当前位置:文档之家› 用Matlab进行最小二乘法线性拟合求传感器非线性误差灵敏度

用Matlab进行最小二乘法线性拟合求传感器非线性误差灵敏度

用Matlab进行最小二乘法线性拟合求传感器非线性误差灵敏度
用Matlab进行最小二乘法线性拟合求传感器非线性误差灵敏度

%后面的为注释,红色部分代码需要根据实际情况更改

%最小二乘法线性拟合y=ax+b

x=[0.5,1,1.5,2,2.5,3,3.5,4,4.5,5];%自变量

y=[191,321,442,565,686,819,930,1032,1153,1252];%因变量

xmean=mean(x);ymean=mean(y);

sumx2=(x-xmean)*(x-xmean)';

sumxy=(y-ymean)*(x-xmean)';

a=sumxy/sumx2;%解出直线斜率a(即传感器灵敏度)

b=ymean-a*xmean;%解出直线截距b

z=((a*(x(1,10))+b-(y(1,10)))/(y(1,10)));%“10”是自变量的个数,z为非线性误差(即线性度)

a

b

z

%作图,先把原始数据点用蓝色"十"字描出来

figure

plot(x,y,'+');

hold on

% 用红色绘制拟合出的直线

px=linspace(0,6,50);%(linspace语法(从横坐标负轴起点0画到横坐标正轴终点6,50等分精度))

py=a*px+b;

plot(px,py,'r');

运行结果:

a =236.9818

b =87.4000

另一种简单一点的方法:

%最小二乘法线性拟合y=ax+b

x=[0.5,1,1.5,2,2.5,3,3.5,4,4.5,5];%自变量

y=[191,321,442,565,686,819,930,1032,1153,1252];%因变量p=polyfit(x,y,1);

p

运行结果:

p =

236.9818 87.4000

推荐-Broyden方法求解非线性方程组的Matlab实现 精品

Broyden方法求解非线性方程组的Matlab实现 注:matlab代码来自网络,仅供学习参考。 1.把以下代码复制在一个.m文件上 function [sol, it_hist, ierr] = brsola(x,f,tol, parms) % Broyden's Method solver, globally convergent % solver for f(x) = 0, Armijo rule, one vector storage % % This code es with no guarantee or warranty of any kind. % % function [sol, it_hist, ierr] = brsola(x,f,tol,parms) % % inputs: % initial iterate = x % function = f % tol = [atol, rtol] relative/absolute % error tolerances for the nonlinear iteration % parms = [maxit, maxdim] % maxit = maxmium number of nonlinear iterations % default = 40 % maxdim = maximum number of Broyden iterations % before restart, so maxdim-1 vectors are % stored % default = 40 % % output: % sol = solution % it_hist(maxit,3) = scaled l2 norms of nonlinear residuals % for the iteration, number function evaluations, % and number of steplength reductions % ierr = 0 upon successful termination % ierr = 1 if after maxit iterations % the termination criterion is not satsified. % ierr = 2 failure in the line search. The iteration % is terminated if too many steplength reductions % are taken. % % % internal parameter: % debug = turns on/off iteration statistics display as % the iteration progresses

最小二乘法曲线拟合原理及matlab实现

最小二乘法曲线拟合原理及m a t l a b实现 Modified by JEEP on December 26th, 2020.

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ?来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ?最好地逼近()x f ,而不必满足插值原则。因此没必要取)(i x ?=i y ,只要使i i i y x -=)(?δ尽可能地小)。 原理: 给定数据点},...2,1,0),,{(m i y x i i =。求近似曲线)(x ?。并且使得近似曲线与()x f 的偏差最小。近似曲线在该点处的偏差i i i y x -=)(?δ,i=1,2,...,m 。 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小 3.使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: 2. 各点到这条曲线的距离之和,即偏差平方和如下: 3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了: ....... 4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到: 6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。

MATLAB实现: MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) [p,s,mu]=polyfit(x,y,n) x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。 [p,s,mu]=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。 polyval( )为多项式曲线求值函数,调用格式: y=polyval(p,x) [y,DELTA]=polyval(p,x,s) y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。 如下给定数据的拟合曲线: x=[,,,,,], y=[,,,,,]。 解:MATLAB程序如下: x=[,,,,,]; y=[,,,,,]; p=polyfit(x,y,2) x1=::; y1=polyval(p,x1); plot(x,y,'*r',x1,y1,'-b') 运行结果如图1

最小二乘法求线性回归方程

数学必修3测试题 说明:全卷满分100分,考试时间120分钟,交卷时只需交答题卷,考试时不能使用计算器. 参考:用最小二乘法求线性回归方程系数公式x b y a x n x y x n y x b n i i n i i i -=-?-= ∑∑==, 1 2 21 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四处备选项中,只有一项是符合 题目要求的. 1 ”可用于( ) A 、输出a=10 a=10 C 、判断a=10 D 、输入a=10 2、已知甲、乙两名同学在五次数学测验中的得分如下:甲:85,91,90,89,95; 乙:95,80,98,82,95。则甲、乙两名同学数学学习成绩( ) A 、甲比乙稳定 B 、甲、乙稳定程度相同 C 、乙比甲稳定 D 、无法确定 3、下列程序语句不正确... 的是( ) A 、INPUT “MA TH=”;a+b+c B 、PRINT “MA TH=”;a+b+c C 、c b a += D 、1a =c b - 4、 在调查分析某班级数学成绩与 物理成绩的相关关系时,对数据进行 统计分析得到散点图(如右图所示), 用回归直线?y bx a =+近似刻画 其关系,根据图形,b 的数值最有 可能是( ) A 、 0 B 、 1.55 C 、 0.85 D 、 —0.24 5、用秦九韶算法求n 次多项式011 1)(a x a x a x a x f n n n n ++++=-- ,当0x x =时,求)(0x f 需要算 乘方、乘法、加法的次数分别为( ) A 、 n n n n ,,2 ) 1(+ B 、n,2n,n C 、 0,2n,n D 、 0,n,n 6、为了在运行下面的程序之后得到输出16,键盘输入x 应该是( ) INPUT x IF x<0 THEN y=(x+1)*(x+1) ELSE y=(x-1)*(x-1) END IF 第4题

MATLAB实现非线性曲线拟合最小二乘法

非线性曲线拟合最小二乘法 一、问题提出 设数据(i i y x ,),(i=0,1,2,3,4).由表3-1给出,表中第四行为i i y y =ln ,可以看出数学模型为bx ae y =,用最小二乘法确定a 及b 。 i 0 1 2 3 4 i x 1.00 1.25 1.50 1.75 2.00 i y 5.10 5.79 6.53 7.45 8.46 i y 1.629 1.756 1.876 2.008 2.135 二、理论基础 根据最小二乘拟合的定义:在函数的最佳平方逼近中],[)(b a C x f ∈,如果f(x)只在一组离散点集{i x ,i=0,1,…,m},上给定,这就是科学实验中经常见到的实验数据{(i i y x ,), i=0,1,…,m}的曲线拟合,这里)(i i x f y =,i=0,1,…,m,要求一个函数)(*x S y =与所给数据{(i i y x ,),i=0,1,…,m}拟合,若记误差 i i i y x S -=)(*δ,i=0,1,…,m,T m ),,(10δδδδ, =,设)(,),(),(10x x x n ??? 是] ,[b a C 上线性无关函数族,在)}(,),(),({10x x x span n ???? =中找一函数)(*x S ,使误差平方和 ∑∑∑===∈ -=-==m i m i m i i i x S i i i y x S y x S 0 2 )(2 * 2 22 ])([])([min ? δδ , 这里 )()()()(1100x a x a x a x S n n ???+++= (n

Matlab求解线性方程组非线性方程组

求解线性方程组 solve,linsolve 例: A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1]; %矩阵的行之间用分号隔开,元素之间用逗号或空格 B=[3;1;1;0] X=zeros(4,1);%建立一个4元列向量 X=linsolve(A,B) diff(fun,var,n):对表达式fun中的变量var求n阶导数。 例如:F=sym('u(x,y)*v(x,y)'); %sym()用来定义一个符号表达式 diff(F); %matlab区分大小写 pretty(ans) %pretty():用习惯书写方式显示变量;ans是答案表达式 非线性方程求解 fsolve(fun,x0,options) 为待解方程或方程组的文件名;fun其中 x0位求解方程的初始向量或矩阵; option为设置命令参数 建立文件fun.m: function y=fun(x) y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ... x(2) - 0.5*cos(x(1))+0.3*sin(x(2))]; >>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve')) 注: ...为续行符 m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。Matlab求解线性方程组 AX=B或XA=B 在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。如: X=A\B表示求矩阵方程AX=B的解; 的解。XA=B表示矩阵方程B/A=X. 对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。 如果矩阵A不是方阵,其维数是m×n,则有: m=n 恰定方程,求解精确解; m>n 超定方程,寻求最小二乘解; m

matlab最小二乘法的非线性参数拟合

matlab最小二乘法的非线性参数拟合 首先说一下匿名函数:在创建匿名函数时,Matlab记录了关于函数的信息,当使用句柄调用该函数的时候,Matlab不再进行搜索,而是立即执行该函数,极大提高了效率。所以首选匿名函数。具体拟合时可以使用的方法如下: 1 曲线拟合工具箱提供了很多拟合函数,使用简单 非线性拟合nlinfit函数 clear all; x1=[0.4292 0.4269 0.381 0.4015 0.4117 0.3017]'; x2=[0.00014 0.00059 0.0126 0.0061 0.00425 0.0443]'; x=[x1 x2]; y=[0.517 0.509 0.44 0.466 0.479 0.309]'; f=@(p,x) 2.350176*p(1)*(1-1/p(2))*(1-(1-x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^ (-1/p(2))-1).^(-p(2)).*x(:,1).^(-1/p(2)-0.5).*x(:,2); p0=[8 0.5]'; opt=optimset('TolFun',1e-3,'TolX',1e-3);% [p R]=nlinfit(x,y,f,p0,opt) 2 最小二乘法在曲线拟合中比较普遍。拟合的模型主要有 1.直线型 2.多项式型 3.分数函数型 4.指数函数型 5.对数线性型 6.高斯函数型 一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。 “\”命令 1.假设要拟合的多项式是:y=a+b*x+c*x^ 2.首先建立设计矩阵X: X=[ones(size(x)) x x^2]; 执行: para=X\y para中包含了三个参数:para(1)=a;para(2)=b;para(3)=c; 这种方法对于系数是线性的模型也适应。 2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2) 设计矩阵X为 X=[ones(size(x)) exp(x) x.*exp(x.^2)]; para=X\y 3.多重回归(乘积回归) 设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。设计矩阵为X=[ones(size(x)) x t] %注意x,t大小相等! para=X\y

3-7变量非线性方程组的逆Broyden解法matlab程序

3-7变量非线性方程组的逆Broyden解法 matlab程序 function n_broyden clear all %清内存 clc %清屏 format long i=input('请输入非线性方程组个数(3-7)i='); switch i case 3 syms x y z x0=input('请输入初值(三维列向量[x;y;z])='); eps=input('请输入允许的误差精度eps='); f1=input('请输入f1(x,y,z)='); f2=input('请输入f2(x,y,z)='); f3=input('请输入f3(x,y,z)='); F=[f1;f2;f3]; J=jacobian(F,[x,y,z]); %求jacobi矩阵 Fx0=subs(F,{x,y,z},x0); Jx0=subs(J,{x,y,z},x0); H=inv(Jx0); x1=x0-H*Fx0; k=0; while norm(x1-x0)>eps %用2范数来做循环条件 p=x1-x0; q=subs(F,{x,y,z},x1)-subs(F,{x,y,z},x0); H=H-((H*q-p)*p'*H)*(p'*H*q)^-1; x0=x1; Fx0=subs(F,{x,y,z},x0); x1=x1-H*Fx0; k=k+1; end x1 k case 4 syms a b c d x0=input('请输入初值(列向量[a;b;c;d])=');

eps=input('请输入允许的误差精度eps='); f1=input('请输入f1(a,b,c,d)='); f2=input('请输入f2(a,b,c,d)='); f3=input('请输入f3(a,b,c,d)='); f4=input('请输入f4(a,b,c,d)='); F=[f1;f2;f3;f4]; J=jacobian(F,[a,b,c,d]); %求jacobi矩阵 Fx0=subs(F,{a,b,c,d},x0); Jx0=subs(J,{a,b,c,d},x0); H=inv(Jx0); x1=x0-H*Fx0; k=0; while norm(x1-x0)>eps %用2范数来做循环条件 p=x1-x0; q=subs(F,{a,b,c,d},x1)-subs(F,{a,b,c,d},x0); H=H-((H*q-p)*p'*H)*(p'*H*q)^-1; x0=x1; Fx0=subs(F,{a,b,c,d},x0); x1=x1-H*Fx0; k=k+1; end x1 k case 5 syms a b c d e x0=input('请输入初值(列向量[a;b;c;d;e])='); eps=input('请输入允许的误差精度eps='); f1=input('请输入f1(a,b,c,d,e)='); f2=input('请输入f2(a,b,c,d,e)='); f3=input('请输入f3(a,b,c,d,e)='); f4=input('请输入f4(a,b,c,d,e)='); f5=input('请输入f5(a,b,c,d,e)='); F=[f1;f2;f3;f4;f5]; J=jacobian(F,[a,b,c,d,e]); %求jacobi矩阵 Fx0=subs(F,{a,b,c,d,e},x0); Jx0=subs(J,{a,b,c,d,e},x0); H=inv(Jx0); x1=x0-H*Fx0;

MATLAB应用 求解非线性方程

第7章 求解非线性方程 7.1 多项式运算在MATLAB 中的实现 一、多项式的表达 n 次多项式表达为:n a +??++=x a x a x a p(x )1-n 1-n 1n 0,是n+1项之和 在MATLAB 中,n 次多项式可以用n 次多项式系数构成的长度为n+1的行向量表示 [a0, a1,……an-1,an] 二、多项式的加减运算 设 有 两 个 多 项 式 n a +??++=x a x a x a p1(x )1-n 1-n 1n 0和 m b +??++=x b x b x b p2(x )1-m 1-m 1m 0。它们的加减运算实际上就是它们的对应系 数的加减运算。当它们的次数相同时,可以直接对多项式的系数向量进行加减运算。当它们的次数不同时,应该把次数低的多项式无高次项部分用0系数表示。 例2 计算()()1635223-+++-x x x x a=[1, -2, 5, 3]; b=[0, 0, 6, -1]; c=a+b 例3 设()6572532345++-+-=x x x x x x f ,()3532-+=x x x g ,求f(x)+g(x) f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; g1=[0, 0, 0, g];%为了和f 的次数找齐 f+g1, f-g1 三、多项式的乘法运算 conv(p1,p2) 例4 在上例中,求f(x)*g(x) f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; conv(f, g) 四、多项式的除法运算 [Q, r]=deconv(p1, p2) 表示p1除以p2,给出商式Q(x),余式r(x)。Q,和r 仍为多项式系数向量 例4 在上例中,求f(x)/g(x) f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; [Q, r]=deconv(f, g) 五、多项式的导函数 p=polyder(P):求多项式P 的导函数 p=polyder(P,Q):求P·Q 的导函数

matlab程序设计实践-牛顿法解非线性方程

中南大学 MATLAB程序设计实践学长有爱奉献,下载填上信息即可上交,没有下载券 的自行百度。所需m文件照本文档做即可,即新建(FILE)→脚本(NEW-Sscript)→复制本文档代码→运行(会跳出 保存界面,文件名默认不要修改,保存)→结果。第 一题需要把数据文本文档和m文件放在一起。全部测 试无误,放心使用。本文档针对做牛顿法求非线性函 数题目的同学,当然第一题都一样,所有人都可以用。 ←记得删掉这段话 班级: 学号: 姓名: 一、《MATLAB程序设计实践》Matlab基础

表示多晶体材料织构的三维取向分布函数(f=f(φ1,φ,φ2))是一个非常复杂的函数,难以精确的用解析函数表达,通常采用离散空间函数值来表示取向分布函数,是三维取向分布函数的一个实例。由于数据量非常大,不便于分析,需要借助图形来分析。请你编写一个matlab程序画出如下的几种图形来分析其取向分布特征:(1)用Slice函数给出其整体分布特征; (2)用pcolor或contour函数分别给出(φ2=0, 5, 10, 15, 20, 25, 30, 35 … 90)切面上f分布情况(需要用到subplot函数);

(3) 用plot函数给出沿α取向线(φ1=0~90,φ=45,φ2=0)的f分布情况。

备注:数据格式说明 解: (1)将文件内的数据按照要求读取到矩阵f(phi1,phi,phi2)中,代码如下: fid=fopen(''); for i=1:18 tline=fgetl(fid); end phi1=1;phi=1;phi2=1;line=0; f=zeros(19,19,19); while ~feof(fid) tline=fgetl(fid); data=str2num(tline); line=line+1; if mod(line,20)==1 phi2=(data/5)+1; phi=1; 数据说明部分,与作图无关 此方向表示f 随着φ1从0,5,10,15, 20 …到90的变化而变化 此方向表示f 随着φ从0,5,10,15, 20 …到90的变化而变化 表示以下数据为φ2=0的数据,即f (φ1,φ,0)

基于Matlab的牛顿迭代法解非线性方程组

基于Matlab 实现牛顿迭代法解非线性方程组 已知非线性方程组如下 2211221212 10801080x x x x x x x ?-++=??+-+=?? 给定初值0(0,0)T x =,要求求解精度达到0.00001 首先建立函数F(x),方程组编程如下,将F.m 保存到工作路径中: function f=F(x) f(1)=x(1)^2-10*x(1)+x(2)^2+8; f(2)=x(1)*x(2)^2+x(1)-10*x(2)+8; f=[f(1) f(2)]; 建立函数DF(x),用于求方程组的Jacobi 矩阵,将DF.m 保存到工作路径中: function df=DF(x) df=[2*x(1)-10,2*x(2);x(2)^2+1,2*x(1)*x(2)-10]; 编程牛顿迭代法解非线性方程组,将newton.m 保存到工作路径中: clear; clc x=[0,0]'; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',0,x(1),x(2)); N=4; for i=1:N y=df\f'; x=x-y; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',i,x(1),x(2)); if norm(y)<0.0000001 break ; else end end

运行结果如下: 0 0.0000000 0.0000000 1 0.8000000 0.8800000 2 0.9917872 0.9917117 3 0.9999752 0.9999685 4 1.0000000 1.0000000

最小二乘法线性拟合y

%最小二乘法线性拟合y=ax+b x=[0:0.2:4.0]; y=[0.02 0.375 0.73 1.06 1.335 1.595 1.84 2.045 2.23 2.38 2.485 2.565 2.625 2.67 2.705 2.73 2.76 2.78 2.79 2.81 2.82]; p=polyfit(x,y,1); z=polyval(p,x); plot(x,y,'+'); title(‘V-X曲线’) grid on xlabel(‘X/mm’) ylabel(‘V/v’) hold on x=[0:0.2:-4.0]; y=[0.01 -0.385 -0.8 -1.22 -1.64 -2.055 -2.455 -2.825 -3.165 -3.64 -3.74 -3.915 -4.06 -4.155 -4.235 -4.295 -4.345 -4.385 -4.415 -4.445 -4.47]; p=polyfit(x,y,1); z=polyval(p,x); plot(x,y,'+'); x=[0:0.2:4.0]; y=[0.02 0.375 0.73 1.06 1.335 1.595 1.84 2.045 2.23 2.38 2.485 2.565 2.625 2.67 2.705 2.73 2.76 2.78 2.79 2.81 2.82]; p=polyfit(x,y,1); x=[0:-0.2:-4.0]; y=[0.01 -0.385 -0.8 -1.22 -1.64 -2.055 -2.455 -2.825 -3.165 -3.64 -3.74 -3.915 -4.06 -4.155 -4.235 -4.295 -4.345 -4.385 -4.415 -4.445 -4.47]; p=polyfit(x,y,1); x=[0:0.2:4.0]; y=[0.02 0.375 0.73 1.06 1.335 1.595 1.84 2.045 2.23 2.38 2.485 2.565 2.625 2.67 2.705 2.73 2.76 2.78 2.79 2.81 2.82]; xmean=mean(x);ymean=mean(y); sumx2=(x-xmean)*(x-xmean)'; sumxy=(y-ymean)*(x-xmean)'; a=sumxy/sumx2;%解出直线斜率a(即传感器灵敏度) b=ymean-a*xmean;%解出直线截距b z=((a*(x(1,11))+b-(y(1,11)))/(y(1,11))); a b z figure plot(x,y,'+'); hold on

遗传算法解非线性方程组的Matlab程序

遗传算法解非线性方程组的Matlab程序 程序用MATLAB语言编写。之所以选择MATLB,是因为它简单,但又功能强大。写1行MATLAB程序,相当于写10行C++程序。在编写算法阶段,最好用MATLAB语言,算法验证以后,要进入工程阶段,再把它翻译成C++语言。 本程序的算法很简单,只具有示意性,不能用于实战。 非线性方程组的实例在函数(2)nonLinearSumError1(x)中,你可以用这个实例做样子构造你自己待解的非线性方程组。 %注意:标准遗传算法的一个重要概念是,染色体是可能解的2进制顺序号,由这个序号在可能解的集合(解空间)中找到可能解 %程序的流程如下: %程序初始化,随机生成一组可能解(第一批染色体) %1: 由可能解的序号寻找解本身(关键步骤) %2:把解代入非线性方程计算误差,如果误差符合要求,停止计算 %3:选择最好解对应的最优染色体 %4:保留每次迭代产生的最好的染色体,以防最好染色体丢失 %5: 把保留的最好的染色体holdBestChromosome加入到染色体群中 %6: 为每一条染色体(即可能解的序号)定义一个概率(关键步骤) %7:按照概率筛选染色体(关键步骤) %8:染色体杂交(关键步骤) %9:变异 %10:到1 %这是遗传算法的主程序,它需要调用的函数如下。 %由染色体(可能解的2进制)顺序号找到可能解: %(1)x=chromosome_x(fatherChromosomeGroup,oneDimensionSet,solutionSum); %把解代入非线性方程组计算误差函数:(2)functionError=nonLinearSumError1(x); %判定程是否得解函数:(3)[solution,isTrue]=isSolution(x,funtionError,solutionSumError); %选择最优染色体函数: %(4)[bestChromosome,leastFunctionError]=best_worstChromosome(fatherChromosomeGroup,functionError); %误差比较函数:从两个染色体中,选出误差较小的染色体 %(5)[holdBestChromosome,holdLeastFunctionError]... % =compareBestChromosome(holdBestChromosome,holdLeastFunctionError,... % bestChromosome,leastFuntionError) %为染色体定义概率函数,好的染色体概率高,坏染色体概率低 %(6)p=chromosomeProbability(functionError); %按概率选择染色体函数: %(7)slecteChromosomeGroup=selecteChromome(fatherChromosomeGroup,p); %父代染色体杂交产生子代染色体函数 %(8)sonChrmosomeGroup=crossChromosome(slecteChromosomeGroup,2); %防止染色体超出解空间的函数 %(9)chromosomeGroup=checkSequence(chromosomeGroup,solutionSum) %变异函数 %(10)fatherChromosomeGroup=varianceCh(sonChromosomeGroup,0.8,solutionN); %通过实验有如下结果: %1。染色体应当多一些

用最小二乘法求线性回归方程

最小二乘法主要用来求解两个具有线性相关关系的变量的回归方程,该方法适用于求解与线性回归方程相关的问题,如求解回归直线方程,并应用其分析预报变量的取值等.破解此类问题的关键点如下: ①析数据,分析相关数据,求得相关系数r,或利用散点图判断两变量之间是否存在线性相关关系,若呈非线性相关关系,则需要通过变量的变换转化构造线性相关关系. ②建模型.根据题意确定两个变量,结合数据分析的结果建立回归模型. ③求参数.利用回归直线y=bx+a的斜率和截距的最小二乘估计公式,求出b,a,的值.从而确定线性回归方程. ④求估值.将已知的解释变量的值代入线性回归方程y=bx+a中,即可求得y的预测值. 注意:回归直线方程的求解与应用中要注意两个方面:一是求解回归直线方程时,利用样本点的中心(x,y)必在回归直线上求解相关参数的值;二是回归直线方程的应用,利用回归直线方程求出的数值应是一个估计值,不是真实值. 经典例题: 下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为1,2.,……,17)建立模型①:y=+;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:y=99+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠并说明理由. 思路分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测. 解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–+×19=(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+×9=(亿元). (2)利用模型②得到的预测值更可靠.理由如下: (i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–+上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利

第二章非线性方程(组)的数值解法的matlab程序

本章主要介绍方程根的有关概念,求方程根的步骤,确定根的初始近似值的方法(作图法,逐步搜索法等),求根的方法(二分法,迭代法,牛顿法,割线法,米勒(M üller )法和迭代法的加速等)及其MATLAB 程序,求解非线性方程组的方法及其MATLAB 程序. 2.1 方程(组)的根及其MATLAB 命令 2.1.2 求解方程(组)的solve 命令 求方程f (x )=q (x )的根可以用MATLAB 命令: >> x=solve('方程f(x)=q(x)',’待求符号变量x ’) 求方程组f i (x 1,…,x n )=q i (x 1,…,x n ) (i =1,2,…,n )的根可以用MATLAB 命令: >>E1=sym('方程f1(x1,…,xn)=q1(x1,…,xn)'); ……………………………………………………. En=sym('方程fn(x1,…,xn)=qn(x1,…,xn)'); [x1,x2,…,xn]=solve(E1,E2,…,En, x1,…,xn) 2.1.3 求解多项式方程(组)的roots 命令 如果)(x f 为多项式,则可分别用如下命令求方程0)(=x f 的根,或求导数)('x f (见表 2-1). 2.1.4 求解方程(组)的fsolve 命令 如果非线性方程(组)是多项式形式,求这样方程(组)的数值解可以直接调用上面已经介绍过的roots 命令.如果非线性方程(组)是含有超越函数,则无法使用roots 命令,需要调用MATLAB 系统中提供的另一个程序fsolve 来求解.当然,程序fsolve 也可以用于多项式方程(组),但是它的计算量明显比roots 命令的大. fsolve 命令使用最小二乘法(least squares method )解非线性方程(组) (F X =)0 的数值解,其中X 和F (X )可以是向量或矩阵.此种方法需要尝试着输入解X 的初始值(向量或矩阵)X 0,即使程序中的迭代序列收敛,也不一定收敛到(F X =)0的根(见例2.1.8). fsolve 的调用格式: X=fsolve(F,X0) 输入函数)(x F 的M 文件名和解X 的初始值(向量或矩阵)X 0,尝试着解方程(组)

matlab多元非线性回归教程

matlab 回归(多元拟合)教程 前言 1、学三条命令 polyfit(x,y,n)---拟合成一元幂函数(一元多次) regress(y,x)----可以多元, nlinfit(x,y,’fun ’,beta0) (可用于任何类型的函数,任意多元函数,应用范围最主,最万能的) 2、同一个问题,这三条命令都可以使用,但结果肯定是不同的,因为拟合的近似结果,没有唯一的标准的答案。相当于咨询多个专家。 3、回归的操作步骤: 根据图形(实际点),选配一条恰当的函数形式(类型)---需要数学理论与基础和经验。(并写出该函数表达式的一般形式,含待定系数)------选用某条回归命令求出所有的待定系数。所以可以说,回归就是求待定系数的过程(需确定函数的形式) 一、回归命令 一元多次拟合polyfit(x,y,n);一元回归polyfit;多元回归regress---nlinfit(非线性) 二、多元回归分析 对于多元线性回归模型(其实可以是非线性,它通用性极高): e x x y p p ++ ++ = βββ 1 10 设变量12,,,p x x x y 的n 组观测值为12(,, ,)1,2, ,i i ip i x x x y i n = 记 ??????? ??=np n n p p x x x x x x x x x x 2 1 22221 1121111 1,?? ?? ? ?? ??=n y y y y 21,则?????? ? ??=p ββββ 10 的估计值为排列方式与线性代数中的线性方程组相同(),拟合成多元函数---regress 使用格式:左边用b=[b, bint, r, rint, stats]右边用=regress(y, x)或regress(y, x, alpha) ---命令中是先y 后x, ---须构造好矩阵x(x 中的每列与目标函数的一项对应) ---并且x 要在最前面额外添加全1列/对应于常数项

最小二乘法拟合

4.最小二乘法线性拟合 我们知道,用作图法求出直线的斜率a 和截据b ,可以确定这条直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较大的随意性,尤其在测量数据比较分散时,对同一组测量数据,不同的人去处理,所得结果有差异,因此是一种粗略的数据处理方法,求出的a 和b 误差较大。用最小二乘法拟合直线处理数据时,任何人去处理同一组数据,只要处理过程没有错误,得到的斜率a 和截据b 是唯一的。 最小二乘法就是将一组符合Y=a+bX 关系的测量数据,用计算的方法求出最佳的a 和b 。显然,关键是如何求出最佳的a 和b 。 (1) 求回归直线 设直线方程的表达式为: bx a y += (2-6-1) 要根据测量数据求出最佳的a 和b 。对满足线性关系的一组等精度测量数据(x i ,y i ),假定自变量x i 的误差可以忽略,则在同一x i 下,测量点y i 和直线上的点a+bx i 的偏差d i 如下: 111bx a y d --= 222bx a y d --= n n n bx a y d --= 显然最好测量点都在直线上(即d 1=d 2=……=d n =0),求出的a 和b 是最理想的,但测量点不可能都在直线上,这样只有考虑d 1、d 2、……、d n 为最小,也就是考虑d 1+d 2+……+d n 为最小,但因d 1、d 2、……、d n 有正有负,加起来可能相互抵消,因此不可取;而|d 1|+ |d 2|+……+ |d n |又不好解方程,因而不可行。现在采取一种等效方法:当d 12+d 22+……+d n 2 对a 和b 为最小时,d 1、d 2、……、d n 也为最小。取(d 12+d 22+……+d n 2 )为最小值,求a 和b 的方法叫最小二乘法。 令 ∑== n i i d D 1 2=21 1 2][i i n i n i i b a y d D --== ∑∑== (2-6-2) D 对a 和b 分别求一阶偏导数为: ][211∑∑==---=??n i i n i i x b na y a D ][21 2 11∑∑∑===---=??n i i n i i n i i i x b x a y x b D

MATLAB 非线性方程(组)求根

实用数值方法(Matlab) 综述报告题目:非线性方程(组)求根问题 小组成员

许多数学和物理问题归结为解函数方程f(x)=0。方程f(x)=0的解称为方程的根。对于非线性方程,在某个范围内往往不止一个根,而且根的分布情况可能很复杂,面对这种情况,通常先将考察的范围花费为若干个子段,然后判断哪些子段内有根,然后再在有根子段内找出满足精度要求的近似根。为此适当选取有根子段内某一点作为根的初始值近似,然后运用迭代方法使之足部精确化。这就是方程求根的迭代法。下面介绍书上的几种方法: 1、二分法 (1)方法概要: 假定函数f(x)在[a,b]上连续,且f(a)f(b)=0,则方程f(x)=0在[a,b]内一定有实根。取其中 将其二分,判断所求的根在的左侧还是右侧,得到一个新的有根区间 点 [],长度为[a,b]的一半。对新的有根区间继续实行上述二分手段,直至二分k次后有根区间[]长度 可见,如果二分过程无限继续下去,这些有限根区间最终必收敛于一点,该点就是所求的根。在实际计算过程中不可能完成这个无限过程,允许有一定的误差,则二分k+1次后 只要有根区间[]的长度小于,那么结果关于允许误差就能“准确”地满足方程f(x)=0。 (2)计算框图:

2、开方法 对于给定,求开方值 为此,可以运用校正技术设计从预报值生成校正值的迭代公式。自然希望校正值 能更好满足所给方程: 这是个关于校正量的近似关系式,如果从中删去二次项,即可化归为一次方程 解之有 从而关于校正值有如下开方公式 上述演绎过程表明,开方法的设计思想是逐步线性化,即将二次方程的求解画归为一次方程求解过程的重复。开方公式规定了预报值与校正值之间的一种函数关系,这里 为开方法的迭代函数。 3、Newton法 (1)方法概要

matlab非线性参数拟合估计_很好的参考材料

使用nlinfit、fminsearch在matlab中实现基于最小二乘法的 非线性参数拟合 (整理自网上资源) 最小二乘法在曲线拟合中比较普遍。拟合的模型主要有 1.直线型 2.多项式型 3.分数函数型 4.指数函数型 5.对数线性型 6.高斯函数型 ...... 一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。 “\”命令 1.假设要拟合的多项式是:y=a+b*x+c*x^ 2.首先建立设计矩阵X: X=[ones(size(x)) x x^2]; 执行: para=X\y para中包含了三个参数:para(1)=a;para(2)=b;para(3)=c; 这种方法对于系数是线性的模型也适应。 2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2) 设计矩阵X为 X=[ones(size(x)) exp(x) x.*exp(x.^2)]; para=X\y 3.多重回归(乘积回归) 设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。设计矩阵为X=[ones(size(x)) x t] %注意x,t大小相等! para=X\y polyfit函数 polyfit函数不需要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵。 1.假设要拟合的多项式是:y=a+b*x+c*x^2 p=polyfit(x,y,2) 然后可以使用polyval在t处预测: y_hat=polyval(p,t) polyfit函数可以给出置信区间。 [p S]=polyfit(x,y,2) %S中包含了标准差 [y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处预测 在每个t处的95%CI为:(y_fit-1.96*delta, y_fit+1.96*delta)

相关主题
文本预览
相关文档 最新文档