当前位置:文档之家› 测量误差的分类1.

测量误差的分类1.

测量误差的分类1.
测量误差的分类1.

测量误差的分类,表示方法及检测仪表的品质指标

测量误差:

定义:由仪表读得的被测参数的真实值之间,总是存在一定的差距,这种差距称为测量误差。 分类:(1)系统误差 这种误差的大小和方向不随时间测量过程而改变,这种误差是可以避免的。

(2)疏忽误差 测量者在测量过程中疏忽大意所致,这种误差也可以避免。

(3)偶然误差 这种误差是由一些随机的偶然原因引起的,亦称随机误差。它不易被发觉和修正。 偶然误差的大小反映了测量过程的精度。

表示方法:

式中△ —— 绝对误差

X ——被校表的读数值

X 0——标准表的读数值

Λ——仪表在X 0相对误差

检测仪表的品质指标:

常见的指标简介如下:

(1)检测仪表的准确度(精确度)

б={△max/(标尺上限值-标尺下限值)}×100%

б——相对百分误差

△max ——绝对误差

允许误差是指在规定的正常情况下允许的相对百分误差的最大值,即

б允=±{仪表允许的最大绝对误差值/(标尺上限值-标尺下限值) }×100%

б允越大,准确度越低,б允 越小,仪表的准确度越高。

一般数值越小,仪表的准确度等级越高。

(2)检测仪表的恒定度

恒定度常用变差(回差)来表示

变差={最大绝对差值/(标尺上限值-标尺下限值) }×100%

(3)灵敏度与灵敏限

S=Δα/Δx

式中S——仪表灵敏度

Δα——指针的线位移或角位移

Δx——引起Δα所需的被测参数变化量

(4)反应时间

仪表反应时间的长短,实际上反映了仪表动态特征的好坏。

(5)线性度

线性度用来说明输出量与输入量的实际关系曲线偏离直线的程度。

线性度常用实际测得的输入-输出特征曲线(称为标定曲线)与理论拟合直线之间的最大偏差与检测仪表满量程输出范围之比的百分数来表示,即

б?=(△?max /仪表量程)×100%

式中б?——线性度(非线性误差)

Δ?max——标定曲线对理论拟合直线的最大偏差

(6)重复性

重复性表示检测仪表在被测参数按同一方向作全程连续多次变动时所得标定特性曲线不一致的程度。

бz =(Δz max/仪表量程)×100%

式中бz——重复性误差

Δz max—同方向多次测量时仪表表示值得最大偏差值

测量误差的分类1

测量误差的分类,表示方法及检测仪表的品质指标 测量误差: 定义:由仪表读得的被测参数的真实值之间,总是存在一定的差距,这种差距称为测量误差。 分类:(1)系统误差 这种误差的大小和方向不随时间测量过程而改变,这种误差是可以避免的。 (2)疏忽误差 测量者在测量过程中疏忽大意所致,这种误差也可以避免。 (3)偶然误差 这种误差是由一些随机的偶然原因引起的,亦称随机误差。它不易被发觉和修正。 偶然误差的大小反映了测量过程的精度。 表示方法: 式中△ —— 绝对误差 X ——被校表的读数值 X 0——标准表的读数值 Λ——仪表在X 0相对误差 检测仪表的品质指标: 常见的指标简介如下: (1)检测仪表的准确度(精确度) б={△max/(标尺上限值-标尺下限值)}×100% б——相对百分误差 △max ——绝对误差 允许误差是指在规定的正常情况下允许的相对百分误差的最大值,即 б允=±{仪表允许的最大绝对误差值/(标尺上限值-标尺下限值) }×100% б允越大,准确度越低,б允 越小,仪表的准确度越高。

一般数值越小,仪表的准确度等级越高。 (2)检测仪表的恒定度 恒定度常用变差(回差)来表示 变差={最大绝对差值/(标尺上限值-标尺下限值) }×100% (3)灵敏度与灵敏限 S=Δα/Δx 式中S——仪表灵敏度 Δα——指针的线位移或角位移 Δx——引起Δα所需的被测参数变化量 (4)反应时间 仪表反应时间的长短,实际上反映了仪表动态特征的好坏。 (5)线性度 线性度用来说明输出量与输入量的实际关系曲线偏离直线的程度。 线性度常用实际测得的输入-输出特征曲线(称为标定曲线)与理论拟合直线之间的最大偏差与检测仪表满量程输出范围之比的百分数来表示,即 б?=(△?max /仪表量程)×100% 式中б?——线性度(非线性误差) Δ?max——标定曲线对理论拟合直线的最大偏差 (6)重复性 重复性表示检测仪表在被测参数按同一方向作全程连续多次变动时所得标定特性曲线不一致的程度。 бz =(Δz max/仪表量程)×100% 式中бz——重复性误差 Δz max—同方向多次测量时仪表表示值得最大偏差值

分光光度计测量误差来源分析

分光光度计测量误差来源分析 分光光度计是利用物质对光的选择性吸收进行物质的定性或定量分析的仪器,在各行各业得到了广泛应用,主要用于物质纯度检查、定量分析、物质结构鉴别等。可测量结果总会出现可接受或不可接受的误差,误差来源于测量过程的各个方面,我认为主要来源于仪器本身性能和测量条件的选择两个方面。 1仪器本身性能带来的误差 1.1复色光对比耳定律的偏离 比耳定律成立的前提条件是人射光是单色光,但是精度再高的仪器,即使是双单色器的分光光度计,也只能获得近乎单色的光,无法获得纯单色光,它仍然含有狭窄光通带,具有复色光的性质。而复色光会导致比耳定律的正或负偏离。固定狭缝的紫外分光光度计光谱带宽一般为1nm或2nm,可调狭缝的可以做到0.Inm;可见分光光度计带宽6nm、snm,甚至十几纳米。光谱带宽应该是越小越好,但是随着光谱分辨率的提高,仪器的灵敏度降低,所以选择仪器时要综合考虑各种条件的影响。当溶液浓度较小且单色光较纯时,可近似认为符合比耳定律。 1.2杂散光的影响 杂散光是指进人检测器的处于待测波长光谱带宽范围外的其他波长组分,它是光谱测量中误差的主要来源。产生原因有:分光光度计的色散元件、反射镜、透镜及单色器内壁灰尘等。在分光光度计工作波段边缘波长处,由于单色器透光率、光源辐射强度、检测器灵敏度都较低,杂散光的影响更为显著。杂散光限制仪器的分析上限可引起严重的测量误差,实际工作中,在定量分析时,一般在吸收峰或其附近处测量样品吸光度,如果在分析波长处含有杂散光,这时样品的透光率较小,而杂散光大部分透过,使测量吸光度低于真实吸光度。 1.3仪器噪声对测t的影响 仪器噪声也是仪器的一个重要指标,它表征仪器做稀溶液的能力。是叠加在待测量的分析信号中的不需要的信号,扫描100%T和0%T线,可观察到分光光度计的绝对噪声水平,如果仪器噪声较大,会掩盖较小的测量信号,一般用噪音的二倍来表示仪器的灵敏度。 1.4波长和吸光度准确度 样品的每一个值都是在一定的波长下测得的,如果波长误差很大,测出的值肯定不准。吸光度准确度也是用户对仪器的直接要求,更应引起足够的重视。国家计量检定规程规定双光束紫外可见分光光度计透射比准确度为A级士0.6%,B级土1.0%。 2测量条件的选择

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

测距误差来源及其影响.

§4.3 测距误差来源及其影响 测距误差的大小与仪器本身的质量,观测时的外界条件以及操作方法有着密切的关系。为了提高测距精度,必须正确地分析测距的误差来源,性质及大小,从而找到消除或削弱其影响的办法,使测距获得最优精度。 4.3.1 测距误差的主要来源 由(4-3)式可知,相位式测距的基本公式为 )2(210π ?Φ+=N n c f D (4-23) 式中 n c c ?=0 将其线性化并根据误差传播定律得测距误差 2222202240Φ??? ? ?+????????????? ??+???? ??+???? ??=m n m f m c m D M n f c D πλ (4-24) 式中 0c ——光在真空中传播的速度; f ——测尺频率; n ——大气折射率; Φ——相位; λ——测尺波长。 上式表明,测距误差D M 是由以上各项误差综合影响的结果。实际上,观测边长S 的中误差S M 还应包括仪器加常数的测定误差K m 和测站及镜站的对中误差l m ,即 222222202240l K n f c S m m m n m f m c m D M ++??? ??+?? ??????????? ??+???? ??+???? ??=Φπλ (4-25) 上式中的各项误差影响,就其方式来讲,有些是与距离成比例的。如0c m ,f m 和n m 等,我们称这些误差为“比例误差”;另一些误差影响与距离长短无关。如Φm ,K m 及l m 等,我们称其为“固定误差”。另一方面,就各项误差影响的性质来看,有系统的,如0c m ,f m ,K m 及n m 中的一部分;也有偶然的,如Φm ,l m 及n m 中的另一部分。对于偶然性误差的影响,我们可以采取不同条件下的多次观测来削弱其影响;而对系统性误差影响则不然,但我们可以事先通过精确检定,缩小这类误差的数值,达到控制其影响的目的。 4.3.2 比例误差的影响

测量误差及其处理的基本知识

第五章 测量误差及其处理的基本知识 1、测量误差的来源有哪些?什么是等精度测量? 答:测量误差的来源有三个方面:测量仪器的精度,观测者技术水平,外界条件的影响。该三个方面条件相同的观测称为等精度观测。 2、什么是系统误差?什么是偶然误差?它们的影响是否可以消除? 答:系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。系统误差的影响采取恰当的方法可以消除;偶然误差是必然发生的,不能消除,只能削弱偶然误差的影响。 3、举出水准测量、角度测量及距离测量中哪些属于系统误差? 答:水准仪的i 角误差,距离测量时钢尺的尺长误差,经纬仪的视准轴误差、横轴误差和竖盘指标差等都属于系统误差。 4、评定测量精度的指标是什么?何种情况下用相对误差评定测量精度? 答:测量中最常用的评定精度的指标是中误差,其绝对值越大精度越低。当误差大小与被量测量的大小之间存在比例关系时,采用相对误差作为衡量观测值精度的标准。例如距离丈量,采用往返丈量的相对误差作为评定精度的指标。 所谓相对中误差(简称相对误差)就是中误差之绝对值(设为|m|)与观测值(设为D )之比,并将分子化为1表示K =| |/1||m D D m = 。 5、观测值中误差如何计算? 答:设在相同条件下对某量进行了n 次观测,得一组观测值L 1、L 2、……Ln ,x 为观测值的算术平均值, i v 表示观测值改正数,即 11L x v -= 22L x v -= ...... n n L x v -= 则中误差 [] 1-±=n vv m 6、算术平均值及其中误差如何计算?

水准测量的误差来源及控制

水准测量的误差来源及控制

浅析水准测量的误差来源及控制方法 0勘察设计过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS 3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。通过工程实践证明,这一方法经常出现错误,节选五个水准点连续错误中的一个测段结果如表1.1和1.2所示: 表1.1 廊泊一级公路BM4至BM5水准点外业测量结果 点号 后视 视线高 间视 前视 高程 点号 后视 视线高 间视 前视 高程 BM4 3.300

3.286 15.529 557.8 1.483 15.765 1.450 14.282 254.6 1.442 14.308 600 1.386 14.379

1.424 14.326 650 1.357 14.408 314.6 1.425 15.715 1.460 14.290 700 1.672 16.005

14.333 344.6 1.420 14.295 750 1.482 14.523 374.6 1.387 14.328 800

误差的定义及分类

一、测量误差:测量结果减被测量的真值(测量的期望值)之差。1)即:测量误差=测量结果-真值;对测量仪器:示值误差=仪器示值-标准示值。 2)测量误差通常通常可用示值的绝对误差、相对误差及引用误差(折合误差)来表示。 3)按照测量误差的基本性质不同,可将误差分为三大类:系统误差、随机误差和疏失误差。 二、约定真值:是一个接近真值的值,它与真值之差可忽略不计。实际测量中以在没有系统误差的情况下,足够多次的测量值之平均值作为约定真值。一般由国家基准或当地最高计量标准复现而赋予该特定量的值。 三、标称范围:标称范围是指测量仪器的操纵器件调到特定位置时可得到的示值范围(定值)。 四、精度等级:在正常的使用条件下,仪表测量结果的准确程度叫仪表的准确度。 1)引用误差越小,仪表的准确度越高,而引用误差与仪表的量程范围有关,所以在使用同一准确度的仪表时,往往采取压缩量程范围以减小测量误差,精度等级是以它的允许误差占表盘刻度值的百分数来划分的,其精度等级数越大允许误差占表盘刻度极限值越大。量程越大,同样精度等级的,它测得压力值的绝对值允许误差越大。 2)在工业测量中,为了便于表示仪表的质量,通常用准确度等级

来表示仪表的准确程度.准确度等级就是最大引用误差去掉正,负号及百分号.准确度等级是衡量仪表质量优劣的重要指标之一。3)我国工业仪表等级分为,,,,,,七个等级,并标志在仪表刻度标尺或铭牌上.仪表准确度习惯上称为精度,准确度等级习惯上称为精度等级。 绝对误差:测量结果与被测量[约定]真值(标准表读数)之差。 1)公式:△:绝对误差,L:测量值,A:真值(标准表读数)△= L- A 2)绝对误差的缺点:并不能完全表示近似值的好坏程度,例如:x=10±1,y=1000±5,哪一个精度高呢看上去x的绝对误差限比y的绝对误差限小,似乎x的精度高,其实不然。 四、相对误差:测量的绝对误差与被测量[约定]真值(标准表读数)之比的百分数所得的数值,以百分数表示。 1)由于测量值的真值是不可知的,因此其相对误差也是无法准确获知的,我们提到相对误差时,指的一般是相对误差限,即相对误差可能取得的最大值(上限)。指绝对误差在真实值中所占的百分率。他是相对于仪表某一点真值(标准表读数)的一种误差。2)公式:r:相对误差,△:绝对误差,A:真值(标准表读数)r=△/ A% 五、引用误差(折合误差):测量的绝对误差与仪表的满量程值之比,称为仪表的引用误差,它常已百分数表示。 1)引用误差是仪表中通用的一种误差表示方法,他是相对于仪表满

§1.3误差及其分类

§1.3误差及其分类 一、 误差 在确定的条件下,待测量具有的客观实际值,用0x 表示。在具体的测量过程中,无论怎样改进实验方法、提高议器精度和操作人员的水平,由于各种条件的限制,如环境影响等因素的局限,方法不可能完美无缺,仪器精度总是有限的,甚至物理量本身的起伏,待测量值和真值之间总是存在一定的差异,这一差异叫误差。误差来源于有效数字的估读位,误差常用绝对误差和相对误差来描述。 绝对误差:若用0x 表示真值,用x 表示测量值,则测量值x 与真值0x 之差称为绝对误差。表示为: 0x x x -=? 它反映了测量值偏离真值的大小和方向,单位与测量值的单位相同,一般取一位有效数字。 相对误差:就是绝对误差与真值之比,用下式表示: %100x x x ??=δ 它反映了测量值偏离真值的相对大小,相对误差是没有单位的,可以用来比较不同单位的几个物理量的相对精度,一般取2位有效数字。 测量永远不可能得到真值, 在估算误差和评定测量结果时,用“约定真值”代替真值。约定真值是指对于给定的测量目标而言,被认为充分接近真值,可以用来代替真值的量值。一般用被测量的公认值、测量值的平均值和高等级仪器的测量值作为被测量的“约定真值”。在我们大学物理实验中,用测量列平均值作为真值的“约定真值”或者最佳值。 二、 误差的分类 按照误差的来源和性质的不同,一般将误差分为:系统误差、过失误差和偶然误差三类。 (一)系统误差 系统误差:是指实验系统(测量系统)在测量过程中和在取得其结果的过程中存在恒定的或按一定规律变化的误差。如秒表偏快,表盘刻度不均匀,米尺的刻度偏大,天平不等臂,米尺因为环境温度的变化导致米尺本身的伸缩,等等,这些均为仪器本身结构或环境变化导致的恒定误差;又如在测量电阻的阻值时,电阻上因通过电流而发热,从而导致了电阻阻值的变化,这种变化是有一定规律的。因此这种误差便属于按一定规律变化的系统误差。 系统误差包含:仪器误差、仪器零位误差、理论和方法误差、环境误差和人为误差等。 1.仪器误差:由于仪器制造的缺陷,使用不当或者仪器未经很好校准所造成的误差。 如秒表偏快、表盘刻度不均匀、尺子的刻度偏大、米尺因为环境温度的变化导致米尺本身的伸缩、砝码未经校准、仪器的水平或铅直未调整等造成示值与真值之间的误差,统称为仪器误差。 2.仪器零位误差:在使用仪器时,仪器零位未校准所产生的误差。如千分尺当两个砧头刚好接触时千分尺上有读数;电表流表在没有电流流过时电流表上有读数,这些都是因为仪器的零位不准而引起的误差,称为仪器误差。 3.理论和方法误差:实验所依据的理论和公式的近似性;实验条件或测量方法不能满足理论公式所要求的条件等引起的误差。实验中忽略了摩擦、散热、电表的内阻等引起的误差都属于这一类。

测量误差及其处理的基本知识.

第5章 测量误差及其处理的基本知识 学习重点:测量误差的分类和偶然误差的性质、评定精度的指标、算术平均值及其中误差的计算。 5.1测量误差概述 5.1.1测量误差的来源与分类 一、 观测值及其误差 测量获得的数据称为观测值,观测值i L 与真值X 之差即为观测值的真误差i ?: i ?=i L -X (i =1、2、3...n ) (5-1) 二、 测量误差的来源 产生测量误差的来源有以下三个方面: (1) 仪器性能的限制; (2) 观测者本身的限制; (3) 外界条件的影响。 三、测量误差的分类 根据对测量成果影响的性质,可将误差分为以下两类: (一)系统误差 系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。只要采取恰当的方法就可以将系统误差的影响予以消除。 (二)偶然误差 偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。偶然误差总是不可避免地存在于观测值中。 5.1.2偶然误差的特性 偶然误差具有以下特性: 1.在一定的观测条件下,偶然误差的绝对值不会超过一定的限度; 2.绝对值小的误差比绝对值大的误差出现的机会大; 3.绝对值相等的正误差和负误差出现的机会相等; 4.当观测次数无限增多时,偶然误差的算术平均值趋近于零,即

5.2 评定精度的指标 测量中最常用的评定精度的指标是中误差。 一、 中误差 设在相同条件下,对真值为X 的量作n 次观测,每次观测值为i L ,其真误差i ?: i ?=i L -X (i =1,2,3...n ) (5-5) 则中误差m 的定义公式为 m = []n ??± (5-6) 在使用中误差评定观测值的精度时,需要注意以下几点: (1) 观测值的精度必须相等,且个数较多。 (2) 依据(5-6)式计算的中误差,代表一组等精度观测中每一个观测值的精度。 (3) 中误差数值前应冠以“±”号。 例如,有甲、乙两组各含10个观测值,其真误差分别为 甲组: +3,-2,-4,+2,0,-4,+3,+2,-3,-1 乙组: 0,-1,-7,+2,+1,+1,-8,0,+3,-1 则依据(5-6)可计算两组观测值的中误差分别为: 7.210) 1323402423(222222222±=+++++++++±=甲m 6.310 ) 1308112710(22222222±=+++++++++±=乙m 即知,甲乙两组中每个观测值的精度可分别以7.2±和6.3±表示,而同一组中真误差的差异,只是偶然误差的反映。由于乙甲m m <,所以,甲组观测值较乙组观测值的精度高。 二、 容许误差 通常规定以两倍(要求较严)或三倍(要求较宽)中误差作为偶然误差的容许误差或限差,即 限?=2~3m (5-9) 三、 相对误差

误差及其表示方法

误差及其表示方法 误差——分析结果与真实值之间的差值( > 真实值为正,< 真实值为负) 一. 误差的分类 1. 系统误差(systermaticerror )——可定误差(determinateerror) (1)方法误差:拟定的分析方法本身不十分完善所造成; 如:反应不能定量完成;有副反应发生;滴定终点与化学计量点不一致;干扰组分存在等。 (2)仪器误差:主要是仪器本身不够准确或未经校准引起的; 如:量器(容量平、滴定管等)和仪表刻度不准。 (3)试剂误差:由于世纪不纯和蒸馏水中含有微量杂质所引起; (4)操作误差:主要指在正常操作情况下,由于分析工作者掌握操作规程与控制条件不当所引起的。如滴定管读数总是偏高或偏低。 特性:重复出现、恒定不变(一定条件下)、单向性、大小可测出并校正,故有称为可定误差。可以用对照试验、空白试验、校正仪器等办法加以校正。 2. 随机误差(randomerror)——不可定误差(indeterminateerror) 产生原因与系统误差不同,它是由于某些偶然的因素所引起的。 如:测定时环境的温度、湿度和气压的微小波动,以其性能的微小变化等。 特性:有时正、有时负,有时大、有时小,难控制(方向大小不固定,似无规律) 但在消除系统误差后,在同样条件下进行多次测定,则可发现其分布也是服从一定规律(统计学正态分布),可用统计学方法来处理 系统误差——可检定和校正 偶然误差——可控制

只有校正了系统误差和控制了偶然误差,测定结果才可靠。 二. 准确度与精密度 (一)准确度与误差(accuracy and error) 准确度:测量值(x)与公认真值(m)之间的符合程度。 它说明测定结果的可靠性,用误差值来量度: 绝对误差 = 个别测得值 - 真实值 (1) 但绝对误差不能完全地说明测定的准确度,即它没有与被测物质的质量联系起来。如果被称量物质的质量分别为1g和0.1g,称量的绝对误差同样是0.0001g,则其含义就不同了,故分析结果的准确度常用相对误差(RE%)表示: (2) (RE%)反映了误差在真实值中所占的比例,用来比较在各种情况下测定结果的准确度比较合理。 (二)精密度与偏差(precision and deviation) 精密度:是在受控条件下多次测定结果的相互符合程度,表达了测定结果的重复性和再现性。用偏差表示: 1. 偏差 绝对偏差:(3) 相对偏差:(4) 2. 平均偏差 当测定为无限多次,实际上〉30次时: 总体平均偏差(5) 总体——研究对象的全体(测定次数为无限次) 样本——从总体中随机抽出的一小部分 当测定次数仅为有限次,在定量分析的实际测定中,测定次数一般较小,<20

测量误差产生的原因及其避免途径

测量误差产生的原因及其避免途径 作者:葛红 来源:《职业·下旬》2010年第10期 测量工作的实践表明,在任何几何量测量工作中,无论是测角、测高还是测量距,当对同一量进行多次观测时,不论测量仪器多么精密,观测进行得多么仔细,测量结果总是存在着差异,彼此不相等。测量误差的来源与下列因素有关:基准件的误差、测量方法的误差、计量器具的误差、测量环境以及测量人员引起的误差等。 一、基准件的误差 任何基准都不可避免存在误差,当用它作基准时,其误差会带入测量值中。因此,在选择基准件时,一般都希望基准件的精度选高一些。但是,基准件的精度太高也不经济,在生产实践中一般取基准件的误差占总测量误差的1/5~1/3。 二、测量方法误差 方法误差是指测量时选用的测量方法不完善而引起的误差。测量时,采用的测量方法不同,产生的测量误差也不一样。例如,测量大型工件的直径,可以采用直接测量法,也可以采用测量弦长和弓高的间接测量法,其测量误差是不相同的。直接测量与间接测量相比较,前者的测量误差只取决于被测参数本身的计量与测量环境和条件所引起的误差;而后者则取决于被测参数有关的各个间接测量参数的计量器具与测量环境和条件所引起的误差,以及它们之间的计算误差。 三、计量器具的误差 1.理论误差 由于仪器设计时,经常采用近似机构代替理论上所要求的运动机构,用均匀刻度的刻度尺近似的代替理论上要求非均匀刻度的刻度尺,或者仪器设计时违背阿贝原则等,这样造成的误差称理论误差。 2.仪器制造和装配调整误差 仪器零件的制造误差和装配调整误差都会直接引起仪器误差。例如,仪器读数装置中刻度尺、刻度盘的刻度误差和装配时的偏斜或偏心引起的误差;仪器传动装置中杠杆、齿轮副、螺旋副的制造误差以及装配误差;光学系统的制造、调整误差;传动件间的间隙、导轨的平面度、直线度误差等。这些都会影响仪器的示值误差和稳定性。

仪器仪表精度等级的划分标准误差

误差、仪表精度等级的概念 一、测量误差:测量值与真实值之间存在的差别。 真值:一个变量本身所具有的真实值,它就是一个理想的概念,一般就是无法得到的。 在计算误差时,一般用约定真值或相对真值来代替。 约定真值:一个接近真值的值,它与真值之差可忽略不计。实际测量中以在没有系统误差的情况下,足够 多次的测量值之平均值作为约定真值。 相对真值:指当高一级标准器的误差仅为低一级的1/3以下时,可认为高一级的标准器或仪表示值为低一级 的相对真值。 绝对误差的实质,就是仪表读数与被测参数真实值之差。 仪表的绝对误差只能就是读数与约定真值或相对真值之差。 相对误差:仪表的绝对误差与真值的百分比。 引用误差:绝对误差与仪表量程的百分比。 仪表精度等级

又称准确度级,就是按国家统一规定的允许误差大小划分成的等级。引用误差的百分数分子作为等级标志。 我国仪表精度等级有:0、005、0、02、0、05、0、1、0、2、0、35、0、4、0、5、1、0、1、5、2、5、4、0等。 级数越小,精度(准确度)就越高。 二、电工仪表的精度等级 电工测量指示仪表在额定条件下使用时,其最大基本误差的百分数称为仪表精度等级a的百分数,即±a%=(ΔXm/Xm)×100%。 其中,ΔXm为最大绝对误差,Xm为仪表的基本量程。 国家标准规定,电压表与电流表的精度等级分0、05、0、1、0、2、0、3、0、5、1、0、1、5、2、0、2、5、3、0、5、0等十一级; 功率表与无功功率表的精度等级分0、05、0、1、0、2、0、3、0、5、1、0、1、5、2、0、2、5、3、5等十级; 频率表的精度等级分0、05、0、1、0、15、0、2、0、3、0、5、1、0、1、5、2、0、2、5、5、0等十一级。 测量时,仪表全量程范围内的指示误差不得超过最大基本误差。 三、对于仪表精度需说明的问题 1、仪表的精度并非测量精度。仪表运用在满刻度偏转时,相对误差较小。

GPS测量的主要误差来源及其影响(精)

第五章 GPS卫星定位系统误差来源及影响 第五章GPS卫星定位系统误差来源及影响了解卫星星历误差,卫星钟差及相对论效应。理解接收机钟误差,相位中心位臵误差的产生与消减方法。掌握电离层折射误差、对流层折射误差、多路径误差的产生与消减方法。 第五章GPS卫星定位系统误差来源及影响第一节GPS定位的误差概述 第二节与卫星有关的误差 第三节卫星信号传播误差 第四节接收设备误差 第五节卫星几何图形强度3 第一节GPS定位的误差概述4 第二节与卫星有关的误差 一、卫星星历误差二、卫星钟差 三、相对论效应 GPS卫星的发射 第二节与卫星有关的误差 一、卫星星历误差 1.星历来源 2.星历误差对定位的影响 3.减弱星历误差影响的途径 GPS卫星工作星座 第二节与卫星有关的误差 1.星历来源 卫星星历误差 某一瞬间的卫星位臵,是由卫星星历提供的,卫星星历误差就是卫星位臵的确定误差。 星历误差来源 其大小主要取决于卫星跟踪站的数量及空间分布、观测值的数量及精度、轨道计算时所用的轨道模型及定轨软件的完善程度。 第二节与卫星有关的误差 1.星历来源 星历 (1)广播星历 (2)实测星历广播星历根据美国GPS控制中心跟踪站的观测数据进行外推,通过GPS卫星发播的一种预报星历。

实测星历根据实测资料进行拟合处理而直接得出的星历。 7 第二节与卫星有关的误差 2.星历误差对定位的影响单点定位 星历误差的径向分量作为等价测距误差进入平差计算,配赋到星站坐标和接收机钟差改正数中去,具体配赋方式则与卫星的几何图形有关。 8 第二节与卫星有关的误差 2.星历误差对定位的影响 相对定位 利用两站的同步观测资料进行相对定位时,由于星历误差对两站的影响具有很强的相关性,所以在求坐标差时,共同的影响可自行消去,从而获得高精度的相对坐标。 第二节与卫星有关的误差 2.星历误差对定位的影响 根据一次观测的结果,可以导出星历误差对定位影响的估算式为: dbds b b ——基线长; db ——卫星星历误差所引起的基线误差;p ——卫星至测站的距离;ds ——星历误差; ds ——卫星星历的相对误差。 第二节与卫星有关的误差 3.减弱星历误差影响的途径 (1)建立自己的GPS卫星跟踪网独立定轨 (2)相对定位 (3)轨道松弛法 9 第二节与卫星有关的误差 二、卫星钟的钟误差卫星钟采用的是GPS 时,但尽管GPS卫星均设有高精度的原子钟(铷钟和铯钟),它们与理想的GPS时之间仍存在着难以避免的频率偏差或频率漂移,也包含钟的随机误差。这些偏差总量在1ms以内,由此引起的等效距离可达300km。 11 第二节与卫星有关的误差 二、卫星钟的钟误差卫星钟差的改正 卫星钟差可通过下式得到改正:ts a0a1(t t0)a2(t t0)2

测量误差的来源分析

龙源期刊网 https://www.doczj.com/doc/a06428601.html, 测量误差的来源分析 作者:高军妮 来源:《价值工程》2011年第01期 摘要:在测量过程中,无论是直接测量还是间接测量,都无法做到完全消除测量误差。 测量误差的来源是多方面的,本文通过对测量误差主要来源的分析,以有效的对其产生来源进行控制,以减少测量误差的产生。 Abstract: In the measurement process, Whether it is direct measurement or indirect measurement, it can not be completely eliminated measurement error. There are many sources of measurement error, and this paper analysises the main source of measurement error to effectively control the sources of its production to reduce the measurement error generated. 关键词:测量误差;方法;环境 Key words: measurement error;method;environment 中图分类号:TH12 文献标识码:A文章编号:1006-4311(2011)01-0032-01 1测量误差的定义 在测量过程中,由于测量器具本身的误差以及测量方法、测量环境等因素制约,导致测得值与被测真值之间存在一定的差异,这种差异称为测量误差。 2测量误差来源分析及措施 测量误差的来源是多方面的,影响测量误差的产生,主要有下几个方面因素: 2.1 测量器具误差测量器具误差包括测量器具本身的原理误差和制造误差。①原理误差。测量器具在设计时,经常采用近似的实际工作原理代替理论的工作原理所造成的测量误差,称为原理误差。为了减少测量误差,一般在仪器设计时都进行了修正。②制造误差。测量器具一般是由多个零部件组成的,在制造和安装中不可避免的存在误差,这种误差即为制造误差。因此在测量工件时,要选择测量误差小的测量器具或带有修正值的测量器具,以减少测量误差。 2.2 测量方法误差测量方法误差主要包括对准误差、测量力误差、阿贝误差及定位安装方法误差四个方面。 2.2.1 对准误差对准误差分为被测量对准误差和读数对准误差两种。①被测量对准误差主 要是因定位不准确,测量方向偏离被测尺寸所造成的误差。例如:测量方向倾斜,侧头偏移

减小测量误差的方法总结

减小测量误差的方法总结 摘要:本文通过知识回顾法、查阅资料法、总结法,介绍了测量误差的基本概念和来源,从不同角度归纳出误差的分类,并从如何弥补仪器缺陷、减小系统误差和随机误差方面做详细介绍。 关键词:测量误差误差来源减小误差 一、测量误差的概念和来源 (一)测量误差的概念 在测量时,测量结果与实际值之间的差值叫误差。真实值是客观存在的,是在一定时间下体现事物的真实数据。测量值是测量所得的结果。这两者之间总是或多或少的存在一定的差异,就是测量误差。 (二)测量误差的主要来源 1.外界条件 外界的温度、湿度、大气折射等对观测结果都会产生影响。 2.仪器条件 仪器制造产生的精度缺陷。 3.观测者自身条件 每个人都有自己的鉴别能力,一定的分辨率和技术条件,在仪器安置、照准、读数等方面可能会产生误差。 二、测量误差的分类及简单介绍 (一)按表示方法 1.绝对误差:是示值与被测量真值之间的差值。 设被测量的真值为A0,器具的示值为x,则绝对误差Δx为: Δx=x-A0 (1)由于一般无法求得真值A0,在实际应用中,常用精度高一级的标准器具的示值A代替之。X与A之差常称为器具的示值误差。记为: Δx=x-A (2)通常以此值代表绝对误差。 绝对误差一般适用于标准器具的校准。 2.相对误差:是相对误差Δx与被测量的约定值之比,它较绝对误差更能确切地说明测量精度。 3.容许误差:是根据技术条件的要求,规定某一类器具误差不应超过的最大范围。

(二)按误差出现的规律分类 1.系统误差 其变化规律服从某种已知函数。系统误差主要由以下几个方面引起:材料、零部件及工艺缺陷;环境温度、湿度、压力的变化以及其他外界干扰等。 系统误差表明了一个测量结果偏离真值或实际值的程度。系统误差越小,测量就越正确。 2.随机误差 又称偶然误差,其变化规律未知。随机误差是由很多复杂因素的微小变化的总和所引起的,具有随机变量的一切特点,在一点条件下服从统计规律。因此,通过多次测量后,对其总和可以用统计规律来描述,则可从理论上估计对测量结果的影响。 随机误差表现了测量结果的分散性。在误差理论中,常用精密度一词来表征随机误差的大小。随机误差越小,精密度越高。 3.粗大误差 是指在一定条件下测量结果显着地偏离其实际值所对应的误差。在测量及数据处理中,如发现某次测量结果所对应的误差特别大或小时,应认真判断误差是否属于粗大误差,如是,该值应舍去不用。 三、测量误差的减小 下面将从测量误差的三个主要来源:仪器条件、外界条件、观测者自身条件,进行分析如何减小测量误差。 (一)弥补仪器缺陷 由于仪器本身的缺陷带来测量误差,如零点偏离,为了减小测量误差,首先就得考虑弥补仪器的缺陷。可以由以下的方法: 1.替代法 替代法是指在测量装置上对某一带测量进行测量后,立即将带测量与标准量进行交换,再次进行测量,利用函数关系,从而得出测量的值。即在测量装置上对某一带测量进行测量后,再次进行测量,并调到同样的情况,从而得出带测量等于标准量。例如,用电桥测量电阻时,调平衡后,把被测电阻用可变标准电阻替换,调标准电阻值使电桥再次达到平衡,则标准电阻的示值即为被测电阻的阻值。这样可消除用此电桥自身可能存在的误差。 2.对称观测法

GPS测量误差来源

GPS组成及GPS测量误差来源 GPS的组成 GPS的整个系统由空间部分、地面控制部分和用户部分所组成。 空间部分 GPS的空间部分是由24颗GPS工作卫星所组成,这些GPS工作卫星共同组成了GPS卫星星座,其中21颗为可用于导航的卫星,3颗为活动的备用卫星。这24颗卫星分布在6个倾角为55°的轨道上绕地球运行。卫星的运行周期约为12恒星时。每颗GPS工作卫星都发出用于导航定位的信号。GPS用户正是利用这些信号来进行工作的。 控制部分 GPS的控制部分由分布在全球的由若干个跟踪站所组成的监控系统所构成,根据其作用的不同,这些跟踪站又被分为主控站、监控站和注入站。主控站有一个,位于美国克罗拉多(Colorado)的法尔孔(Falcon)空军基地,它的作用是根据各监控站对GPS的观测数据,计算出卫星的星历和卫星钟的改正参数等,并将这些数据通过注入站注入到卫星; 同时,它还对卫星进行控制,向卫星发布指令,当工作卫星出现故障时,调度备用卫星,替代失效的工作卫星工作;另外,主控站也具有监控站的功能。监控站有五个,除了主控站外,其它四个分别位于夏威夷(Hawaii)、阿松森群岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),监控站的作用是接收卫星信号,监测卫星的工作状态;注入站有三个,它们分别位于阿松森群岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),注入站的作用是将主控站计算出的卫星星历和卫星钟的改正数等注入到卫星中去。 用户部分 GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机气象仪器等所组成。它的作用是接收GPS卫星所发出的信号,利用这些信号进行导航定位等工作。以上这三个部分共同组成了一个完整的GPS系统 GPS信号及观测值 GPS信:GPS卫星发射两种频率的载波信号,即频率为1575.42MHz的L11227.60HMz的L2载波,它们的频率分别是基本频率10.23MHz的154倍和12倍,它们的波长分别为19.03cm和24.42cm。在L1和L2上又分别调制着多种这些信号主要有:C/A码和P码 C/A码 C/A又被称为粗捕获码,它被调制在L1载波上,是1MHz的伪随机噪声码(PR 码),其码长为1023位(周期为1ms)。由于每颗卫星的C/A码都不一样,此,我们经常用它们的PRN号来区分它们。C/A码是普通用户用以测定测站到卫星间的距离的一种主要的信号。

测量误差的来源

测量误差的来源: 仪器误差,影响误差,理论误差和方法误差,人身误差,测量对象变化误差。 频率测量时的误差来源:量化误差,触发误差和标准频率误差。 绝对误差:实测值与真值的差相对误差:绝对误差与真值之比 测量系统的动态模型:微分方程,传递函数,频率响应函数。 测量的基本要素及相互作用:被测对象,测量仪器,测量技术,测量人员和测量环境。 测量的对象是被测的客体中取出的信息;测量仪器系统包括测量器具与标准器;测量技术是根据被测对象和测量要求采用的测量原理、方法及相应技术措施;测量人员是获取信息和实施测量的主体;测量环境是测量所处空间的一切物理和化学条件的总和。 扫描:示波器光点在锯齿波电压的作用下扫动的过程称为扫描。 扫描正程:光点自左向右的连续扫动称为扫描正程。 扫描回程:光点自荧光屏右端迅速返回起扫点称为扫描回程。 实时采样:在信号实际经历的时间内完成了全部采样,称为实时采样。 非实时采样:需经过若干次信号波形才完成采样,称为非实时采样。 自动测试系统是指在人工最少参与的情况下,能自动进行测量、数据处理,并以适当方式显示或输出测试结果的系统。 测量是以确定量值为目的的一组操作。在操作过程中常借助专门的设备,把被测对象直接或间接地与同类已知单位进行比较,取得用数值和单位共同表示的测量结果 计量是实现单位统一、量值准确可靠地活动。其主要特点是统一性,准确性和法制性。 测量与计量的联系:没有测量就谈不上计量,没有计量测量就失去了价值。 测量不确定度是表征合理的赋予被测量之值的分散性,与测量结果相联系的参数。 当用标准偏差表示不确定度时,称为标准不确定度。当规定一个区间,被测之值的分布大部分可望含于此区间时,把此区间定为扩展不确定度。 测量不确定度从评定方法上分可分为:不确定度的A类评定和B类评定。 扫频图示仪的基本原理:扫频信号发生器输出频率随扫频电压变化的扫频信号,该信号进入被测系统后,被测系统的输出信号经峰值检波,获得被测系统的幅频特性,经放大被加至显示器Y输入端。同时,扫描电压发生器产生的扫频电压被加至显示器的X输入端,用来显示代表频率的横轴。X,Y轴相互配合,即可得到被测系统的幅频特性曲线。 幅频特性曲线的增辉信号是幅频特性电压v2与光栅电压v1比较产生的。二者在比较微分器中比较,当二者幅值相等时,比较器输出的信号经微分产生窄脉冲信号,即幅频特性曲线的增辉信号。 频谱分析仪分辨力带宽:反映了该滤波器能够区分两个相同幅度、不同频率的信号的能力。模拟(通用)示波器的基本组成及工作原理 基本组成包括示波管(电子枪,偏转系统,荧光屏),Y通道(输入电路,Y前置放大器,延迟线,Y后置放大器)和X通道(触发电路,扫描电路,水平放大器)。 Y通道输入被测信号,经放大器放大后加到Y偏转板。 X通道通过扫描发生器环产生扫描信号,经放大器放大后加到X偏转板; 电子枪中阴极发射大量电子,由栅极和阳极调节电子密度、速度并进行聚焦。经偏转板后打在荧光屏上,利用荧光物质的余辉效应和人眼的视觉残留效应,可以看到荧光屏上连续的波形。

误差的种类及其表示方法

误差的种类及其表示方法 在土工测试中,由于测试者读数和记录的严重失误,或者由于仪器仪表的突然波动以及实验条件的突然变化,都会造成异常的测试结果。通常,把是否超过三倍标准差作为剔除数据的依据。 每一剪切试验会得到一组c、φ的测试结果。在进行数理统计时,如果发现一组测试结果中的c(或φ)值为异常数据,是把该c(或φ)值单拙剔除而保留其φ(或c),还是应该把整纽c、φ值予以剔除? 在审查时经常发现一些勘察报告的物理力学性指标统计表中c和φ的数量不一致,估计是剔除数据时把c(或φ)异常值单独剔除而保留其φ(或c)。我个人觉得不妥,因为是用一组数据,如有异常应一起剔除。不知道这样理解对不对。 答复: 你的审图还是挺仔细的,你可以问问勘察单位为什么出现c和φ的数据量不一样的情况,同时进行正确的指导,虽然这不属于强制性条文的审查,但可以认为是一种指导和帮助吧。 你提出了资料整理的一个基本问题,即如何处理离散性比较大的数据,主要应该处理的是实测数据,而不是统计得到的指标。 试验数据是一种物理量,通常物理量的真值是不知道的,是需要测定的值。但由于量测仪器、试验方法、试验环境、人的观察力和测量的程序等都不可能完美无缺,故真值是无法测得的。实验科学中的真值定义为在无系统误差的条件下,用足够多次的观测,可以获得接近于真值的数值,即观测次数无限多时得到的平均值,一般称为最佳值。 观测值与真值之差称为误差。误差分为系统误差、偶然误差和过失误差三类。 系统误差是指测定中未被发觉或未被确认的因子所引起的误差。引起系统误差的原因一般认为是由于仪器不良,如刻度不准、砝码未校正;试验环境的变化,如温度、压力、湿度的变化;操作人员的习惯,如习惯从侧面读数等。可以用校正仪器,控制环境和改正不良习惯来消除系统误差。 偶然误差是指在已消除系统误差的条件下,但所测的数据仍在末一位或末二位数字上有差别,则称这种误差为偶然误差。偶然误差的特点是时大时小,时正时负,方向不一定;偶然误差产生的原因不清楚,因此无法控制。但如用同一精度的仪器,在同一条件下,对同一物理量作多次测量,若测量的次数足够多,则可发现偶然误差完全服从统计规律,偶然误差的算术平均值将逐渐接近于零。偶然误差可以用误差理论进行处理。 过失误差又称粗差,是完全由人为因素造成,如粗枝大叶、过度疲劳或操作不正确等因素。消除过失误差的方法是提高工作人员的责任感,健全工作制度,加强对数据的审核。 误差的表示方法通常有下列四种。 (1)范围误差 范围误差是指一组测量中最高值与最低值之差,表示最大的误差有多大,但不能作测定值之间的相互比较。最大误差系数是范围误差与测定值的平均值之比。 这种表示方法的缺点只与两极端值有关,而与测量次数无关。 (2) 算术平均误差δ 算术平均误差由下式计算: 算术平均误差的缺点是无法表示出各次测量间离散的情况。

相关主题
文本预览
相关文档 最新文档