当前位置:文档之家› 【高考必备】导数压轴题题型归纳

【高考必备】导数压轴题题型归纳

【高考必备】导数压轴题题型归纳
【高考必备】导数压轴题题型归纳

导数压轴题题型

1. 高考命题回顾

例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷)

(1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

(1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-1

0+m

=0?m =1,

定义域为{x |x >-1},f ′(x )=e x

-1x +m =e x x +-1x +1

显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增.

(2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1

x +2

(x >-2).

h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1

x +2

>0,

所以h (x )是增函数,h (x )=0至多只有一个实数根,

又g ′(-12)=1e -13

2

<0,g ′(0)=1-1

2>0,

所以h (x )=g ′(x )=0的唯一实根在区间???

?-1

2,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1

t +2=0????-12

?t +2=e -

t ,

当x ∈(-2,t )时,g ′(x )g ′(t )=0,g (x )单调递增;

所以g (x )min =g (t )=e t

-ln(t +2)=1t +2+t =+t 2t +2

>0,

当m ≤2时,有ln(x +m )≤ln(x +2),

所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2

1

2

1)0()1(')(x x f e

f x f x +

-=-(2012全国新课标) (1)求)(x f 的解析式及单调区间;

(2)若b ax x x f ++≥

2

2

1)(,求b a )1(+的最大值。 (1)121

1()(1)(0)()(1)(0)2

x x f x f e f x x f x f e f x --'''=-+?=-+

令1x =得:(0)1f =

121

1()(1)(0)(1)1(1)2x f x f e x x f f e f e

--'''=-+?==?= 得:21()()()12

x x

f x e x x

g x f x e x '=-+?==-+

()10()x

g x e y g x '=+>?=在

x R ∈上单调递增 ()0(0)0,

()0(0)f x f x f x f x ''''>=?><=?<

得:()f x 的解析式为21()2

x

f x e x x =-+

且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞

(2)21()()(1)02

x

f x x ax b h x e a x b ≥++?=-+-≥得()(1)x h x e a '=-+

①当10a +≤时,()0()h x y h x '>?=在x R ∈上单调递增 x →-∞时,()h x →-∞与()0h x ≥矛盾

②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>?>+

2

2

(1)(1)(1)ln(1)(10)a b a a a a +≤+-+++> 令2

2()ln (0)F x x x x x =->;则()(12ln )F x x x '=-

()00()0F x x F x x ''>?<<

当x =max ()2

e

F x =

当1,a b ==(1)a b +的最大值为2

e

例3已知函数,曲线在点处的切线方程为。(2011全国新课标) (Ⅰ)求、的值;

(Ⅱ)如果当,且时,,求的取值范围。

解(Ⅰ) 由于直线的斜率为, 且过点,故即

解得,。 (Ⅱ)由(Ⅰ)知,所以

。 考虑函数,则。

ln ()1a x b

f x x x

=

++()y f x =(1,(1))f 230x y +-=a b 0x >1x ≠ln ()1x k

f x x x

>+-k 221(ln )

'()(1)x x b x f x x x α+-=-

+230x y +-=12-(1,1)(1)1,1'(1),2f f =???=-??1,1,22

b a b =??

?-=-??1a =1b =ln 1

f ()1x x x x =++22

ln 1(1)(1)

()()(2ln )11x k k x f x x x x x x

---+=+--()2ln h x x =+2(1)(1)

k x x

--(0)x >22(1)(1)2'()k x x h x x -++=

(i)设,由知,当时,,h(x)递减。而 故当时, ,可得;

当x (1,+)时,h (x )<0,可得 h (x )>0 从而当x>0,且x 1时,f (x )-(+)>0,即f (x )>

(ii )设0

,对称轴x=.

当x (1,

)时,(k-1)(x 2 +1)+2x>0,故 (x )>0,而h (1)=0,故当x (1,)时,h (x )>0,可得

h (x )<0,与题设矛盾。

(iii )设k 1.此时,(x )>0,而h (1)=0,故当x (1,+)时,h (x )>0,可得 h (x )<0,与题设矛盾。

综合得,k 的取值范围为(-,0]

例4已知函数f(x)=(x 3+3x 2+ax+b)e -

x . (2009宁夏、海南)

(1)若a =b =-3,求f(x)的单调区间;

(2)若f(x)在(-∞,α),(2,β)单调增加,在(α,2),(β,+∞)单调减少,证明β-α>6. 解: (1)当a =b =-3时,f(x)=(x 3+3x 2-3x -3)e -x ,故

f′(x)=-(x 3+3x 2-3x -3)e -x +(3x 2+6x -3)e -x =-e -x (x 3-9x)=-x(x -3)(x+3)e -x .

当x <-3或0<x <3时,f′(x)>0;当-3<x <0或x >3时,f′(x)<0. 从而f(x)在(-∞,-3),(0,3)单调增加,在(-3,0),(3,+∞)单调减少.

(2)f′(x)=-(x 3+3x 2+ax+b)e -x +(3x 2+6x+a)e -x =-e -x [x 3+(a -6)x+b -a ]. 由条件得f′(2)=0,即23+2(a -6)+b -a =0,故b =4-a.

从而f′(x)=-e -x [x 3+(a -6)x+4-2a ].因为f′(α)=f′(β)=0,

所以x 3+(a -6)x+4-2a =(x -2)(x -α)(x -β)=(x -2)[x 2-(α+β)x+αβ]. 将右边展开,与左边比较系数,得α+β=-2,αβ=a -2.

故a 4124)(2-=-+=-αβαβαβ.又(β-2)(α-2)<0,

即αβ-2(α+β)+4<0.由此可得a <-6. 于是β-α>6.

2. 在解题中常用的有关结论※

0k ≤222

(1)(1)

'()k x x h x x

+--=1x ≠'()0h x <(1)0h =(0,1)x ∈()0h x >21

()01h x x >-∈∞2

11

x -≠1ln -x x x k 1ln -x x 2(1)(1)2k x x -++2

(1)21k x x k -++-244(1)0k ?=-->1

11k >-∈k -11'h ∈k -112

11

x -≥212x x +≥2(1)(1)20k x x -++>?'h ∈∞2

11

x -∞

3. 题型归纳

①导数切线、定义、单调性、极值、最值、的直接应用

(构造函数,最值定位)(分类讨论,区间划分)(极值比较)(零点存在性定理应用)(二阶导转换)

例1(切线)设函数

. (1)当时,求函数在区间上的最小值;

a x x f -=2

)(1=a )()(x xf x g =]

1,0[

(2)当时,曲线在点处的切线为,与轴交于

点求证:.

例2(最值问题,两边分求)已知函数. ⑴当时,讨论的单调性; ⑵设当时,若对任意,存在,使

,求实数取值范围.

②交点与根的分布

例3(切线交点)已知函数在点处的切线方程

为.

⑴求函数的解析式;

⑵若对于区间上任意两个自变量的值都有,求实数

的最小值;

⑶若过点可作曲线的三条切线,求实数的取值范围.

例4(综合应用)已知函数

⑴求f (x )在[0,1]上的极值;

⑵若对任意成立,求实数a 的取值

范围;

⑶若关于x 的方程

在[0,1]上恰有两个不同的实根,求实数b 的取值

范围.

③不等式证明

例5 (变形构造法)已知函数

,a 为正常数. ⑴若

,且a

,求函数的单调增区间;

⑵在⑴中当时,函数的图象上任意不同的两点,,

线段的中点为,记直线的斜率为,试证明:.

⑶若,且对任意的,,都有,求a 的取值范围.

例6 (高次处理证明不等式、取对数技巧)已知函数.

0>a )

(x f y =)))((,(111a x x f x P >l l x )0,(2x A a x x >>211()ln 1a

f x x ax x

-=-+

-()a ∈R 1

2

a ≤

()f x 2()2 4.g x x bx =-+1

4

a =1(0,2)x ∈[]21,2x ∈12()()f x g x ≥

b ()()3

2

3,f x ax bx x a b R =+-∈()()

1,1f 20y +=()f x []2,2-12,x x ()()12f x f x c -≤c ()()2,2M m m ≠()y f x =m .23)32ln()(2x x x f -

+=0

]3)(ln[|ln |],31

,61[>+'+-∈x x f x a x 不等式b x x f +-=2)(1)(+=

x a

x ?)

(ln )(x x x f ?+=29

=

)(x f 0=a )

(x f y =()11,y x A ()22,y x B AB ),(00y x C AB k )

(0x f k '>)(ln )(x x x g ?+=(]2,0,21∈x x 21x x ≠1

)

()(1

212-<--x x x g x g )0)(ln()(2

>=a ax x x f

(1)若对任意的恒成立,求实数的取值范围;

(2)当时,设函数,若,求证

例7(绝对值处理)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取

得极大值.

(I )求实数a 的取值范围;

(II )若方程9

)32()(2

+-=a x f 恰好有两个不同的根,求)(x f 的解析式;

(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 例8(等价变形)已知函数x ax x f ln 1)(--=()a ∈R .

(Ⅰ)讨论函数)(x f 在定义域内的极值点的个数;

(Ⅱ)若函数)(x f 在1=x 处取得极值,对x ?∈),0(+∞,2)(-≥bx x f 恒成立,

求实数b 的取值范围;

(Ⅲ)当2

0e y x <<<且e x ≠时,试比较

x

y

x y ln 1ln 1--与

的大小. 例9(前后问联系法证明不等式)已知,直线与函数

的图像都相切,且与函数的图像的切点的横坐标为1。

(I )求直线的方程及m 的值; (II )若,求函数

最大值。

(III )当时,求证:

例10 (整体把握,贯穿全题)已知函数. (1)试判断函数的单调性;

(2)设,求在上的最大值;

(3)试证明:对任意,不等式都成立(其中是自然对数的底数). (Ⅲ)证明:.

例11(数学归纳法)已知函数,当时,函数取得极大值.

(1)求实数的值; (2)已知结论:若函数在区间内导数都存在,且,

则存在,使得.试用这个结论证明:若

2

)('x x f ≤0>x a 1=a x x f x g )()(=1

),1,1

(,2121<+∈x x e x x 42121)(x x x x +<217

()ln ,()(0)

22f x x g x x mx m ==++

(),()f x g x ()f x l ()(1)'()()

h x f x g x =+-其中g'(x)是g(x)的导函数()h x 0b a <<()(2).2b a

f a b f a a -+-<

ln ()1x

f x x

=

-()f x 0m >()f x [,2]m m *n ∈N 11ln()e n n

n n

++<

e ()ln(1)

f x x mx =++0x =()f x m ()ln(1)f x x mx =++(,)a b 1a >-0(,)x a b ∈0()()

()f b f a f x b a

-'=

-

,函数,则对任意

,都有;

(3)已知正数,满足,求证:当,时,

对任意大于,且互不相等的实数,都有

.

④恒成立、存在性问题求参数范围

例12(分离变量)已知函数(a 为实常数).

(1)若,求证:函数

在(1,+∞)上是增函数; (2)求函数在[1,e ]上的最小值及相应的值;

(3)若存在

,使得成立,求实数a 的取值范围.

例13(先猜后证技巧)已知函数 (Ⅰ)求函数f (x )的定义域

(Ⅱ)确定函数f (x )在定义域上的单调性,并证明你的结论.

(Ⅲ)若x >0时恒成立,求正整数k 的最大值.

例14(创新题型)设函数f(x)=e x +sinx,g(x)=ax,F(x)=f(x)-g(x).

(Ⅰ)若x=0是F(x)的极值点,求a 的值;

(Ⅱ)当 a=1时,设P(x 1,f(x 1)), Q(x 2, g(x 2))(x 1>0,x 2>0), 且PQ//x 轴,求P 、Q 两点间的最短距离;

(Ⅲ)若x≥0时,函数y=F(x)的图象恒在y=F(-x)的图象上方,求实数a 的取值范围.

例15(图像分析,综合应用) 已知函数,在区间

上有最大值4,最小值1,设.

(Ⅰ)求

的值;

(Ⅱ)不等式

在上恒成立,求实数的范围; (Ⅲ)方程有三个不同的实数解,求实数的范围. ⑤导数与数列

例16(创新型问题)设函数,,是的一个极大值点.

⑴若,求的取值范围;

⑵当是给定的实常数,设是的3个极值点,问是否存在实数,可找到,使得的某种排列(其中=

)依次成等差数列?若存在,求所有的及相应的;若不存在,说明理由. 121x x -<<121112

()()

()()()f x f x g x x x f x x x -=

-+-12(,)x x x ∈()()f x g x >12,,,n λλλL 121n λλλ+++=L 2n ≥n N ∈1-12,,,n x x x L 1122()n n f x x x λλλ+++>L 1122()()()n n f x f x f x λλλ+++L x a x x f ln )(2

+=2-=a )(x f )(x f x ],1[e x ∈x a x f )2()(+≤x

x n x f )

1(11)(++=

1

)(+>x k

x f )1,0(12)(2

<≠++-=b a b ax ax x g []3,2()

()g x f x x =

b

a ,02)2(≥?-x x k f ]1,1[-∈x k 0

)3|12|2

(|)12(|=--+-x x k f k

2()()()x f x x a x b e =-+a b R ∈、x a =()f x 0a =b a 123x x x ,,()f x b 4x R ∈1234x x x x ,,,1234,,,i i i i x x x x {}1234i i i i ,,,{}1234,

,,b 4x

⑥导数与曲线新题型

例17(形数转换)已知函数, . (1)若, 函数 在其定义域是增函数,求b 的取值范围; (2)在(1)的结论下,设函数的最小值; (3)设函数的图象C 1与函数的图象C 2交于点P 、Q,过线段PQ 的中点R 作轴的垂线分别交C 1、C 2于点、,问是否存在点R,使C 1在处的切线与C 2在处的切线平行?若存在,求出R 的横坐标;若不存在,请说明理由. 例18(全综合应用)已知函数. (1)是否存在点,使得函数的图像上任意一点P 关于点M 对称的点Q 也在函数的图像上?若存在,求出点M 的坐标;若不存在,请说明理由;

(2)定义,其中,求; (3)在(2)的条件下,令,若不等式对且恒成立,

求实数的取值范围. ⑦导数与三角函数综合

例19(换元替代,消除三角)设函数(),其中. (Ⅰ)当时,求曲线

在点处的切线方程;

(Ⅱ)当时,求函数

的极大值和极小值;

(Ⅲ)当, 时,若不等式

对任意的恒成立,求的值。

⑧创新问题积累 例20已知函数2()ln

44

x x

f x x -=+-. I 、求()f x 的极值.

II 、求证()f x 的图象是中心对称图形.

III 、设()f x 的定义域为D ,是否存在[],a b D ?.当[],x a b ∈时,()f x 的取值范围

是,44

a b ??????

?若存在,求实数a 、b 的值;若不存在,说明理由

导数压轴题题型归纳 参考答案

例1解:(1)时,,由,解得

.

()ln f x x =2

1()2

g x ax bx =

+(0)a ≠2a =-()()()h x f x g x =-??2x x (x)=e +be ,x ∈[0,ln2],求函数(x))(x f )(x g x M N M N ()1ln

(02)2x

f x x x

=+<<-(,)M a b ()y f x =()y f x =21

1

1221()()()()n n i i n S f f f f n n n n

-=-=

=++???+∑

*n ∈N 2013S 12n n S a +=2()1n a

m

n a ?>*

n ?∈N 2n ≥m 2

()()f x x x a =--x ∈R a ∈R 1a =()y f x =(2(2))f ,0a ≠()f x 3a >[]10k ∈-,22(cos )(cos )f k x f k x --≥x ∈R k 1=a x x x g -=3

)(013)(2

=-='

x x g 33

±

=x

2020年高考数学导数压轴题每日一题 (1)

第 1 页 共 1 页 2020年高考数学导数压轴题每日一题 例1已知函数f(x)=e x -ln(x +m).(新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 例1 (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-10+m =0?m =1, 定义域为{x |x >-1}, f ′(x )=e x -1x +m =e x (x +1)-1x +1, 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2), 则g ′(x )=e x -1x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1(x +2)2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -132 <0,g ′(0)=1-12>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =(1+t )2t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.

导数压轴题处理专题讲解

导数压轴题处理专题讲解(上) 专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 -

专题一 双变量同构式(含拉格朗日中值定理) 例1. 已知(1)讨论的单调性 (2)设,求证:例2. 已知函数,。(1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m (2)证明:若,则对任意x ,x ,x x ,有 。 例3. 设函数. (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围. ()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212 ,0,,4x x f x f x x x ?∈+∞-≥-()2 1(1)ln 2 f x x ax a x = -+-1a >()f x 5a <12∈(0,)+∞1≠21212 ()() 1f x f x x x ->--()ln ,m f x x m R x =+ ∈m e =e ()f x ()'()3 x g x f x = -()() 0, 1f b f a b a b a ->><-m

高三导数压轴题题型归纳

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-1 0+m =0?m =1, 定义域为{x |x >-1},f ′(x )=e x -1 x +m = e x x +1-1 x +1 , 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1 x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1 x +22>0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -13 2 <0,g ′(0)=1-1 2>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-1 2,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1 t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1 t +2+t = 1+t 2 t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 2 2 1)(,求b a )1(+的最大值。 (1)121 1()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f =

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

导数压轴题题型(学生版)

导数压轴题题型 引例 【2016高考山东理数】(本小题满分13分) 已知. (I )讨论的单调性; (II )当时,证明对于任意的成立. 1. 高考命题回顾 例1.已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. ()2 21 ()ln ,R x f x a x x a x -=-+ ∈()f x 1a =()3 ()'2 f x f x +>[]1,2x ∈

例2.(21)(本小题满分12分)已知函数()()()2 21x f x x e a x =-+-有两个零点. (I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.

例3.(本小题满分12分) 已知函数f (x )=31 ,()ln 4 x ax g x x ++ =- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{ ()min (),()(0)h x f x g x x => , 讨论h (x )零点的个数 例4.(本小题满分13分) 已知常数,函数 (Ⅰ)讨论在区间 上的单调性; (Ⅱ)若存在两个极值点且 求的取值范围.

例5已知函数f(x)=e x-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

例6已知函数)(x f 满足21 2 1)0()1(')(x x f e f x f x + -=- (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值。 例7已知函数,曲线在点处的切线方程为。 (Ⅰ)求、的值; (Ⅱ)如果当,且时,,求的取值范围。 ln ()1a x b f x x x = ++()y f x =(1,(1))f 230x y +-=a b 0x >1x ≠ln ()1x k f x x x >+-k

高考导数压轴题题型

高考导数压轴题题型 远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+ ; (1)求()f x 的解析式及单调区间; 【解析】 (1)1211()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1e x x m -+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1e 1x x - +. 函数f ′(x )=1e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.

导数压轴题7大题型归类总结

导数压轴题7大题型归类总结,逆袭140+ 一、导数单调性、极值、最值的直接应用 设a> 0,函数g(x)= (a A2 + 14)e A x + 4?若E 1、E 2 € [0 , 4],使得|f( E 1) - g( E 2)| v 1 成立, 求a 的取值范围.

二、交点与根的分布 三、不等式证明 (一)做差证明不等式 LL期嗨敕门划=1扣 M】求的单调逼减区创! <2)^7 I >-1 r求证1 I ----- + x+ 1 W;的宦义域为(一4 +—=—-1 = ■―? x + 1 T t 4-1 I ■丈0 山厂w" 阳=」耳+ 1?二的中说逆减区簡为①,车呵一 ⑵国小由⑴得_虫(一1, ?时” /r Ct)>O f *庄曰① #8)时./'(XXO ?II /+(0) = 0 z.t>- 1 时.f骑)Wf(Qh ?〔耳口仇in(.T + h t T, I I x >X<^> = lnU + 1)+ ------ 1 t则K C<)* ----- -------- =------- -| r+1 立*1 {x+1)- G + I广/. — !< c<0时.X W Y O T ?A0时., JJ x F?h = <) 」?T A—l时、* S) (0)t UP \a(j[ + I M---------- 1MQ X + 1 ;.+1) ) ------- ,:心一1时t I------------- < ln{x + n^j. (二)变形构造函数证明不等式

Ehl&£ /I U li 故)白 )替换构造不等式证明不等式 >=/U ) “川理k C 1;/< <6 N 实出氓I:的崗散丿I + 20> I 沟申求齡./i (2JfiF(x) = /(.r)r-g(x> nt,护订} > 0 3r hH(f > [}). I J J //(:>- 2/0-^ . ft Injr". tl 中 i 堆fiU |他①5)的必人饥为hie' * = m 叫z ?削灯育公共恵?且在谆戍坯的也皱丹匸, %、b 、曲求占的E 大fh /(X) K (r K ). v = /Ol 存佥共C <^ r ()i 牡的岗绥翎同 ;In u J - 3

导数压轴题双变量问题题型归纳总结

导数应用之双变量问题 (一)构造齐次式,换元 【例】已知函数()2 ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =. (1)求实数,a b 的值; (2)设()()()()2 1212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x 的两个零点,求证:0F ' <. 【解析】(1)1,1a b ==-; (2)()2 ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x '=+- , 因为12,x x 分别是函数()F x 的两个零点,所以()()11 221ln 1ln m x x m x x +=???+=?? , 两式相减,得1212ln ln 1x x m x x -+=-, 1212ln ln 1x x F m x x -' =+=- 0F '< ,只需证 12 12ln ln x x x x -< -. 思路一:因为120x x << ,只需证 1122ln ln ln 0 x x x x -> ?>. 令()0,1t ,即证12ln 0t t t -+>. 令()()12ln 01h t t t t t =-+<<,则()()2 22 12110t h t t t t -'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证1 2ln 0t t t -+>. 由上述分析可知0F ' <. 【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形 为齐次式,设12111222 ,ln ,,x x x x t t t x x t e x x -= ==-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x << ,只需证12ln ln 0x x -, 设( ))22ln ln 0Q x x x x x =-<<,则 () 21 10 Q x x x '= ==<, 所以函数()Q x 在()20,x 上单调递减,()() 20Q x Q x >=,即证2ln ln x x -. 由上述分析可知0F ' <. 【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于1x (或2x )的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.

函数与导数经典例题高考压轴题含答案

函数与导数经典例题-高考压轴 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()32 f x x = +,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33 lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6 f n h n h h h n -+++≥L . 3. 设函数ax x x a x f +-=2 2ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2 )(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自然对数 的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

高三导数压轴题题型归纳

高三导数压轴题题型归 纳 This model paper was revised by LINDA on December 15, 2012.

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=e x -ln(x +m )f ′(x )=e x -1x +m f ′(0)=e 0 -10+m =0m =1, 定义域为{x |x >-1},f ′(x )=e x -1x +m =e x x +1-1 x +1 , 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x - 1 x +2 (x >-2). h (x )=g ′(x )=e x - 1x +2(x >-2)h ′(x )=e x +1x +2?2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -13 2 <0,g ′(0)=1-1 2>0, 所以h (x )=g ′(x )=0的唯一实根在区间? ?? ?? -12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t - 1t +2=0? ?? ??-12

所以,e t =1 t +2 t +2=e -t , 当x ∈(-2,t )时,g ′(x )g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2 t +2 >0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2 12 1)0()1(')(x x f e f x f x + -=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 2 2 1)(,求b a )1(+的最大值。 (1)1211 ()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 得:()f x 的解析式为21 ()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞

(完整版)高中数学导数压轴题专题训练

高中数学导数尖子生辅导(填选压轴) 一.选择题(共30小题) 1.(2013?文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是() A.B.C.D. 考点:利用导数研究函数的极值;函数的图象与图象变化. 专题:计算题;压轴题;数形结合. 分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论. 解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x, ∴f'(x)=3x2﹣2x﹣2 ∵x1,x2是原函数的极值点 所以有x1+x2=,, 故x12+x22=(x1+x2)2﹣2x1x2==. 故选D. 点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题. 2.(2013?乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为() A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α 考点:导数的运算. 专题:压轴题;新定义. 分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可. 解答: 解:∵g′(x)=1,h′(x)=,φ′(x)=3x2, 由题意得: α=1,ln(β+1)=,γ3﹣1=3γ2, ①∵ln(β+1)=, ∴(β+1)β+1=e, 当β≥1时,β+1≥2, ∴β+1≤<2, ∴β<1,这与β≥1矛盾, ∴0<β<1; ②∵γ3﹣1=3γ2,且γ=0时等式不成立,

导数压轴题双变量问题题型归纳总结

导数压轴题双变量问题题型 归纳总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

导数应用之双变量问题 (一)构造齐次式,换元 【例】已知函数()2 ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =. (1)求实数,a b 的值; (2)设()()()()2 1212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x 的两个零点,求证:0F ' <. 【解析】(1)1,1a b ==-; (2)()2 ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x '=+- , 因为12,x x 分别是函数()F x 的两个零点,所以()()11 221ln 1ln m x x m x x +=???+=?? , 两式相减,得1212ln ln 1x x m x x -+=-, 1212ln ln 1x x F m x x -' =+=- 0F '< ,只需证 12 12ln ln x x x x -< -. 思路一:因为120x x << ,只需证 1122ln ln ln 0 x x x x -> ?>. 令()0,1t = ,即证12ln 0t t t -+>. 令()()1 2ln 01h t t t t t =-+<<,则()()2 22 121 10t h t t t t -'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证1 2ln 0t t t -+>. 由上述分析可知0F ' <. 【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形 为齐次式,设12111222 ,ln ,,x x x x t t t x x t e x x -===-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x << ,只需证12ln ln 0x x -, 设( ))22ln ln 0Q x x x x x =-<<,则 () 2 21 10Q x x x '= ==<, 所以函数()Q x 在()20,x 上单调递减,()()2 0Q x Q x >=,即证2ln ln x x -. 由上述分析可知0F ' <.

全国高考导数压轴题总汇编

2016全国各地导数压轴题汇编 1、(2016年全国卷I理数) 已知函数2 )1()2()(-+-=x a e x x f x 有两个零点 (I )求a 的取值围 (II )设21,x x 是)(x f 的两个零点,求证:221<+x x

2、(2016年全国卷I文数) 已知函数2 )1()2()(-+-=x a e x x f x (I )讨论)(x f 的单调性 (II )若)(x f 有两个零点,求a 的取值围

3、(2016年全国卷II 理数) (I)讨论函数x x 2f (x)x 2 -=+e 的单调性,并证明当x >0时,(2)20;x x e x -++> (II)证明:当[0,1)a ∈ 时,函数2 x =(0)x e ax a g x x -->() 有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.

4、(2016年全国卷II 文数) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (II)若当()1,x ∈+∞时,()0f x >,求a 的取值围. 5、(2016年全国卷III 理数) 设函数)1)(cos 1(2cos )(+-+=x a x a x f 其中a >0,记错误!未找到引用源。的最大值为A (Ⅰ)求)(x f '; (Ⅱ)求A ; (Ⅲ)证明错误!未找到引用源。A x f 2)(≤'

6、(2016年全国卷III 文数) 设函数()ln 1f x x x =-+. (Ⅰ)讨论()f x 的单调性; (Ⅱ)证明当(1,)x ∈+∞时,11ln x x x -<<; (Ⅲ)设1c >,证明当(0,1)x ∈时,1(1)x c x c +->.

导数压轴题题型归纳

导数压轴题题型归纳 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 例2已知函数f(x)=x 2+ax +b ,g(x)=e x (cx +d),若曲线y =f(x)和曲线y =g(x)都过点P(0,2),且 在点P 处有相同的切线y =4x+2(新课标Ⅰ卷) (Ⅰ)求a ,b ,c ,d 的值 (Ⅱ)若x ≥-2时, ()()f x kg x ≤,求k 的取值范围。 例3已知函数)(x f 满足21 2 1 )0()1(')(x x f e f x f x +-=-(新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值。 例4已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。(新课标) (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x > +-,求k 的取值范围。 例5设函数2 ()1x f x e x ax =---(新课标) (1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围 例6已知函数f(x)=(x 3+3x 2+ax+b)e - x . (1)若a =b =-3,求f(x)的单调区间; (2)若f(x)在(-∞,α),(2,β)单调增加,在(α,2),(β,+∞)单调减少,证明β-α>6. 2. 在解题中常用的有关结论※

(完整)2019-2020年高考数学压轴题集锦——导数及其应用(一).doc

2019-2020 年高考数学压轴题集锦——导数及其应用(一) 1.已知函数f (x) x2 ax ln x(a R) . (1)函数f (x)在 [1,2] 上的性; (2)令函数g( x) e x 1 x2 a f (x) ,e=2.71828?是自然数的底数, 若函数 g (x) 有且只有一个零点m,判断 m 与 e 的大小,并明理由 . 2.已知函数 f (x) x3ax2bx c 在x 2 与x 1都取得极. 3 (1)求 a, b 的与函数f( x)的区; (2)若x [ c,1] ,不等式 f (x) c 恒成立,求 c 的取范 . 2 3.已知函数 f (x) ln(1 x) ln(1x) . (1)明 f '(x) 2 ; (2)如果 f (x) ax x [0,1) 恒成立,求 a 的范 .

x 1 4.已知函数f (x) ( e 自然数的底数) . e x (1)求函数f (x)的区; (2)函数(x) xf (x) tf '(x) 1 x1, x2 [0 ,1] ,使得 2 ( x1 )(x2 ) x ,存在数 e 成立,求数t 的取范 . 5.已知函数 f ( x) kx a x,其中k R,a 0且a 1 . (1)当 a e ( e=2.71 ?自然数的底),f(x)的性;(2)当k 1,若函数f(x)存在最大g(a),求g(a)的最小. 6.已知函数 f x x2ax ln x a R (1)当a 3 ,求函数f(x)在 1 , 2 上的最大和最小; 2 (2)函数 f(x)既有极大又有极小,求数 a 的取范 .

7.已知 f( x)是定义在 R 上的奇函数,当 x 0 时, f x 1 x 3 ax a R ,且曲线 f(x)在 3 x 1 处的切线与直线 y 3 x 1平行 2 4 (1)求 a 的值及函数 f(x)的解析式; (2)若函数 y f x m 在区间 3, 3 上有三个零点,求实数 m 的取值范围 . 8.已知函数 f x x 0 ax, a ln x (1)若函数 y f x 在 1, 上减函数,求实数 a 的最小值; (2)若存在 x 1 , x 2 e,e 2 ,使 f x 1 f x 2 a 成立,求实数 a 的取值范围 . 9.已知函数 f (x) x 3 ax 2 bx 1, a , b R . ( 1)若 a 2 b 0 , ①当 a 0 时,求函数 f(x)的极值(用 a 表示); ②若 f(x)有三个相异零点,问是否存在实数 a 使得这三个零点成等差数列?若存在,试 求出 a 的值;若不存在,请说明理由; ( 2)函数 f( x)图象上点 A 处的切线 l 1 与 f(x)的图象相交于另一点 B ,在点 B 处的切线为 l 2 ,直线 l 1, l 2 的斜率分别为 k 1, k 2 ,且 k 2 =4k 1 ,求 a ,b 满足的关系式.

导数压轴题题型(学生版)

导数压轴题题型 引例 【2016高考山东理数】(本小题满分13分) 已知()221 ()ln ,R x f x a x x a x -=-+ ∈. (I )讨论()f x 的单调性; (II )当1a =时,证明()3()'2 f x f x +>对于任意的[]1,2x ∈成立. `

1.高考命题回顾 例1.已知函数) (a e2x+(a﹣2) e x﹣x. f x f x的单调性; (1)讨论() 《 (2)若() f x有两个零点,求a的取值范围. '

例2.(21)(本小题满分12分)已知函数()()()2 21x f x x e a x =-+-有两个零点. (I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<. (

例3.(本小题满分12分) ~ 已知函数f (x )=31 ,()ln 4 x ax g x x ++ =- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{ ()min (),()(0)h x f x g x x => , 讨论h (x )零点的个数 ] 例4.(本小题满分13分)

已知常数0a >,函数2()ln(1).2 x f x ax x =+-+ (Ⅰ)讨论()f x 在区间(0,)+∞上的单调性; (Ⅱ)若()f x 存在两个极值点12,,x x 且12()()0,f x f x +>求a 的取值范围. : <

! 例5已知函数f(x)=e x-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. ;

高考导数压轴题---函数与导数核心考点(精编完美版)

导数与函数核心考点 目录 题型一切线型 1.求在某处的切线方程 2.求过某点的切线方程 3.已知切线方程求参数 题型二单调型 1.主导函数需“二次求导”型 2.主导函数为“一次函数”型 3.主导函数为“二次函数”型 4.已知函数单调性,求参数范围 题型三极值最值型 1.求函数的极值 2.求函数的最值 3.已知极值求参数 4.已知最值求参数 题型四零点型 1.零点(交点,根)的个数问题 2.零点存在性定理的应用 3.极值点偏移问题 题型五恒成立与存在性问题 1.单变量型恒成立问题 2.单变量型存在性问题 3.双变量型的恒成立与存在性问题 4.等式型恒成立与存在性问题 题型六与不等式有关的证明问题 1.单变量型不等式证明 2.含有e x与lnx的不等式证明技巧 3.多元函数不等式的证明 4.数列型不等式证明的构造方法

题型一 切线型 1.求在某处的切线方程 例1.【2015重庆理20】求函数f (x )=3x 2 e x 在点(1, f (1))处的切线方程. 解:由f (x )=3x 2e x ,得f ′(x )=6x -3x 2e x ,切点为(1,3e ) ,斜率为f ′(1)=3 e 由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=3e ,得切线斜率为3 e ; ∴切线方程为y -3e =3 e (x -1),即3x -ey =0. 例2.求f (x )=e x (1 x +2)在点(1,f (1))处的切线方程. 解:由f (x )=e x (1x +2),得f ′(x )=e x (-1x 2+1 x +2) 由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=2e ,得切线斜率为2e ; ∴切线方程为y -3e =2e (x -1),即2ex -y +e =0. 例3.求f (x )=ln 1-x 1+x 在点(0,f (0))处的切线方程. 解:由f (x )=ln 1-x 1+x =ln (1-x )-ln (1+x ),得f ′(x )=-11-x -1 1+x 由f (0)=0,得切点坐标为(0,0),由f ′(0)=-2,得切线斜率为-2; ∴切线方程为y =-2x ,即2x +y =0. 例4.【2015全国新课标理20⑴】在直角坐标系xoy 中,曲线C :y =x 2 4 与 直线l :y =kx +a (a >0)交于M ,N 两点,当k =0时,分别求C 在点M 与N 处的切线方程. 解:由题意得:a =x 2 4,则x =±2a ,即M (-2a ,a ),N (2a ,a ), 由f (x )=x 24,得f ′(x )=x 2, 当切点为M (-2a ,a )时,切线斜率为f ′(-2a )=-a , 此时切线方程为:ax +y +a =0; 当切点为N (2a ,a )时,切线斜率为f ′(2a )=a , 此时切线方程为:ax -y -a =0;

相关主题
文本预览
相关文档 最新文档