当前位置:文档之家› 数据结构实验报告——中序遍历二叉树

数据结构实验报告——中序遍历二叉树

数据结构实验报告——中序遍历二叉树
数据结构实验报告——中序遍历二叉树

实验报告

一,实验目的:

·掌握二叉树的链式存储结构;

·掌握构造二叉树的方法;

·加深对二叉树的中序遍历的理解;

二,实验方法:

·用递归调用算法中序遍历二叉树。

三,实验步骤:

·通过链式存储建立一颗二叉树。

·设计一个算法实现中序遍历二叉树。四,具体实验步骤:

#include

#include

#define LEFT 0

#define RIGHT 1

#define TRUE 1

#define FALSE 0

typedef struct _BTNODE{

char c;

struct _BTNODE *lchild;

struct _BTNODE *rchild;

}BTNODE,*PBTNODE;

void PrintBTree(PBTNODE p,int depth);

void ConstructBTree(PBTNODE p);

void InorderTraverse(PBTNODE p);

void main(){

PBTNODE p;

p=(PBTNODE)calloc(1,sizeof(BTNODE));

printf("Input the data:");

ConstructBTree(p);

PrintBTree(p,0);

printf("Now InorderTraverse:");

InorderTraverse(p);

printf("\nPress any key to continue...");

getchar();

}

void PrintBTree(PBTNODE p,int depth){

int i;

if(p==NULL){

return;

}else{

for(i=0;i

printf("--");

}

printf(">");

printf("%c\n",p->c);

PrintBTree(p->lchild,depth+1);

PrintBTree(p->rchild,depth+1);

}

}

void ConstructBTree(PBTNODE p){

int side;

char c;

side=LEFT;

while(TRUE){

scanf("%c",&c);

if(c=='\n'){

//printf("EOF\n");

return;

}

// printf("%d\n",c);

switch(c){

case '|':

break;

case')':

return;

case',':

side=RIGHT;

break;

case'(':

if(side==LEFT){

if(p->lchild==NULL){

p->lchild=(PBTNODE)calloc(1,sizeof(BTNODE));

}

ConstructBTree(p->lchild);

}else{

if(p->rchild==NULL){

p->rchild=(PBTNODE)calloc(1,sizeof(BTNODE));

}

ConstructBTree(p->rchild);

}

break;

default:

if(side==LEFT){

p->lchild=(PBTNODE)calloc(1,sizeof(BTNODE));

p->lchild->c=c;

}else{

p->rchild=(PBTNODE)calloc(1,sizeof(BTNODE));

p->rchild->c=c;

}

}

}

}

void InorderTraverse(PBTNODE p){

if(p==NULL){

return;

}else{

InorderTraverse(p->lchild);

printf("[%c] ",p->c);

InorderTraverse(p->rchild);

}

return;

}

五,实验过程:

·输出:Input the date;

·输入:1(2(3,4),5(6,7));

·输出:Now InorderTraverse:【3】【2】【4】【1】【6】【5】【7】;

六,上机实验体会:

·体会到熟练掌握各种程序算法的重要性;

·通过上机练习,充分理解了链式建立二叉树的算法;

·形象的了解二叉树的结构,能够熟练的进行先序,中序,后序遍历二叉树。

已知某二叉树的先序遍历和中序遍历的结果是先序遍历ABDEGCF

树与二叉树复习 一、填空 1、由二叉树的(中)序和(前、后)序遍历序列可以唯一确定一棵二叉树。 2、任意一棵二叉树,若度为0的结点个数为n0,度为2的结点个数为n2,则n0等于(n0=n2+1 )。 3、一棵二叉树的第i(i≥1)层最多有(2i-1 )个结点。 4、一棵有n个结点的二叉树,若它有n0个叶子结点,则该二叉树上度为1的结点个数n1=(n-2n0+1 )。 5、在一棵高度为5的完全二叉树中,最少含有( 16 )个结点。 6、 2.有一个有序表为{1,3,9,12,32,41,45,62,75,77,82,95,100},当折半查找值为82的结点时,( C )次比较后查找成功。 A. 11 B 5 C 4 D 8 7、在有n个叶结点的哈夫曼树中,总结点数( 2n-1 )。 8、若一个问题的求解既可以用递归算法,也可以用递推算法,则往往用(递推)算法,因为(递推算法效率高)。 9、设一棵完全二叉树有700个结点,则共有( 350 )叶子结点。 10、设一棵完全二叉树具有1000个结点,该树有(500)个叶子结点,有(499 )个度为2的结点,有( 1 )个结点只有非空左子树。 二、判断 1、( × )在哈夫曼树中,权值最小的结点离根结点最近。 2、( √ ) 完全二叉树中,若一个结点没有左孩子,则它必是叶子结点。 3、( √ )二叉树的前序遍历序列中,任意一个结点均处在其孩子结点的前面。 4、( × ) 若一搜索树(查找树)是一个有n个结点的完全二叉树,则该树的最大值一定在叶结点上。 5、( √ )若以二叉链表作为树和二叉树的存储结构,则给定任一棵树都可以找到唯一的一棵二叉树与之对应。 6、( √ )若一搜索树(查找树)是一个有n个结点的完全二叉树,则该树的最小

二叉排序树的建立及遍历的实现

课程设计任务书 题目: 二叉排序树的建立及遍历的实现 初始条件: 理论:学习了《数据结构》课程,掌握了基本的数据结构和常用的算法; 实践:计算机技术系实验室提供计算机及软件开发环境。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、系统应具备的功能: (1)建立二叉排序树; (2)中序遍历二叉排序树并输出排序结果; 2、数据结构设计; 3、主要算法设计; 4、编程及上机实现; 5、撰写课程设计报告,包括: (1)设计题目; (2)摘要和关键字; (3)正文,包括引言、需求分析、数据结构设计、算法设计、程序实现及测试、设计体会等; (4)结束语; (5)参考文献。 时间安排:2007年7月2日-7日(第18周) 7月2日查阅资料 7月3日系统设计,数据结构设计,算法设计 7月4日-5日编程并上机调试7月6日撰写报告 7月7日验收程序,提交设计报告书。 指导教师签名: 2007年7月2日 系主任(或责任教师)签名: 2007年7月2日 排序二叉树的建立及其遍历的实现

摘要:我所设计的课题为排序二叉树的建立及其遍历的实现,它的主要功能是将输入的数据 组合成排序二叉树,并进行,先序,中序和后序遍历。设计该课题采用了C语言程序设计,简洁而方便,它主要运用了建立函数,调用函数,建立递归函数等等方面来进行设计。 关键字:排序二叉树,先序遍历,中序遍历,后序遍历 0.引言 我所设计的题目为排序二叉树的建立及其遍历的实现。排序二叉树或是一棵空树;或是具有以下性质的二叉树:(1)若它的左子树不空,则作子树上所有的结点的值均小于它的根结点的值;(2)若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;(3)它的左,右子树也分别为二叉排序树。对排序二叉树的建立需知道其定义及其通过插入结点来建立排序二叉树,遍历及其输出结果。 该设计根据输入的数据进行建立排序二叉树。对排序二叉树的遍历,其关键是运用递归 调用,这将极大的方便算法设计。 1.需求分析 建立排序二叉树,主要是需要建立节点用来存储输入的数据,需要建立函数用来创造排序二叉树,在函数内,需要进行数据比较决定数据放在左子树还是右子树。在遍历二叉树中,需要建立递归函数进行遍历。 该题目包含两方面的内容,一为排序二叉树的建立;二为排序二叉树的遍历,包括先序遍历,中序遍历和后序遍历。排序二叉树的建立主要运用了循环语句和递归语句进行,对遍历算法运用了递归语句来进行。 2.数据结构设计 本题目主要会用到建立结点,构造指针变量,插入结点函数和建立排序二叉树函数,求深度函数,以及先序遍历函数,中序遍历函数和后序遍历函数,还有一些常用的输入输出语句。对建立的函明确其作用,先理清函数内部的程序以及算法在将其应用到整个程序中,在建立排序二叉树时,主要用到建立节点函数,建立树函数,深度函数,在遍历树是,用到先序遍历函数,中序遍历函数和后序遍历函数。

C语言实现二叉树的前序遍历(递归)

C语言实现二叉树的前序遍历算法实现一: #include #include typedef struct BiTNode//定义结构体 { char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; void CreateBiTree(BiTree &T) //前序创建树 { char ch; scanf("%c",&ch); if(ch==' ') T=NULL; else { T=(struct BiTNode *)malloc(sizeof(struct BiTNode)); T->data=ch; CreateBiTree(T->lchild); CreateBiTree(T->rchild); } } int print(BiTree T)//前序遍历(输出二叉树) { if(T==NULL)return 0; else if(T->lchild==NULL && T->rchild==NULL)return 1; else return print(T->lchild)+print(T->rchild); } void main()//主函数 { BiTree T; CreateBiTree(T); printf("%d\n",print(T)); } 算法实现二: #include

#include struct BiTNode//定义结构体 { char data; struct BiTNode *lchild,*rchild; }; int num=0; void CreatBiTree(struct BiTNode *&p) //前序创建树 { char ch; scanf("%c",&ch); if(ch==' ') p=NULL; else { p=(struct BiTNode *)malloc(sizeof(struct BiTNode)); p->data=ch; CreatBiTree(p->lchild); CreatBiTree(p->rchild); } } void print(struct BiTNode *p) //前序遍历(输出二叉树){ if(p!=NULL) { if(p->lchild==NULL&&p->rchild==NULL) else { print(p->lchild); print(p->rchild); } } } void main()//主函数 { struct BiTNode *p; CreatBiTree(p); print(p); printf("%d\n",num); } 供测试使用的数据

数据结构二叉树实验报告

实验三二叉树的遍历 一、实验目的 1、熟悉二叉树的结点类型和二叉树的基本操作。 2、掌握二叉树的前序、中序和后序遍历的算法。 3、加深对二叉树的理解,逐步培养解决实际问题的编程能力。 二、实验环境 运行C或VC++的微机。 三、实验内容 1、依次输入元素值,以链表方式建立二叉树,并输出结点的值。 2、分别以前序、中序和后序遍历二叉树的方式输出结点内容。 四、设计思路 1. 对于这道题,我的设计思路是先做好各个分部函数,然后在主函数中进行顺序排列,以此完成实验要求 2.二叉树采用动态数组 3.二叉树运用9个函数,主要有主函数、构建空二叉树函数、建立二叉树函数、访问节点函数、销毁二叉树函数、先序函数、中序函数、后序函数、范例函数,关键在于访问节点 五、程序代码 #include #include #include #define OK 1 #define ERROR 0 typedef struct TNode//结构体定义 {

int data; //数据域 struct TNode *lchild,*rchild; // 指针域包括左右孩子指针 }TNode,*Tree; void CreateT(Tree *T)//创建二叉树按,依次输入二叉树中结点的值 { int a; scanf("%d",&a); if(a==00) // 结点的值为空 *T=NULL; else // 结点的值不为空 { *T=(Tree)malloc(sizeof(TNode)); if(!T) { printf("分配空间失败!!TAT"); exit(ERROR); } (*T)->data=a; CreateT(&((*T)->lchild)); // 递归调用函数,构造左子树 CreateT(&((*T)->rchild)); // 递归调用函数,构造右子树 } } void InitT(Tree *T)//构建空二叉树 { T=NULL; } void DestroyT(Tree *T)//销毁二叉树 { if(*T) // 二叉树非空 { DestroyT(&((*T)->lchild)); // 递归调用函数,销毁左子树 DestroyT(&((*T)->rchild)); // 递归调用函数,销毁右子树 free(T); T=NULL; } } void visit(int e)//访问结点 { printf("%d ",e); }

二叉树的遍历(先序、中序、后序)

实践三:树的应用 1.实验目的要求 通过本实验使学生深刻理解二叉树的性质和存储结构,熟练掌握二叉树的遍历算法。认识哈夫曼树、哈夫曼编码的作用和意义。 实验要求:建一个二叉树并按照前序、中序、后序三种方法遍历此二叉树,正确调试本程序。 能够建立一个哈夫曼树,并输出哈夫曼编码,正确调程序。写出实验报告。 2.实验主要内容 2.1 对二叉树进行先序、中序、后序递归遍历,中序非递归遍历。 2.2 根据已知的字符及其权值,建立哈夫曼树,并输出哈夫曼编码。 3.实验步骤 2.1实验步骤 ●输入p127二叉链表的定义 ●录入调试p131算法6.4,实现二叉树的构造函数 ●编写二叉树打印函数,可以通过递归算法将二叉树输出为广义表的 形式,以方便观察树的结构。 ●参考算法6.1,实现二叉树的前序、中序和后序的递归遍历算法。 为简化编程,可以将visit函数直接使用printf函数输出结点内容来 代替。 #include #include #include #define OK 1 #define ERROR 0 #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10 typedef char TElemType; typedef char Status; // 构造书的结构体

typedef struct BiTNode{ TElemType data; struct BiTNode *lchild, *rchild; }BiTNode, *BiTree; // 构造栈的结构体 typedef BiTree SElemType; typedef struct{ SElemType *base; SElemType *top; int stacksize; }SqStack; Status InitStack(SqStack &S){ //构造一个空栈 S.base = (SElemType *)malloc(STACK_INIT_SIZE * sizeof(SElemType)); if(!S.base)exit(-2); S.top = S.base; S.stacksize = STACK_INIT_SIZE; return OK; } Status StackEmpty(SqStack S){ //若栈S为空栈,则返回TRUE,否则返回FALSE if(S.top==S.base) return 1; else return 0; }

二叉树实验报告

实验题目:实验九——二叉树实验 算法设计(3) 问题分析: 1、题目要求:编写算法交换二叉树中所有结点的左右子树 2、设计思路:首先定义一个二叉树的数据类型,使用先序遍历建立该二叉树,遍历二叉树,设计左右子树交换的函数,再次遍历交换之后的二叉树,与先前二叉树进行比较。遍历算法与交换算法使用递归设计更加简洁。 3、测试数据: A、输入:1 2 4 0 0 5 0 0 3 0 0 交换前中序遍历:4 2 5 1 3 交换后中序遍历:3 1 5 2 4 交换前:交换后: B、输入:3 7 11 0 0 18 17 0 0 19 0 0 6 13 0 0 16 0 0 交换前中序遍历:11 7 17 18 19 3 13 6 16 交换后中序遍历:16 6 13 3 19 18 17 7 11 概要设计: 1、为了实现上述功能:①构造一个空的二叉树;②应用先序遍历输入,建立二叉树;③中序遍历二叉树;④调用左右子树交换函数;⑤中序遍历交换过后的二叉树。 2、本程序包括4个函数: ①主函数main() ②先序遍历二叉树建立函数creat_bt() ③中序遍历二叉树函数inorder() ④左右子树交换函数 exchange()

各函数间关系如下: 详细设计: 1、结点类型 typedef struct binode //定义二叉树 { int data; //数据域 struct binode *lchild,*rchild; //左孩子、右孩子 }binode,*bitree; 2、各函数操作 ① 先序遍历建二叉树函数 bitree creat_bt() { 输入结点数据; 判断是否为0{ 若是,为空; 不是,递归;} 返回二叉树; } ② 左右子树交换函数 void exchange(bitree t) { 判断结点是否为空{ 否,交换左右子树; 递归;} } ③ 中序遍历函数 void inorder(bitree bt) { 判断是否为空{ 递归左子树; 输出; 递归右子树;} } main () creat_bt () inorder () exchange ()

二叉树的建立及几种简单的遍历方法

#include "stdio.h" #include "stdlib.h" #define STACK_INIT_SIZE 100 //栈存储空间初始分配量 #define STACKINCREMENT 10 //存储空间分配增量 //------二叉树的存储结构表示------// typedef struct BiTNode{ int data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; //-----顺序栈的存储结构表示------// typedef struct{ BiTree *top; BiTree *base; int stacksize; }SqStack; //*************************************************** //构造一个空栈s SqStack *InitStack(); //创建一颗二叉树 BiTree CreatBiTree(); //判断栈空 int StackEmpty(SqStack *S); //插入元素e为新的栈顶元素 void Push(SqStack *S,BiTree p); //若栈不为空,则删除s栈顶的元素e,将e插入到链表L中void Pop(SqStack *S,BiTree *q); //非递归先序遍历二叉树 void PreOrderTraverse(BiTree L); //非递归中序遍历二叉树 void InOrderTraverse(BiTree L); //非递归后序遍历二叉树 void PostOrderTraverse(BiTree L); //递归后序遍历二叉树 void PostOrder(BiTree bt); //递归中序遍历二叉树 void InOrder(BiTree bt); //递归先序遍历二叉树 void PreOrder(BiTree bt); //***************************************************

二叉树的建立和遍历的实验报告doc

二叉树的建立和遍历的实验报告 篇一:二叉树的建立及遍历实验报告 实验三:二叉树的建立及遍历 【实验目的】 (1)掌握利用先序序列建立二叉树的二叉链表的过程。 (2)掌握二叉树的先序、中序和后序遍历算法。 【实验内容】 1. 编写程序,实现二叉树的建立,并实现先序、中序和后序遍历。 如:输入先序序列abc###de###,则建立如下图所示的二叉树。 并显示其先序序列为:abcde 中序序列为:cbaed 后序序列为:cbeda 【实验步骤】 1.打开VC++。 2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。至此工程建立完毕。 3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了你刚创建的工程之中。

4.写好代码 5.编译->链接->调试 #include #include #define OK 1 #define OVERFLOW -2 typedef int Status; typedef char TElemType; typedef struct BiTNode { TElemType data; struct BiTNode *lchild, *rchild; }BiTNode,*BiTree; Status CreateBiTree(BiTree &T) { TElemType ch; scanf("%c",&ch); if (ch=='#') T= NULL; else { if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))

遍历二叉树老师的程序(绝对正确,实现先序、中序、后序遍历)

#include #include"stdlib.h" //节点结构体 typedef struct BiTNode { char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; //***********先序建立二叉树中的节点****************** void CreatBiTree(BiTree *T) //指针的指针 { char ch; if((ch=getchar())==' ') *T=NULL; else { (*T)=(BiTNode *)malloc(sizeof(BiTNode)); if(!(*T)) exit(1); (*T)->data=ch; CreatBiTree(&((*T)->lchild)); CreatBiTree(&((*T)->rchild)); } } //***************先序遍历二叉树********************** void PreTravel(BiTree T) { if(T) { printf("%c",T->data); PreTravel(T->lchild); PreTravel(T->rchild); } } //*************中序遍历****************** void InOrderTravel(BiTree T) { if(T) { InOrderTravel(T->lchild); printf("%c",T->data); InOrderTravel(T->rchild); }

二叉树的遍历算法实验报告

二叉树实验报告 09信管石旭琳 20091004418 一、实验目的: 1、理解二叉树的遍历算法及应用 2、理解哈夫曼树及其应用。 3、掌握哈夫曼编码思想。 二、实验内容: 1、建立二叉树二叉链表 2、实现二叉树递归遍历算法(中序、前序、后序) 3、求二叉树高度 4、求二叉树结点个数 5、求二叉树叶子个数 6、将序号为偶数的值赋给左子树 三、主要程序: #include #include typedef int ElemType; struct BiTNode { ElemType data; struct BiTNode *lch,*rch; }BiTNode,*BiTree; struct BiTNode *creat_bt1(); struct BiTNode *creat_bt2(); void preorder (struct BiTNode *t); void inorder (struct BiTNode *t); void postorder (struct BiTNode *t); void numbt (struct BiTNode *t); int n,n0,n1,n2; void main() { int k; printf("\n\n\n"); printf("\n\n 1.建立二叉树方法1(借助一维数组建立)"); printf("\n\n 2.建立二叉树方法2(先序递归遍历建立)"); printf("\n\n 3.先序递归遍历二叉树"); printf("\n\n 4.中序递归遍历二叉树"); printf("\n\n 5.后序递归遍历二叉树"); printf("\n\n 6.计算二叉树结点个数"); printf("\n\n 7.结束程序运行");

二叉树的遍历实验报告

二叉树的遍历实验报告 一、需求分析 在二叉树的应用中,常常要求在树中查找具有某种特征的结点,或者对树中全部结点逐一进行某种处理,这就是二叉树的遍历问题。 对二叉树的数据结构进行定义,建立一棵二叉树,然后进行各种实验操作。 二叉树是一个非线性结构,遍历时要先明确遍历的规则,先访问根结点还时先访问子树,然后先访问左子树还是先访问有右子树,这些要事先定好,因为采用不同的遍历规则会产生不同的结果。本次实验要实现先序、中序、后序三种遍历。 基于二叉树的递归定义,以及遍历规则,本次实验也采用的是先序遍历的规则进行建树的以及用递归的方式进行二叉树的遍历。 二、系统总框图

三、各模块设计分析 (1)建立二叉树结构 建立二叉树时,要先明确是按哪一种遍历规则输入,该二叉树是按你所输入的遍历规则来建立的。本实验用的是先序遍历的规则进行建树。 二叉树用链表存储来实现,因此要先定义一个二叉树链表存储结构。因此要先定义一个结构体。此结构体的每个结点都是由数据域data 、左指针域Lchild 、右指针域Rchild 组成,两个指针域分别指向该结点的左、右孩子,若某结点没有左孩子或者右孩子时,对应的指针域就为空。最后,还需要一个链表的头指针指向根结点。 要注意的是,第一步的时候一定要先定义一个结束标志符号,例如空格键、#等。当它遇到该标志时,就指向为空。 建立左右子树时,仍然是调用create ()函数,依此递归进行下去,

直到遇到结束标志时停止操作。 (2)输入二叉树元素 输入二叉树时,是按上面所确定的遍历规则输入的。最后,用一个返回值来表示所需要的结果。 (3)先序遍历二叉树 当二叉树为非空时,执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (4)中序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (5)后序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (6)主程序 需列出各个函数,然后进行函数调用。 四、各函数定义及说明 因为此二叉树是用链式存储结构存储的,所以定义一个结构体用以存储。 typedef struct BiTNode { char data; struct BiTNode *Lchild; struct BiTNode *Rchild;

二叉树的建立和遍历的实验报告

竭诚为您提供优质文档/双击可除二叉树的建立和遍历的实验报告 篇一:二叉树遍历实验报告 数据结构实验报告 报告题目:二叉树的基本操作学生班级: 学生姓名:学号: 一.实验目的 1、基本要求:深刻理解二叉树性质和各种存储结构的特点及适用范围;掌握用指针类型描述、访问和处理二叉树的运算;熟练掌握二叉树的遍历算法;。 2、较高要求:在遍历算法的基础上设计二叉树更复杂操作算法;认识哈夫曼树、哈夫曼编码的作用和意义;掌握树与森林的存储与便利。二.实验学时: 课内实验学时:3学时课外实验学时:6学时三.实验题目 1.以二叉链表为存储结构,实现二叉树的创建、遍历(实验类型:验证型)1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…建立树2…前序

遍历树3…中序遍历树4…后序遍历树5…求二叉树的高度6…求二叉树的叶子节点7…非递归中序遍历树0…结束2)实验要求:在程序中定义下述函数,并实现要求的函数功能:createbinTree(binTree structnode*lchild,*rchild; }binTnode;元素类型: intcreatebinTree(binTree voidpreorder(binTreevoidInorder(binTree voidpostorder(binTreevoidInordern(binTreeintleaf(bi nTree intpostTreeDepth(binTree 2、编写算法实现二叉树的非递归中序遍历和求二叉树高度。1)问题描述:实现二叉树的非递归中序遍历和求二叉树高度2)实验要求:以二叉链表作为存储结构 3)实现过程: 1、实现非递归中序遍历代码: voidcbiTree::Inordern(binTreeinttop=0;p=T;do{ while(p!=nuLL){ stack[top]=p;;top=top+1;p=p->lchild;}; if(top>0){ top=top-1;p=stack[top];

二叉树前序、中序、后序遍历相互求法

二叉树前序、中序、后序遍历相互求法今天来总结下二叉树前序、中序、后序遍历相互求法,即如果知道两个的遍历,如何求第三种遍历方法,比较笨的方法是画出来二叉树,然后根据各种遍历不同的特性来求,也可以编程求出,下面我们分别说明。 首先,我们看看前序、中序、后序遍历的特性: 前序遍历: 1.访问根节点 2.前序遍历左子树 3.前序遍历右子树 中序遍历: 1.中序遍历左子树 2.访问根节点 3.中序遍历右子树 后序遍历: 1.后序遍历左子树 2.后序遍历右子树 3.访问根节点 一、已知前序、中序遍历,求后序遍历 例: 前序遍历: GDAFEMHZ 中序遍历: ADEFGHMZ 画树求法: 第一步,根据前序遍历的特点,我们知道根结点为G 第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。 第三步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。 第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的左子树的第一个节点就是左子树的根节点。同理,遍历的右子树的第一个节点就是右子树的根节点。 第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下: 1 确定根,确定左子树,确定右子树。 2 在左子树中递归。

数据结构二叉树遍历实验报告

问题一:二叉树遍历 1.问题描述 设输入该二叉树的前序序列为: ABC##DE#G##F##HI##J#K##(#代表空子树) 请编程完成下列任务: ⑴请根据此输入来建立该二叉树,并输出该二叉树的前序、中序和后序序列; ⑵按层次遍历的方法来输出该二叉树按层次遍历的序列; ⑶求该二叉树的高度。 2.设计描述 (1)二叉树是一种树形结构,遍历就是要让树中的所有节点被且仅被访问一次,即按一定规律排列成一个线性队列。二叉(子)树是一种递归定义的结构,包含三个部分:根结点(N)、左子树(L)、右子树(R)。根据这三个部分的访问次序对二叉树的遍历进行分类,总共有6种遍历方案:NLR、LNR、LRN、NRL、RNL和LNR。研究二叉树的遍历就是研究这6种具体的遍历方案,显然根据简单的对称性,左子树和右子树的遍历可互换,即NLR与NRL、LNR与RNL、LRN 与RLN,分别相类似,因而只需研究NLR、LNR和LRN三种即可,分别称为“先序遍历”、“中序遍历”和“后序遍历”。采用递归方式就可以容易的实现二叉树的遍历,算法简单且直观。 (2)此外,二叉树的层次遍历即按照二叉树的层次结构进行遍历,按照从上到下,同一层从左到右的次序访问各节点。遍历算法可以利用队列来实现,开始时将整个树的根节点入队,然后每从队列中删除一个节点并输出该节点的值时,都将它的非空的左右子树入队,当队列结束时算法结束。

(3)计算二叉树高度也是利用递归来实现:若一颗二叉树为空,则它的深度为0,否则深度等于左右子树的最大深度加一。 3.源程序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #include #include #include #define ElemType char struct BTreeNode { ElemType data; struct BTreeNode* left; struct BTreeNode* right; }; void CreateBTree(struct BTreeNode** T) { char ch; scanf_s("\n%c", &ch); if (ch == '#') *T = NULL;

二叉树中序遍历的非递归算法实现

试验五 课程名称实验室名称 实验名称二叉树中序遍历的非递归算法实现 指导教师成绩 1、实验目的 二叉树中序遍历的非递归算法实现 2、实验原理和内容 二叉树中序遍历的非递归算法实现 3、实验步骤 1.链式存储结构的定义和栈结构的定义 2.编写进栈函数push和出栈函数pop实现中序遍历过程中需存储的数的进栈和出栈过程 3.创建一棵二叉树 4.对该二叉树进行中序遍历,采用非递归算法实现

4、程序及运行结果(或实验数据记录及分析)#include #include typedef char datatype; //* 链式存储结构*// typedef struct node{ datatype data; struct node *lchild,*rchild; }bintnode; typedef bintnode *bintree; typedef struct stack{ /* 栈结构定义*/ bintree data[100]; int top; }seqstack; void push(seqstack *s,bintree t) { s->data[s->top]=t; s->top++; } bintree pop(seqstack *s) { if (s->top!=0) { s->top--; return(s->data[s->top]); } else return NULL; } void createbintree(bintree *t) { char ch; if ((ch=getchar())==' ') *t=NULL; else { *t=(bintnode *)malloc(sizeof(bintnode)); (*t)->data=ch; createbintree(&(*t)->lchild); createbintree(&(*t)->rchild); } } void inorder1(bintree t) {

二叉树的建立和遍历实验报告

实验四二叉树的建立和遍历 学院专业班 学号姓名 一.实习目的 1.掌握二叉链表的存储结构; 2.掌握二叉链表的建立; 3.掌握二叉树的先序遍历、中序遍历、后序遍历的递归算法; 4. 掌握二叉树遍历算法的应用; 二.实习内容 1.按先序序列建立二叉树的二叉链表(算法6.4)(空树用#表示) 2.对生成的二叉树分别进行先序遍历、中序遍历、后序遍历,输出结果。 3.统计二叉树中结点个数; 4. 求二叉树的高度; 三.实验步骤 1.定义二叉链表的存储结构 #include "stdio.h" #include "stdlib.h" typedef char TElemType; typedef struct BiTNode { TElemType data; struct BiTNode *lchild, *rchild; // 左右孩子指针 }BiTNode,*BiTree; 2.编写函数CreateBiTree,按先序序列建立二叉树的二叉链表; 测试的字符序列为abdg###e##c#f##; 程序代码为: void CreateBiTree(BiTree &T) { // 算法6.4:按先序次序输入二叉树中结点的值(可为字符型或整型,在主程中定义),构造二叉链表表示的二叉树T。以#表示空树 TElemType ch; scanf("%c",&ch); if(ch=='#') // 空 T=NULL; else { T=(BiTree )malloc(sizeof(BiTNode)); // 生成根结点 if(!T)

exit(-1); T->data=ch; CreateBiTree(T->lchild);// 递归构造左子树 CreateBiTree(T->rchild);// 构造右子树 } } 2. 编写二叉树的先序遍历、中序遍历、后序遍历的递归算法 int preOrderTraverse(BiTree T) { // 初始条件:二叉树T存在,先序递归遍历T; if(T==NULL) return 1; if(T!=NULL) // T不空 {printf("%5c",T->data); // 访问根结点preOrderTraverse(T->lchild);// 先序遍历左子树 preOrderTraverse(T->rchild);// 先序遍历右子树 } } int inOrderTraverse(BiTree T) { // 初始条件:二叉树T存在,中序递归遍历T; if(T==NULL) return 1; if(T!=NULL) // T不空 { inOrderTraverse(T->lchild);// 中序遍历左子树 printf("%5c",T->data); // 访问根结点inOrderTraverse(T->rchild);// 中序遍历右子树 } } int postOrderTraverse(BiTree T) { // 初始条件:二叉树T存在, // 操作结果:后序递归遍历T; if(T==NULL) return 1; if(T!=NULL) // T不空 { postOrderTraverse(T->lchild);// 后序遍历左子树 postOrderTraverse(T->rchild);// 后序遍历右子树 printf("%5c",T->data); // 访问根结点

根据二叉树的后序遍历和中序遍历还原二叉树解题方法

【题目】 假设一棵二叉树的后序遍历序列为DGJHEBIFCA ,中序遍历序列为DBGEHJACIF ,则其前序 遍历序列为( ) 。 A. ABCDEFGHIJ B. ABDEGHJCFI C. ABDEGHJFIC D. ABDEGJHCFI 由题,后序遍历的最后一个值为A,说明本二叉树以节点A为根节点(当然,答案中第一个节点都是A,也证明了这一点) 下面给出整个分析过程 【第一步】 由后序遍历的最后一个节点可知本树根节点为【A】 加上中序遍历的结果,得知以【A】为根节点时,中序遍历结果被【A】分为两部分【DBGEHJ】【A】【CIF】 于是作出第一幅图如下

【第二步】 将已经确定了的节点从后序遍历结果中分割出去 即【DGJHEBIFC】---【A】 此时,位于后序遍历结果中的最后一个值为【C】 说明节点【C】是某棵子树的根节点 又由于【第一步】中【C】处于右子树,因此得到,【C】是右子树的根节点 于是回到中序遍历结果【DBGEHJ】【A】【CIF】中来,在【CIF】中,由于【C】是根节点,所以【IF】都是这棵子树的右子树,【CIF】子树没有左子树,于是得到下图 【第三步】 将已经确定了的节点从后序遍历中分割出去 即【DGJHEBIF】---【CA】 此时,位于后序遍历结果中的最后一个值为【F】 说明节点【F】是某棵子树的根节点 又由于【第二步】中【F】处于右子树,因此得到,【F】是该右子树的根节点

于是回到中序遍历结果【DBGEHJ】【A】【C】【IF】中来,在【IF】中,由于【F】是根节点,所以【I】是【IF】这棵子树的左子树,于是得到下图 【第四步】 将已经确定了的节点从后序遍历中分割出去 即【DGJHEB】---【IFCA】 此时,位于后序遍历结果中的最后一个值为【B】 说明节点【B】是某棵子树的根节点 又由于【第一步】中【B】处于【A】的左子树,因此得到,【B】是该左子树的根节点 于是回到中序遍历结果【DBGEHJ】【A】【C】【F】【I】中来,根据【B】为根节点,可以将中序遍历再次划分为【D】【B】【GEHJ】【A】【C】【F】【I】,于是得到下图

二叉树的遍历及线索化

青岛理工大学数据结构课程实验报告

void PreOrderTraverse(BiTree T,Status(*Visit)(TElemType e)){ if(T){ Visit(T->data);//首先访问根结点 PreOrderTraverse(T->lchild,Visit);//然后递归遍历左子树 PreOrderTraverse(T->rchild,Visit);//最后递归遍历右子树}} //中序遍历时先递归遍历左子树,然后访问根结点,最后递归遍历右子树;后序遍历时先递归遍历左子树,然后递归遍历右子树,最后 访问根结点 3、//先把栈及队列相关操作的头文件包括进来 1)根指针入栈, 2)向左走到左尽头(入栈操作) 3)出栈,访问结点 4)向右走一步,入栈,循环到第二步,直到栈空 //层次遍历时,若树不空,则首先访问根结点,然后,依照其双亲结 点访问的顺序,依次访问它们的左、右孩子结点; 4.首先建立二叉线索存储:包含数据域,左右孩子指针以及左右标志 typedef enum { Link=0,Thread=1 } PointerTag; typedef struct BiThrNode{ TElemType data; struct BiThrNode *lchild,*rchild;//左右孩子指针 PointerTag LTag,RTag;//左右标志 }BiThrNode, *BiThrTree; 建立前驱线索和后继线索,并用中序遍历进行中序线索化,然后最 后一个结点线索化 调 试 过 程 及 实 验 结 果 把测试数据放在f:\\file\\data.txt里,测试数据为:1 2 4 0 0 0 3 5 0 0 0 总访问结点是指访问该结点的数据域,弄清楚各个指针所指的类型

二叉树的遍历(先序遍历、中序遍历、后序遍历全)实验报告

实验目的 编写一个程序,实现二叉树的先序遍历,中序遍历,后序遍历。 实验内容 编程序并上机调试运行。 编写一个程序,实现二叉树的先序遍历,中序遍历,后序遍历。编写程序 /***********二叉树的遍历**************/ #include #include typedef struct BiTNode { char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; /*************************************************/ //按先序次序构建的二叉树链表 void CreatBiTree(BiTree *T) { char ch; if((ch=getchar())==' ') *T=NULL; else { *T=(BiTNode*)malloc(sizeof(BiTNode)); if(!(*T)) exit(1); (*T)->data=ch; CreatBiTree(&(*T)->lchild); CreatBiTree(&(*T)->rchild); }

} /*************************************************/ //先序遍历--递归算法 void PreOrderTraverse(BiTree T) { if(T) { printf("%c",T->data); PreOrderTraverse(T->lchild); PreOrderTraverse(T->rchild); } } /*************************************************/ //中序遍历--递归算法 void InOrderTraverse(BiTree T) { if(T) { InOrderTraverse(T->lchild); printf("%c",T->data); InOrderTraverse(T->rchild); } } /*************************************************/ //后序遍历--递归算法 void PostOrderTraverse(BiTree T) { if(T) { PostOrderTraverse(T->lchild); PostOrderTraverse(T->rchild); printf("%c",T->data); } } /*************************************************/ //main函数 void main() {

相关主题
文本预览
相关文档 最新文档