料磁化一周的损耗有关。

15、交变磁场作用下的能量损耗(三种损耗的概念)

涡流损耗:涡流在铁心内流动时,在所经回路的导体电

阻上产生的能量损耗。

磁滞损耗:瑞利磁滞回线的上升支和下降支(右图)

剩余损耗:在低频和弱磁场条件下,剩余损耗主要是磁

后效引起的。由于磁后效机制不同,其表现也不同。磁

后效就是处于外磁场为Ht0的磁性材料突然收到外磁

场的阶跃变换到Ht1磁感应强度不是瞬时到达而是一

部分瞬时另一部分缓慢趋向。

16、软磁材料

概念:

特点:软磁材料磁致回线细长,磁导率高,矫顽力低,

铁芯损耗低,容易磁化,也容易去磁。(磁化曲线狭窄)

组织结构与性能关系:

1)通过使用高纯的原料、改善熔炼铸造工艺条件及其后的加工过程,提高材料的均匀性——降低矫顽力,提

高磁导串,降低铁芯损耗。

2)通过降低磁各向异性,增加纯度---改善初始磁导率,降低磁滞损耗。

3)通过增加电阻率,减低芯片的厚度---降低涡流损耗。

17、硬磁材料(永磁材料)

概念:指磁性材料被外加磁场磁化后,去掉外磁场后仍然保持着较强剩磁的磁性材料。

Hc>104 A/m,剩余磁感应强度大于1T以上

参数:剩余磁感应强度Br;矫顽力Hc;最大磁能积(BH)max;突起系数η=(BH)m/BrHc

18、信息存储磁性材料

磁头材料基本要求:(1)高的磁导率(2)高的饱和磁感应强度

(3)低的Br和Hc (4)高的电阻率和耐磨性磁记录介质材料基本要求:(1)剩余磁感应强度Br高(2)矫顽力Hc适当的高

(3)磁致回线接近矩形(4)磁层均匀,厚度适当

(5)磁性粒子的尺寸均匀,呈单磁畴状态(6)磁致伸缩小

19、磁致电阻效应:磁性材料的电阻率随磁化状态而改变的现象称为磁致电阻效应(简称磁阻效应)。

20、磁光效应

法拉第磁光旋转效应:偏振光通过某些透明物质,如水晶、含糖溶液时,偏振光的偏振面将发射功能旋转的现

象,称为旋光效应。用人工方法产生旋光的方法之一,就是磁致旋光,通常称为法拉第旋转效应。

(是透射造成的。频率不发生变化,是电矢量发生了偏转。)

磁光克尔效应:一束线偏振光在磁化了的介质表面反射时,反射光将成为椭圆偏振光,且以椭圆的长轴为标志

的偏振面相对于入射线的偏振面将旋转一定的角度,这种现象称为磁光克尔效应。

21、铁磁性测量方法(知道适用范围)

铁磁材料静态磁特性的测量(冲击法)

闭路试祥的冲击法测量:只适用于测定软磁材料

开路试样的冲击法测量

注:冲击捡流计G与一般检流计不同,它不是测量流经捡流计的电流,而是测量在一个电磁脉冲后流过的总电量。

铁磁材料动态磁特性的测量

伏安法:准确度不高,测量误差一般为10%~15%,而且此法不能用来测量交流磁损耗,只能用来测磁化曲线。

示波法:可以在较宽的频率范围(10Hz~100kHz),直接观察铁磁材料试样的磁滞回线,也可以进行摄影。

既适用于闭路试样,也适用于开路试样。

电桥法:交流电桥法是测量软磁材料复磁导率的有效方法。

※材料的光学性能

1、光的本质

光是一种电磁波,它是电磁场周期性振动的传播所形成的。

光波在不同介质中的传播速度不同,然而光振动的频率是一定的。

电磁波在介质中的速度:

光的波粒二象性:爱因斯坦的光电效应方程把光的粒子性和波动性联系起来,即

注:光的频率、波长和辐射能都是由光子源决定的。

2、光与固体介质的相互作用

透过、吸收、反射、散射。

微观上,光子与固体材料中的原子、离子、电子之间的相互作用主要表现在以下两个方面:

电子极化(折射)、电子能态转变

色散:介质中光速(折射率)随波长改变的现象称为色散。介质的折射率随着波长的增加而减小。

3、材料的反射率

当入射光线垂直或接近垂直于介质界面时,其反射率为:

两种介质的折射率差别越大,反射率也越大

注:介质的反射率与波长有关,因此同一材料对不同波长有不同的反射率。

4、金属的光透过性质

5、非金属材料的光透过性质(与金属区别是存在禁带)

非金属材料对可见光的吸收有三种机理:

1)电子极化,但只有光的频率与电子极化时间的倒数处于同一数量级时,由此引起的吸收才变得比较重要;

2)电子受激吸收光子而越过禁带;

3)电子受激进入位于禁带中的杂质或缺陷能级而吸收光子。

影响介质吸收光的因素:1)介质的电子能带结构;2)光要穿过的介质厚度(光程);3)光的波长

6、冷光(会利用下图来解释荧光和磷光的区别,关键在杂质能级)

根据材料从吸收能量到发光之间延迟时间的长短,把冷光分为荧光和磷光两类.

延迟时间<10-8s者称为荧光,延迟时间>10-8s者称为磷光

磷光体的基体常是硫化物;激活剂主要是金属(提供电子),有基质选定。

7、热辐射:

由于电子被热激发到较高能级后回到正常能级发射光子。

热辐射材料的颜色和亮度随温度而改变。

8、激光

-E1)/h的光子入射时,粒子也会以一定

受激辐射:1917年爱因斯坦指出,除自发辐射之外,当频率为ν=(E

的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向等都相同的光子,这个过程称为受激辐射。

的粒子数大于处在低能级E1的粒子数。这种分布正好与平衡态时的粒子分布相反,

粒子数反转:处在高能级E

称为粒子数反转分布,简称粒子数反转,

激光工作原理(以红宝石为例,结合图说明P16

7)

※材料的光学性能

1、德拜理论

晶体中各原子间存在看弹性斥力和引

力。这种力使原子的热振动相互受着牵连和

制约,从而达到相邻原子间协调齐步地振动,

并认为每个谐振子的频率不同.存在的频率

范围从零到某一最大值。每一频率的谐振子

都以波的形式在点阵中传播。晶体中的点阵波是所有原子以其各自的频率,彼此间存在一定相位差而振动的集体运动。

德拜模型比起爱因斯坦模型有了很大的进步,但由于德拜把晶体看成连续介质,对于原子振动频率较高的

部分不适用,故德拜理论对一些化合物的热容计算与实验不符。

2、德拜温度(影响因素)

(V是原子体积)德拜温度是反映原子间结合力的又一重要物理量。

不同材料其德拜温度不同,从上第二个式子可知,熔点高,即材料原子间结合力强,德拜温度便高,尤其是相

对原子质量小的金属更为突出。

3、相变对热容的贡献(了解)

一级相变:有热量的吸收和放出,同时体积变化。在相变温度下,H(焓)发射功能突变,热熔为无限大。

二级相变:无热量的吸收和放出,仅是物理性质发生变化。

4、热膨胀的物理本质(且会以双原子势能曲线模型解释)

热膨胀的物理本质——原子的非简谐振动

晶体质点引力-斥力曲线和位能曲线

采用玻尔兹曼统计法,得出平均位移:

5、热膨胀系数(小题)

热膨胀系数与其它物理量的关系

1)与热容的关系:

2)与金属熔点的关系:经验公式为:

3)膨胀系数随元素的原子序数呈明显周期性变化

6、材料的导热性

傅里叶导热定律:(只适用于稳态热传导)

三个重要参数:

1)热导率(导热系数)k:反映材料导热能力

2)热扩散率(导温系数)标志温度变化的速率

3) 热阻

7、 魏德曼-夫兰兹定律:在不太低的温度下,金属热导率与电导率之比正比于温度。

8、 热导率及其影响因素(会判断具体变化)

纯金属导热性:温度

晶粒大小 晶系 杂质

合金的导热性:无序

有序

9、 无机非金属材料的热传导

热传导的微观机制:声子导热(主要);光子热传导(高温时明显)

高温时材料中分子、原子和电子的振动、转动等运动状态的改变,会辐射出频率较高的电磁波频谱,其中波长在0.4—40μm 间的可见光和近红外光具有较强的热效应,称其为热射线,其传递过程为热辐射。

非晶体的热导率低于晶体,是因为它是无序的。

会解释非晶态热导率曲线(右图)(P265)

11、 有机高分子材料的热导率

主要是通过分子与分子碰撞来进行。

一般热导率和电导率都很低,通常用作绝热材料。

12、 热电性

三个效应:

赛贝克效应:当两种不同材料A 和B (导体和半导体)组成回路,且两接触处温度不同时,则在回路中存

在电动势。这种效应称赛贝克效应。

珀耳帖效应:当两种不同金属组成一回路并有电流在回路中通过时,将使两种金属的其中一接头放热,另

一接头处吸热。电流方向相反,则吸放热接头改变,这种效应称为珀耳帖效应。

汤姆逊效应:具有温度梯度的一根均匀导体通过电流时,会产生吸热和放热现象,即汤姆逊效应。

赛贝克效应的接触电动势(影响大)和温差电动势:

接触电动势的大小与接点温度的高低及导体中的电子密度有关,与导体的直径、长度及几何形状无关。 温差电动势的大小取决于导体的材料及两端的温度。

与塞贝克效应相关的三个基本规律:(记住各自特点)

均质导体定律:要确定塞贝克热电势的大小必须保证A 、B 两种材料的化学成分和物理状态完全均匀,否

则将要叠加一个难以确定的附加电势。

根据这一定律,可以检验两个热电极材料的成分是否相同(称为同名极检验法),也可以检查热电极材料的均匀性。

中间导体定律:如果在回路中引入第三种金属导体,那么只要第三种金属接入的两端温度相同,则对原回

材料物理性能考试复习资料

1. 影响弹性模量的因素包括:原子结构、温度、相变。 2. 随有温度升高弹性模量不一定会下降。如低碳钢温度一直升到铁素体转变为 奥氏体相变点,弹性模量单调下降,但超过相变点,弹性校模量会突然上升,然后又呈单调下降趋势。这是在由于在相变点因为相变的发生,膨胀系数急剧减小,使得弹性模量突然降低所致。 3. 不同材料的弹性模量差别很大,主要是因为材料具有不同的结合键和键能。 4. 弹性系数Ks 的大小实质上代表了对原子间弹性位移的抵抗力,即原子结合 力。对于一定的材料它是个常数。 弹性系数Ks 和弹性模量E 之间的关系:它们都代表原子之间的结合力。因为建立的模型不同,没有定量关系。(☆) 5. 材料的断裂强度:a E th /γσ= 材料断裂强度的粗略估计:10/E th =σ 6. 杜隆-珀替定律局限性:不能说明低温下,热容随温度的降低而减小,在接近 绝对零度时,热容按T 的三次方趋近与零的试验结果。 7. 德拜温度意义: ① 原子热振动的特征在两个温度区域存在着本质差别,就是由德拜温 度θD 来划分这两个温度区域: 在低θD 的温度区间,电阻率与温度的5次方成正比。 在高于θD 的温度区间,电阻率与温度成正比。 ② 德拜温度------晶体具有的固定特征值。 ③ 德拜理论表明:当把热容视为(T/θD )的两数时,对所有的物质都具有 相同的关系曲线。德拜温度表征了热容对温度的依赖性。本质上, 徳拜温度反应物质内部原子间结合力的物理量。 8. 固体材料热膨胀机理: (1) 固体材料的热膨胀本质,归结为点阵结构中质点间平均距离随温度升 高而增大。 (2) 晶体中各种热缺陷的形成造成局部点阵的畸变和膨胀。随着温度升 高,热缺陷浓度呈指数增加,这方面影响较重要。 9. 导热系数与导温系数的含义: 材料最终稳定的温度梯度分布取决于热导率,热导率越高,温度梯度越小;而趋向于稳定的速度,则取决于热扩散率,热扩散率越高,趋向于稳定的速度越快。 即:热导率大,稳定后的温度梯度小,热扩散率大,更快的达到“稳定后的温度梯度”(☆) 10. 热稳定性是指材料承受温度的急剧变化而不致破坏的能力,故又称为抗热震 性。 热稳定性破坏(即抗热振性)的类型有两种:抗热冲击断裂性和抗热冲击损伤性。 11. 提高材料抗热冲击断裂性能的措施 ①提高材料强度σ,减小弹性模量E ,σ/E 增大,即提高了材料柔韧性,这样可吸收较多的应变能而不致于开裂。晶粒较细,晶界缺陷小,气孔少且分散者,强度较高,抗热冲击断裂性较好。

材料物理性能复习重点

经典自由电子理论推导 推导各向同(异)性材料的体膨胀系数和线膨胀系数的关系 二、计算题 在500单晶硅中掺有的硼,设杂质全部电离球该材料的电阻率,(设u= ,硅密度2.33g/cm^3,硼原子量为10.8) 假设X射线用铝材屏蔽,如果要是95%的X射线能量不能透过,则铝材的厚度至少要多少?铝的吸收系数为0.42cm-1 三、名词解释 马基申定则:总的电阻包括金属的基本电阻和溶质浓度引起的电阻(与温度无关)。 本征半导体:纯净的无结构缺陷的半导体单晶 介质损耗:电介质在电场作用下,单位时间内因发热而消耗的能量成为电介质的介质损耗磁化:任何物质处于磁场中,均会使其所占有的空间的磁场发生变化,这是由于磁场的作用使物质表现出一定的磁性,该现象称为磁化(单位体积的磁矩称为磁化强度)本征磁矩:原子中电子的轨道磁矩和自旋磁矩构成的原子固有磁矩称为本征磁矩 自发磁化:在铁磁物质内部存在着很强的与外磁场无关的“分子场”,在这种分子场作用下,原子磁矩趋于同向平行排列,即自发的磁化至饱和, 磁畴:居里点下,铁磁体自发磁化成若干个小区域,称为磁畴 磁晶各向异性:在单晶体的不同晶向上,磁性能是不同的,称为~ 形状各向异性:不同形状的试样磁化行为是不同的,该现象称为~ 磁致伸缩:铁磁体在磁场中被磁化时,其形状和尺寸都会发生变化这种现象称为~ 技术磁化:在外磁场作用下铁磁体从完全退磁状态磁化至饱和状态的内部变化过程 双光束干涉:两束光相遇后,在光叠加区,光强重新分布,出现明暗相间,稳定的干涉条纹(条件:频率相同振动方向一致,并且有固定的相位关系) 衍射:光波遇到障碍物时,在一定程度上能绕过障碍物进入几何阴影区。 色散:材料的折射率随入射光的波长而变化 折射率的色散:材料的折射率随入射光的频率减小而减小的性质 双折射:由一束入射光折射后分成两束光的现象。符合折射率的是寻常光,不然是非常光二向色性:晶体结构的各向异性不仅能产生折射率的各向异性(双折射),而且能产生吸收率的各向异性 四、问答题 1.经典自由电子理论与量子自由电子理论异同 同:金属晶体中,正离子形成的电场是均匀的,价电子是自由的, 异:经典理论认为没有施加外电场时,自由电子沿各个方向运动的几率相同,不产生电流? 量子理论认为每个原子的内层电子基本保持着单个原子时的能量状态,所有价电子有不同的能级。 2.评价电介质的主要电学性能指标有哪些? 介电常数、耐电常数、损耗因数、体电阻率和表面电阻率、前三个属于介电性,后者导电性3.电介质的极化基本形式 电子式极化、离子式极化、偶极子极化、空间电荷极化

材料物理性能期末复习题

期末复习题 一、填空(20) 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈 介电常数一致,虚部表示了电介质中能量损耗的大小。 .当磁化强度M为负值时,固体表现为抗磁性。8.电子磁矩由电子的轨道磁矩和自旋磁矩组成。 9.无机非金属材料中的载流子主要是电子和离子。 10.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。11.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 12.对于中心穿透裂纹的大而薄的板,其几何形状因子。 13.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 14.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 15.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。16.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 17.当温度不太高时,固体材料中的热导形式主要是声子热导。 18.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 19.电滞回线的存在是判定晶体为铁电体的重要根据。 20.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 21. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 22.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 23.晶体发生塑性变形的方式主要有滑移和孪生。 24.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 25.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释(20) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。

材料物理性能复习总结

1、 ?拉伸曲线: ?拉伸力F-绝对伸长△L的关系曲线。 ?在拉伸力的作用下,退火低碳钢的变形过程四个阶段: ?1)弹性变形:O~e ?2)不均匀屈服塑性变形:A~C ?3)均匀塑性变形:C~B ?4)不均匀集中塑性变形:B~k ?5)最后发生断裂。k~ 2、弹性变形定义: ?当外力去除后,能恢复到原形状或尺寸的变形-弹性变形。 ?弹性变形的可逆性特点: ?金属、陶瓷或结晶态的高分子聚合物:在弹性变形内,应力-应变间具有单值线性 关系,且弹性变形量都较小。 ?橡胶态高分子聚合物:在弹性变形内,应力-应变间不呈线性关系,且变形量较大。 ?无论变形量大小和应力-应变是否呈线性关系,凡弹性形变都是可逆变形。 3、弹性比功:(弹性比能、应变比能),用a e 表示, ?表示材料在弹性变形过程中吸收弹性变形功的能力。 ?一般用材料开始塑性变形前单位体积吸收的最大弹性变形功表示。 ?物理意义:吸收弹性变形功的能力。 ?几何意义:应力σ-应变ε曲线上弹性阶段下的面积。 4、理想弹性材料:在外载荷作用下,应力-应变服从虎克定律,即σ=Eε,并同时满足3个条件,即: ?①应变对于应力的响应是线性的; ?②应力和应变同相位; ?③应变是应力的单值函数。

?材料的非理想弹性行为: ?可分为滞弹性、伪弹性及包申格效应等几种类型 5、滞弹性(弹性后效) ?滞弹性:是指材料在弹性范围内快速加载或卸载后,随时间的延长而产生的附加弹 性应变的现象。 6、实际金属材料具有滞弹性。 ?1)单向加载弹性滞后环 ?在弹性区内单向快速加载、卸载时,加载线与卸载线会不重合(应力和应变不同步), 形成一封闭回线,称为弹性滞后环。 ?2)交变加载弹性滞后环 ?交变载荷时,若最大应力<宏观弹性极限,加载速率比较大,则也得到弹性滞后环(图 b)。 ?3)交变加载塑性滞后环 ?交变载荷时,若最大应力>宏观弹性极限,则得到塑性滞后环(图c)。 7、材料存在弹性滞后环的现象说明:材料加载时吸收的变形功> 卸载时释放的变形功,有一部分加载变形功被材料所吸收。 ?这部分在变形过程中被吸收的功,称为材料的内耗。 ?内耗的大小:可用滞后环面积度量。 8、金属材料在交变载荷(振动)下吸收不可逆变形功的能力,称为金属的循环韧性,也叫金属的“内耗”。 ?严格说,循环韧性与内耗是有区别的,但有时常混用。 ?循环韧性: ?指材料在塑性区内加载时吸收不可逆变形功的能力。 ?内耗: ?指材料在弹性区内加载时吸收不可逆变形功的能力 9、循环韧性:也是金属材料的力学性能,因它表示在交变载荷(振动)下吸收不可逆变形功的能力,故又称为消振性。 ?材料循环韧性越高,则自身的消振能力就越好。 ?高的循环韧性可减振:如汽轮机叶片(1Cr13),机床材料、发动机缸体、底座等选 用灰铸铁制造。 ?低循环韧性可提高其灵敏度:如仪表和精密机械、重要的传感元件。 ?乐器所用材料的循环韧性越低,则音质越好。 10、伪弹性有些合金如(Au金-Cd镉,In铟-Tl铊等)在受一定应力时会诱发形成马氏体,相应地产生应变,应力去除后马氏体立即逆变为母相,应变回复 11、当材料所受应力超过弹性极限后,开始发生不可逆的永久变形,又称塑性变形。 12、单晶体受力后,外力在任何晶面上都可分解为正应力和切应力。 ?正应力:只能引起弹性变形及解理断裂。 ?只有在切应力的作用下,金属晶体才能产生塑性变形。 13、金属材料常见的塑性变形方式:滑移和孪生两种。 14、滑移现象: ?表面经抛光的金属单晶体在拉伸时,当应力超过屈服强度时,在表面会出现一些与 应力轴成一定角度的平行细线。 ?在显微镜下,此平行细线是一些较大的台阶(滑移带)。 ?滑移带:又是由许多小台阶组成,此小台阶称为滑移线

材料物理性能

第一章 1、应力:单位面积上所受的内力ζ=F/A 2、应变:描述物体内部质点之间的相对运动ε=△L/Lo 3、晶格滑移:晶体受力时,晶体的一部分相对另一部分发生平移滑动。条件:①移动较小 的距离即可恢复、②静电作用上移动中无大的斥力 4、塑性形变过程:①理论上剪切强度:克服化学键所产生的强度。当η>ηo时,发生滑移 (临界剪切应力),η=ηm sin(2πx/λ),x<<λ时,η=ηm(2πx/λ)。由虎克定律η0=Gx/λ.则Gx/λ=ηm(2πx/λ)→ηm=G/2π;②位错运动理论:实际晶体中存在错位缺陷,当受剪应力作用时,并不是晶体内两部分整体相互错动,而是位错在滑移面上沿滑移方向运动,使位错运动所需的力比是晶体两部分整体相互华东所需的力小的多,故实际晶体的滑移是位错运动的结果。位错是一种缺陷,位错的运动是接力式的;③位错增值理论:在时间t内不但比N个位错通过试样边界,而且还会引起位错增值,使通过便捷的位错数量增加到NS个,其中S位位错增值系数。过程机理画图 5、高温蠕变:在高温、恒定应力的作用下,随着时间的延长,应变不断增加。⑴起始阶段 0-a:在外力作用下瞬时发生弹性形变,与时间无关。⑵蠕变减速阶段a-b:应变速率随时间递减,即a-b段的斜率dε/dt随时间的增加而愈小,曲线愈来愈平缓。原因:受阻碍较小,容易运动的位错解放出来后,蠕变速率就会降低;⑶稳态蠕变阶段b-c:入编速率几乎保持不变,即dε/dt=K(常数)原因:容易运动的位错解放后,而受阻较大的位错未被解放。⑷加速入编阶段c-d:应变绿随时间增加而增加,曲线变陡。原因:继续增加温度或延长时间,受阻碍较大的位错也能进一步解放出来。影响入编的因素:⒈温度,温度升高,入编增加。⒉应力,拉应力增加,蠕变增加,压应力增加,蠕变减小⒊气孔率增加,蠕变增加,晶粒愈小,蠕变率愈小。⒋组成。⒌晶体结构。 6、弹性形变:外力移去后可以恢复的形变。塑性形变:外力移去后不可恢复的形变 第二章 7、突发性断裂(快速扩展):在临界状态下,断裂源处的裂纹尖端所受的横向拉应力正好 等于结合强度时,裂纹产生突发性扩展。(一旦扩展,引起周围盈利的再分配,导致裂纹的加速扩展,出现突出性断裂) 8、裂纹缓慢生长:当裂纹尖端处的横向拉应力尚不足以引起扩展,但在长期受应力的情况 下,特别是同时处于高温环境中时,还会出现裂纹的缓慢生长。 9、理论结合强度:无机材料的抗压强度大约是抗拉强度的10倍。δth=(EΥ/a)0.5→(Υ=aE/100) →δth=E/10(a:晶格常数,Υ:断裂表面能断裂表面能Υ比自由表面能大。这是因为储存的弹性应变能除消耗于形成新表面外,还有一部分要消耗在塑性形变、声能、热能等方面。 10、Griffith微裂纹理论:⑴Inglis尖端分析:孔洞两个端部的应力取决于孔洞的长度和 端部的曲率半径而与孔洞的形状无关。应用:修玻璃通过打孔增加曲率来减慢裂纹扩展。 ⑵Griffith能量分析:物体内储存的弹性应变能的降低大于等于开裂形成两个新表面所需 的表面能。(产生一条长度2C的裂纹,应变能降低为We,形成两个新断面所需表面能为Ws)。裂纹进一步扩展(2dc,单位面积所释放的能量为dWe/2dc,形成新的单位表面积所需的表面能为dWs/2dc。)当dWe/2dcdWs/2dc时,裂纹失稳,迅速扩展;当dWe/2dc=dWs/2dc时,为临界状态。 应用:尽数剪裁上通过反复折导致剪断。 11、选择材料的标准:δ<δc,即使用应力小于断裂应力;Ki

材料物理性能及材料测试方法大纲、重难点

《材料物理性能》教学大纲 教学内容: 绪论(1 学时) 《材料物理性能》课程的性质,任务和内容,以及在材料科学与工程技术中的作用. 基本要求: 了解本课程的学习内容,性质和作用. 第一章无机材料的受力形变(3 学时) 1. 应力,应变的基本概念 2. 塑性变形塑性变形的基本理论滑移 3. 高温蠕变高温蠕变的基本概念高温蠕 变的三种理论 第二章基本要求: 了解:应力,应变的基本概念,塑性变形的基本概念,高温蠕变的基本概念. 熟悉:掌握广义的虎克定律,塑性变形的微观机理,滑移的基本形态及与能量的关系.高温蠕变的原因及其基本理论. 重点: 滑移的基本形态,滑移面与材料性能的关系,高温蠕变的基本理论. 难点: 广义的虎克定律,塑性变形的基本理论. 第二章无机材料的脆性断裂与强度(6 学时) 1.理论结合强度理论结合强度的基本概念及其计算 2.实际结合强度实际结合强度的基本概念 3. 理论结合强度与实际结合强度的差别及产生的原因位错的基本概念,位错的运动裂纹的扩展及扩展的基本理论 4.Griffith 微裂纹理论 Griffith 微裂纹理论的基本概 念及基本理论,裂纹扩展的条件 基本要求: 了解:理论结合强度的基本概念及其计算;实际结合强度的基本概念;位错的基本概念,位错的运动;裂纹的扩展及扩展的基本理论;Griffith 微裂纹理论的基本概念及基本理论,裂纹扩展的条件熟悉:理论结合强度和实际结合强度的基本概念;位错的基本概念,位错的运动;裂纹的扩展及扩展的基本理论;Griffith 微裂纹理论的基本概念及基本理论,裂纹扩展的条件. 重点: 裂纹的扩展及扩展的基本理论;Griffith 微裂纹理论的基本概念及基本理论,裂纹扩展的条件难点: Griffith 微裂纹理论的 基本概念及基本理论 第三章无机材料的热学性能(7 学时) 1. 晶体的点阵振动一维单原子及双原子的振动的基本理论 2. 热容热容的基本概念热容的经验定律和经典理论热容的爱因斯坦模型热容的德拜模型 3.热膨胀热膨胀的基本概念热膨胀的基

材料物理性能复习总结

第一章电学性能 1.1 材料的导电性 ,ρ称为电阻率或比电阻,只与材料特性有关,而与导体的几何尺寸无关,是评定材料导电性的基本参数。ρ的倒数σ称为电导率。 一、金属导电理论 1、经典自由电子理论 在金属晶体中,正离子构成了晶体点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此又称为“电子气”。它们的运动遵循理想气体的运动规律,自由电子之间及它们与正离子之间的相互作用类似于机械碰撞。当对金属施加外电场时,自由电子沿电场方向作定向加速运动,从而形成了电流。在自由电子定向运动过程中,要不断与正离子发生碰撞,使电子受阻,这就是产生电阻的原因。 2、量子自由电子理论 金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,可以在整个金属中自由运动。但金属中每个原子的内层电子基本保持着单个原子时的能量状态,而所有价电子却按量子化规律具有不同的能量状态,即具有不同的能级。 0K时电子所具有最高能态称为费密能E F。 不是所有的自由电子都参与导电,只有处于高能态的自由电子才参与导电。另外,电子波在传播的过程中被离子点阵散射,然后相互干涉而形成电阻。 马基申定则:′,总的电阻包括金属的基本电阻和溶质(杂质)浓度引起的电阻(与温度无关);从马基申定则可以看出,在高温时金属的电阻基本取决于,而在低温时则决定于残余电阻′。 3、能带理论 能带:由于电子能级间隙很小,所以能级的分布可看成是准连续的,称为能带。 图1-1(a)、(b)、(c),如果允带内的能级未被填满,允带之间没有禁带或允带相互重叠,在外电场的作用下电子很容易从一个能级转到另一个能级上去而产生电流,具有这种能带结构的材料就是导体。 图1-1(d),若一个满带上面相邻的是一个较宽的禁带,由于满带中的电子没有活动的余地,即便是禁带上面的能带完全是空的,在外电场作用下电子也很难跳过禁带,具有这种能带结构的材料是绝缘体。

材料物理性能

材料物理性能 第一章、材料的热学性能 一、基本概念 1.热容:物体温度升高1K 所需要增加的能量。(热容是分子热运动的能量随温度变化的一个物理量)T Q c ??= 2.比热容:质量为1kg 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。[ 与 物质的本性有关,用c 表示,单位J/(kg ·K)]T Q m c ??=1 3.摩尔热容:1mol 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。用Cm 表示。 4.定容热容:加热过程中,体积不变,则所供给的热量只需满足升高1K 时物体内能的增加,不必再以做功的形式传输,该条件下的热容: 5.定压热容:假定在加热过程中保持压力不变,而体积则自由向外膨胀,这时升高1K 时供 给 物体的能量,除满足内能的增加,还必须补充对外做功的损耗。 6.热膨胀:物质的体积或长度随温度的升高而增大的现象。 7.线膨胀系数αl :温度升高1K 时,物体的相对伸长。t l l l ?=?α0 8.体膨胀系数αv :温度升高1K 时,物体体积相对增长值。t V V t t V ??= 1α 9.热导率(导热系数)λ:在 单位温度梯度下,单位时间内通过单位截面积的热量。(标志 材 料热传导能力,适用于稳态各点温度不随时间变化。)q=-λ△T/△X 。 10.热扩散率(导温系数)α:单位面积上,温度随时间的变化率。α=λ/ρc 。α表示温度变化的速率(材料内部温度趋于一致的能力。α越大的材料各处的温度差越小。适用于非稳态不稳定的热传导过程。本质仍是材料传热能力。)。 二、基本理论

1.德拜理论及热容和温度变化关系。 答:⑴爱因斯坦没有考虑低频振动对热容的贡献。 ⑵模型假设:①固体中的原子振动频率不同;处于不同频率的振子数有确定的分布函数; ②固体可看做连续介质,能传播弹性振动波; ③固体中传播的弹性波分为纵波和横波两类; ④假定弹性波的振动能级量子化,振动能量只能是最小能量单位hν的整数倍。 ⑶结论:①当T》θD时,Cv,m=3R;在高温区,德拜理论的结果与杜隆-珀蒂定律相符。 ②当T《θD时,Cv,m∝3T。 ③当T→0时,Cv,m→0,与实验大体相符。 ⑷不足:①由于德拜把晶体看成连续介质,对于原子振动频率较高的部分不适用; ②晶体不是连续介质,德拜理论在低温下也不符; ③金属类的晶体,没有考虑自由电子的贡献。 2.热容的物理本质。 答:温度一定时,原子虽然振动,但它的平衡位置不变,物体体积就没变化。物体温度升高了,原子的振动激烈了,但如果每个原子的平均距离保持不变,物体也就不会因为温度升高而发生膨胀。 【⑴反映晶体受热后激发出的晶格波和温度的关系; ⑵对于N个原子构成的晶体,在热振动时形成3N个振子,各个振子的频率不同,激发出的声子能力也不同; ⑶温度升高,晶格的振幅增大,该频率的声子数目也增大; ⑷温度升高,在宏观上表现为吸热或放热,实质上是各个频率声子数发生变化。材料物理的解释】 3.热膨胀的物理本质。 答:由于原子之间存在着相互作用力,吸引力与斥力。力大小和原子之间的距离有关(是非线性关系,引力、斥力的变化是非对称的),两原子相互作用是不对称变化,当温度上升,势能增高,由于势能曲线的不对称性必然导致振动中心右移。即原子间距增大。 ⑴T↑原子间的平均距离↑r>r0吸引合力变化较慢 ⑵T↑晶体中热缺陷密度↑r<r0排斥合力变化较快 【材料质点间的平均距离随温度的升高而增大(微观),宏观表现为体积、线长的增大】 4.固体材料的导热机制。 答:⑴固体的导热包括:电子导热、声子导热和光子导热。 ①纯金属:电子导热是主要机制; ②合金:声子导热的作用增强; ③半金属或半导体:声子导热、电子导热; ④绝缘体:几乎只有声子导热一种形式,只有在极高温度下才可能有光子导热存在。 ⑵气体:分子间碰撞,可忽略彼此之间的相互作用力。 固体:质点间有很强的相互作用。 5.焓和热容与加热温度的关系。P11。图1.8 ⑴①有潜热,热容趋于无穷大;⑵①无潜热,热容有突变

综合材料物理性能检验复习提纲

2010综合材料物理性能检验复习提纲 一、质量技术监督 (一) 基本概念 (二) 相关法律 (三) 误差分析及提高测量准确度及可靠性途径 (四) 数据处理 (五) 样品抽取和准备 例题1、优良的职业道德是新时期质检行业端正行业作风和加强精神文明建设的 需 要,也是树立技术监督“科学、公正、廉洁、高效”的行业形象的需要。 例题2、方法标准是指以产品性能、 质量方面的检测、实验方法为对象而制定 的标准。代号GB/T 表示推荐性国标;GB 表示强制性国标 。 例题3、我国标准分为 国家 、 行业 、地方和 企业标准四级。 例题4、技术标准分为 方法标准 、安全卫生与环境保护 、产品标准和 基础标 准四类。 例题5、下列数据可作为三位有效数字运算的是( B )。 A 0.79 B 0.81 C lg M =7.02 例题6、标准要求样品性能指标值w ≤0.05,下列测定的( A )样品符合标准 要求。 A w=0.046 B w=0.051 C w=0.056 例题7、若log 10N 为11.20,则N 的值为( C )。 A 6.300×10-12 B 6.30×10-12 C 6.3×10-12 例题8、8.5002034 .0512.21003.40.314 +???-的计算结果是( B )。 例题9、随机误差 由偶然或不可测因素引起的误差称为随机误差。随机误差具有有界性、单峰性、对称性、 抵偿性。可以用增加测定次数的方法减小随机误差。 例题10、Q 值检验法 处理可疑离群值的数理统计方法之一。适用于测定次数为3——10次的检验。具体做法是: 按大小排列数据;计算统计量Q 0=(X n -X n-1)/(X n -X 1);根据自由度和显着性水平查出,统计量 的临界值Q n ;比较Q 0和Q n ,若Q 0T a ,则离群值应予剔除。 例题12、简述提高测定的准确度和测定结果的可靠性的方法。 (消除系统误差:仪器校正、空白试验、标准物质或标准方法对照。减小随机误差:增加测定次数。) 例题13*、已知某物理量的真值为50.36,A 、B 、C 三人同时测定次物理量,各 测四次,数据如下: A 50.20 50.20 50.18 50.17 B 50.40 50.30 50.20 50.10

材料物理性能复习思考题汇总

材料物理性能复习思考题汇总 第一章绪论及材料力学性能 一.名词解释与比较 名义应力:材料受力前面积为A,则δ。=F/A,称为名义应力 工程应力:材料受力后面积为A。,则δT =F/A。,称为工程应力 拉伸应变:材料受到垂直于截面积方向大小相等,方向相反并作用在同一条直线上的两个拉伸应力时发生的形变。 剪切应变:材料受到平行于截面积大小相等,方向相反的两个剪切应力时发生的形变。 结构材料:以力学性能为基础,以制造受力构件所用材料 功能材料:具有除力学性能以外的其他物理性能的材料。 晶须:无缺陷的单晶材料 弹性模量:材料发生单位应变时的应力 刚性模量:反映材料抵抗切应变的能力 泊松比:反映材料横向正应变与受力方向线应变的比值。(横向收缩率与轴向收缩率的比值) 形状因子:塑性变形过程中与变形体尺寸,工模具尺寸及变形量相关参数。 平面应变断裂韧性:一个考虑了裂纹尺寸并表征材料特征的常数 弹性蠕变:对于金属这样的实际弹性体,当对它施加一定的应力时,它除了产生一个瞬时应变以外,还会产生一个随时间而变化的附加应变(或称为弛豫应变),这一现象称为弹性蠕变。 蠕变:在恒定的应力δ作用下材料的应变随时间增加而逐渐增大的现象 材料的疲劳:裂纹在使用应力下,随着时间的推移而缓慢扩展。 应力腐蚀理论:在一定环境温度和应力场强度因子作用下,材料中关键裂纹尖端处,裂纹扩展动力与裂纹扩展阻力的比较,构成裂纹开裂和止裂的条件。 滑移系统:滑移面族和滑移方向为滑移系统 相变增韧:利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称相变增韧 弥散强化:在基体中渗入具有一定颗粒尺寸的微细粉料,达到增韧效果,这称为弥散增韧 屈服强度:屈服强度是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力 法向应力:导致材料伸长或缩短的应力 切向应力:引起材料切向畸变的应力 应力集中:受力构件由于外界因素或自身因素导致几何形状、外形尺寸发生突变而引起局部范围内应力显著增大的现象。

材料物理性能.

※ 材料的导电性能 1、 霍尔效应 电子电导的特征是具有霍尔效应。 置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两 个面之间产生电动势差,这种现象称霍尔效应。 形成的电场E H ,称为霍尔场。表征霍尔场的物理参数称为霍尔系数,定义为: 霍尔系数R H 有如下表达式:e n R i H 1 ± = 表示霍尔效应的强弱。霍尔系数只与金属中自由电子密度有关 2、 金属的导电机制 只有在费密面附近能级的电子才能对导电做出贡献。 利用能带理论严格导出电导率表达式: 式中: nef 表示单位体积内实际参加传导过程的电子数; m *为电子的有效质量,它是考虑晶体点阵对电场作用的结果。 此式不仅适用于金属,也适用于非金属。能完整地反映晶体导电的物理本质。 量子力学可以证明,当电子波在绝对零度下通过一个完整的晶体点阵时,它将不受散射而无阻碍的传播,这时 电阻为零。只有在晶体点阵完整性遭到破坏的地方,电子波才受到散射(不相干散射),这就会产生电阻——金属产生电阻的根本原因。由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原子、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。这样,电子波在这些地方发生散射而产生电阻,降低导电性。 3、 马西森定律 (P94题11) 试说明用电阻法研究金属的晶体缺陷(冷加工或高温淬火)时威慑年电阻测量要在低温下进行。 马西森(Matthissen )和沃格特(V ogt )早期根据对金属固溶体中的溶质原子的浓度较小,以致于可以略去它们 之间的相互影响,把金属的电阻看成由金属的基本电阻ρL(T)和残余电阻ρ?组成,这就是马西森定律( Matthissen Rule ),用下式表示: ρ?是与杂质的浓度、电缺陷和位错有关的电阻率。 ρL(T)是与温度有关的电阻率。 4、 电阻率与温度的关系 金属的温度愈高,电阻也愈大。 若以ρ0和ρt 表示金属在0 ℃和T ℃温度下的电阻率,则电阻与温度关系为: 在t 温度下金属的电阻温度系数: 5、 电阻率与压力的关系 在流体静压压缩时,大多数金属的电阻率降低。 在流体静压下金属的电阻率可用下式计算 式中:ρ0表示在真空条件下的电阻率;p 表示压力;φ是压力系数(负值10-5~10-6 )。 正常金属(铁、钴、镍、钯、铂等),压力增大,金属电阻率下降;反常金属(碱土金属和稀土金属的大部分) 6、 缺陷对电阻率的影响:不同类型的缺陷对电阻率的影响程度不同,空位和间隙原子对剩余电阻率的影响和金属 杂质原子的影响相似。点缺陷所引起的剩余电阻率变化远比线缺陷的影响大。

材料物理性能考试重点、复习题电子教案

材料物理性能考试重点、复习题

精品资料 1.格波:在晶格中存在着角频率为ω的平面波,是晶格中的所有原子以相同频率振动而 形成的波,或某一个原子在平衡附近的振动以波的形式在晶体中传播形成的波 2.色散关系:频率和波矢的关系 3.声子:晶格振动中的独立简谐振子的能量量子 4.热容:是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K 所需要增加的能量。 5.两个关于晶体热容的经验定律:一是元素的热容定律----杜隆-珀替定律:恒压下元素的 原子热容为25J/(K*mol);另一个是化合物的热容定律-----奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。 6.热膨胀:物体的体积或长度随温度的升高而增大的现象称为热膨胀 7.固体材料热膨胀机理:材料的热膨胀是由于原子间距增大的结果,而原子间距是指晶 格结点上原子振动的平衡位置间的距离。材料温度一定时,原子虽然振动,但它平衡位置保持不变,材料就不会因温度升高而发生膨胀;而温度升高时,会导致原子间距增大。 8.温度对热导率的影响:在温度不太高时,材料中主要以声子热导为主,决定热导率的因 素有材料的热容C、声子的平均速度V和声子的平均自由程L,其中v通常可以看作常数,只有在温度较高时,介质的弹性模量下降导致V减小。材料声子热容C在低温下与温度T3成正比。声子平均自由程V随温度的变化类似于气体分子运动中的情况,随温度升高而降低。实验表明在低温下L值的变化不大,其上限为晶粒的线度,下限为晶格间距。在极低温度时,声子平均自由程接近或达到其上限值—晶粒的直径;声子的热容C则与T3成正比;在此范围内光子热导可以忽略不计,因此晶体的热导率与温度的三次方成正比例关系。在较低温度时,声子的平均自由程L随温度升高而减小,声子的热容C仍与T3成正比,光子热导仍然极小,可以忽略不计,此时与L相比C对声子热导率的影响更大,因此在此范围内热导率仍然随温度升高而增大,但变化率减小。 在较高温度下,声子的平均自由程L随温度升高继续减小,而声子热容C趋近于常数,材料的热导率由L随温度升高而减小决定。随着温度升高,声子的平均自由程逐渐趋近于其最小值,声子热容为常数,光子平均自由程有所增大,故此光子热导逐步提高,因此高温下热导率随温度升高而增大。一般来说,对于晶体材料,在常用温度范围内,热导率随温度的上升为下降。 9.影响热导率的因素:1)温度的影响,一般来说,晶体材料在常用温度范围内,热导率随 温度的上升而下降。2)显微结构的影响。3)化学组成的影响。4)复合材料的热导率 10.热稳定性:是指材料承受温度的急剧变化而不致破坏的能力,所以又称为抗热震性。 11.常用热分析方法:1)普通热分析法2)差热分析3)差示扫描量热法4)热重法 12.光折射:当光依次通过两种不同介质时,光的行进方向要发生改变,这种现象称为折 射 13.光的散射:材料中如果有光学性能不均匀的结构,例如含有透明小粒子、光性能不同 的晶界相、气孔或其他夹杂物,都会引起一部分光束偏离原来的传播方向而向四面八方散开来,这种现象称为光的散射。 14.吸收:光通过物质传播时,会引起物质的价电子跃迁或使原子振动,从而使光能的一 部分转变为热能,导致光能的衰减的现象 15.弹性散射:光的波长(或光子能量)在散射前后不发生变化的,称为弹性散射 16.按照瑞利定律,微小粒子对波长的散射不如短波有效,在可见光的短波侧λ=400nm 处,紫光的散射强度要比长波侧λ=720nm出红光的散射强度大约大10倍 17.色散:材料的折射率随入射光的频率的减小(或波长的增加)而减小的性质,称为材仅供学习与交流,如有侵权请联系网站删除谢谢2

无机材料物理性能期末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

《材料物理性能》测试题汇总(doc 8页)

《材料物理性能》测试题 1、利用热膨胀曲线确定组织转变临界点通常采取的两种方法是: 、 2、列举三种你所知道的热分析方法: 、 、 3、磁各向异性一般包括 、 、 等。 4、热电效应包括 效应、 效应、 效应,半导体制冷利用的是 效应。 5、产生非线性光学现象的三个条件是 、 、 。 6、激光材料由 和 组成,前者的主要作用是为后者提供一个合适的晶格场。 7、压电功能材料一般利用压电材料的 功能、 功能、 功能、 功能或 功能。 8、拉伸时弹性比功的计算式为 ,从该式看,提高弹性比功的途径有二: 或 ,作为减振或储能元件,应具有 弹性比功。 9、粘着磨损的形貌特征是 ,磨粒磨损的形貌特征是 。 10、材料在恒变形的条件下,随着时间的延长,弹性应力逐渐 的现象称为应力松弛,材料抵抗应力松弛的能力称为 。 1、导温系数反映的是温度变化过程中材料各部分温度趋于一致的能力。 ( ) 2、只有在高温且材料透明、半透明时,才有必要考虑光子热导的贡献。 ( ) 3、原子磁距不为零的必要条件是存在未排满的电子层。 ( ) 4、量子自由电子理论和能带理论均认为电子随能量的分布服从FD 分布。 ( ) 5、由于晶格热振动的加剧,金属和半导体的电阻率均随温度的升高而增大。 ( ) 6、直流电位差计法和四点探针法测量电阻率均可以消除接触电阻的影响。 ( ) 7、 由于严格的对应关系,材料的发射光谱等于其吸收光谱。 ( ) 8、 凡是铁电体一定同时具备压电效应和热释电效应。 ( ) 9、 硬度数值的物理意义取决于所采用的硬度实验方法。 ( ) 10、对于高温力学性能,所谓温度高低仅具有相对的意义。 ( ) 1、关于材料热容的影响因素,下列说法中不正确的是 ( ) A 热容是一个与温度相关的物理量,因此需要用微分来精确定义。 B 实验证明,高温下化合物的热容可由柯普定律描述。 C 德拜热容模型已经能够精确描述材料热容随温度的变化。 D 材料热容与温度的精确关系一般由实验来确定。 2、 关于热膨胀,下列说法中不正确的是 ( ) A 各向同性材料的体膨胀系数是线膨胀系数的三倍。 B 各向异性材料的体膨胀系数等于三个晶轴方向热膨胀系数的加和。 C 热膨胀的微观机理是由于温度升高,点缺陷密度增高引起晶格膨胀。 D 由于本质相同,热膨胀与热容随温度变化的趋势相同。 3、下面列举的磁性中属于强磁性的是 ( ) A 顺磁性 B 亚铁磁性 C 反铁磁性 D 抗磁性 4、关于影响材料铁磁性的因素,下列说法中正确的是 ( ) A 温度升高使得M S 、 B R 、H C 均降低。 B 温度升高使得M S 、B R 降低,H C 升高。 C 冷塑性变形使得C H μ和均升高。 D 冷塑性变形使得C H μ和均降低。 5、下面哪种效应不属于半导体敏感效应。 ( ) A 磁敏效应 B 热敏效应 C 巴克豪森效应 D 压敏效应 6、关于影响材料导电性的因素,下列说法中正确的是 ( ) A 由于晶格振动加剧散射增大,金属和半导体电阻率均随温度上升而升高。 B 冷塑性变形对金属电阻率的影响没有一定规律。 C “热塑性变形+退火态的电阻率”的电阻率高于“热塑性变形+淬火态” D 一般情况下,固溶体的电阻率高于组元的电阻率。 7、下面哪种器件利用了压电材料的热释电功能 ( ) A 电控光闸 B 红外探测器 C 铁电显示器件 D 晶体振荡器 8、下关于铁磁性和铁电性,下面说法中不正确的是 ( ) A 都以存在畴结构为必要条件 B 都存在矫顽场 C 都以存在畴结构为充分条件 D 都存在居里点 9、下列硬度实验方法中不属于静载压入法的是 ( )

材料物理性能期末复习重点-田莳

1.微观粒子的波粒二象性 在量子力学里,微观粒子在不同条件下分别表现出波动或粒子的性质。这种量子行为称为波粒二象性。 2.波函数及其物理意义 微观粒子具有波动性,是一种具有统计规律的几率波,它决定电子在空间某处出现的几率,在t 时刻,几率波应是空间位置(x,y,z,t)的函数。此函数 称波函数。其模的平方代表粒子在该处出现的概率。 表示t 时刻、 (x 、y 、z )处、单位体积内发现粒子的几率。 3.自由电子的能级密度 能级密度即状态密度。 dN 为E 到E+dE 范围内总的状态数。代表单位能量范围内所能容纳的电子数。 4.费米能级 在0K 时,能量小于或等于费米能的能级全部被电子占满,能量大于费米能级的全部为空。故费米能是0K 时金属基态系统电子所占有的能级最高的能量。 5.晶体能带理论 假定固体中原子核不动,并设想每个电子是在固定的原子核的势场及其他电子的平均势场中运动,称单电子近似。用单电子近似法处理晶体中电子能谱的理论,称能带理论。 6.导体,绝缘体,半导体的能带结构 根据能带理论,晶体中并非所有电子,也并非所有的价电子都参与导电,只有导带中的电子或价带顶部的空穴才能参与导电。从下图可以看出,导体中导带和价带之间没有禁区,电子进入导带不需要能量,因而导电电子的浓度很 大。在绝缘体中价带和导期隔着一个宽的禁带E g ,电子由价带到导带需要外界供给能量,使电子激发,实现电子由价带到导带的跃迁,因而通常导带中导电电子浓度很小。半导体和绝缘体有相类似的能带结构,只是半导体的禁带较窄(E g 小) ,电子跃迁比较容易 1.电导率 是表示物质传输电流能力强弱的一种测量值。当施加电压于导体的两 端 时,其电荷载子会呈现朝某方向流动的行为,因而产生电流。电导率 是以欧姆定律定义为电流密度 和电场强度 的比率: κ=1/ρ 2.金属—电阻率与温度的关系 金属材料随温度升高,离子热振动的振幅增大,电子就愈易受到散射,当电子波通过一个理想品体点阵时(0K),它将不受散射;只有在晶体点阵完整性遭到破坏的地方,电子被才受到散射(不相干散射),这就是金属产生电阻的根本原因。由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原于、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。这样,电子波在这些地方发生散射而产生电阻,降低导电性。 金属电阻率在不同温度范围与温度变化关系不同。一般认为纯金属在整个温度区间产生电阻机制是电子-声子(离子)散射。在极低温度下,电子-电子散射构成了电阻产生的主要机制。金属融化,金属原子规则阵列被破坏,从而增强了对电子的散射,电阻增加。 3.离子电导理论 离子电导是带有电荷的离子载流子在电场作用下的定向移动。一类是晶体点阵的基本离子,因热振动而离开晶格,形成热缺陷,离子或空位在电场作用下成为导电载流子,参加导电,即本征导电。另一类参加导电的载流子主要是杂质。 离子尺寸,质量都远大于电子,其运动方式是从一个平衡位置跳跃到另一个平衡位置。离子导电是离子在电场作用下的扩散。其扩散路径畅通,离子扩散系数就高,故导电率高。 4.快离子导体(最佳离子导体,超离子导体) 具有离子导电的固体物质称固体电解质。有些

相关主题
文本预览
相关文档 最新文档