当前位置:文档之家› 用时差法测量空气中的声速

用时差法测量空气中的声速

用时差法测量空气中的声速
用时差法测量空气中的声速

声速测定以及声速数据处理

【实验目的】 1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。 2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。 3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。 【实验原理】 在波动过程中波速V 、波长λ和频率f 之间存在着下列关系:λ?=f V ,实验中可通过测定声波的波长λ和频率f 来求得声速V 。常用的方法有共振干涉法与相位比较法。 声波传播的距离L 与传播的时间t 存在下列关系:t V L ?= ,只要测出L 和t 就可测出声波传播的速度V ,这就是时差法测量声速的原理。 1.共振干涉法(驻波法)测量声速的原理: 当二束幅度相同,方向相反的声波相交时,产生干涉现象,出现驻波。对于波束1:)/X 2t cos(A F 1λ?π-ω?=、波束2:()λ?π+ω?=/X 2t cos A F 2,当它们相交会时,叠加后的波形成波束3:()t cos /X 2cos A 2F 3ω?λ?π?=,这里ω为声波的角频率,t 为经过的时间,X 为经过的距离。由此可见,叠加后的声波幅度,随距离按()λ?π/X 2cos 变化。如图28.1所示。 压电陶瓷换能器1S 作为声波发射器,它由信号源供给频率为数千周的交流电信号,由逆压电效应发出一平面超声波;而换能器2S 则作为声波的接收器,正压电效应将接收到的声压转换成电信号,该信号输入示波器,我们在示波器上可看到一组由声压信号产生的正弦波形。声源1S 发出的声波,经介质传播到2S ,在接收声波信号的同时反射部分声波信号,如果接收面(2S )与发射面(1S )严格平行,入射波即在接收面上垂直反射,入射波与发射波相干涉形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器2S 处的振动情况。移动2S 位置(即改变1S 与2S 之间的距离),你从示波器显示上会发现当2S 在某些位置时振幅有最小值或最大值。根据波的干涉理论可以知道:任何二相邻的振幅最

声速的测定(用共鸣管)

实验十声速的测定(用共鸣管) 实验目的 1.测定声波在空气中的传播速度。 2.验证声速与声源的频率无关。 实验器材 共鸣管(附蓄水筒、连通管),不同频率的音叉三支,橡皮锤,支架。 实验原理 1.共振干涉法 设有一从发射源发出的一定频率的平面声波,经过空气的传播,到达接收器。如果接收面与发射面严格平行,入射波即在接收面上垂直反射,入射波与反射波相干涉形成驻波。反射面处为驻波的波节,声波的波腹。改变接收面与发射源之间的距离L,在一系列特定的距离上,介质中出现稳定的共振现象,此时L等于半波长的整数倍,驻波的波腹达到最大;同时,在接收面上的波腹也相应达到极大值。不难看出,在移动接收器的过程中,相邻两次到达共振所对应的接收面之间的距离为半波长。因此保持频率f 不变,通过测量两次相邻的接收信号达到极大值时接收面之间的距离λ/2,就可以用v=λf计算声速。 2.共鸣管测声速 共鸣管是一直立的带有刻度的透明玻璃管,如图10-1所示。移动蓄水筒可以使管中的水位升降,从而获得一定长度的空气柱。声波沿空气柱传播至水面发生反射,入射波与反射波在空气柱中干涉,调节空气柱的长度L,当其与波长λ满足

4)12(λ+=n L n (n =1,2,…) (10-1) 此时将形成管口为波腹、水面为波节的驻波,声音最响,即产生共鸣。 设相邻两次共鸣空气柱的长度差为ΔL ,则 2 1λ=-=?+n n L L L 而 λ=2ΔL (10-2) 若声波频率(即声源频率)为f ,其波长λ和波速v 之间的关系是v=λf ,将公式(10-2)代入上式得 v =2ΔLf (10-3) 由此说明:在f 已知的情况下,只要测出ΔL ,便可求出声波在空气中的传播速度v 。改变不同频率的声源,可观测v 是否变化。 3.声速与温度之间的关系 声波在理想气体中的传播过程,可以认为是绝热过程,因此传播速度可以表示为: μ γRT v = 式中常数R =8.31J·mol -1·K -1 ,对于空气μ=29kg·mol -1,γ=1.40,而T =273.15+t °C 。 将T=(273.15+t )代入(t 为摄氏温度)得到计算声波在空气中的传播速度的理论公式为: ()15 .273115.273115.27315.2730t V t R t R v + =+=+= μγμγ (10-4) 其中 v 0=(273.15γR/μ)1/2=331.45m/s 为空气介质在00 C 时的声速。 实验步骤 (一)清点主要仪器 共鸣管(附蓄水筒、连通管),不同频率的音叉三支,橡皮锤,支架。 (二)测量 1.如图10-1所示安装好仪器,并调节仪器竖直,并往蓄水筒注水,调节水面高度直到管内水面接近管口为止; 2.把音叉固定在距离管口约为管径四分之一高处,使音叉的振动方向与水面垂直,用橡皮锤来敲击音叉,随即缓慢下降管内水位,直到产生第一次共鸣(反复调节水位,待听到声音最响)时,记下水面的位置L1。反复测三次,求平均; 3.继续使管内水位下降,按实验步骤2测得第二、三…次共鸣时水面的位置L 2、L 3、…; 4.改用不同频率的音叉,重复上述步骤,验证声速与声源的频率无关。并记下室温及所用音叉的标称频率。 (三)列数据表格

声速的测量(超声)实验报告

声速的测量(超声) 一、实验目的: ①用共振干涉法求超声声速; ②用相位比较法求超声声速。 二、实验仪器: 超声声速测量仪、信号发生器、数字频率计、同轴电缆、示波器、游标卡尺、压电陶瓷超声换能器。 三、实验原理: ①声速的测量: 利用公式νλ,测量声波的频率ν和波长λ去求声速v。 ②声压驻波:已知两列频率、振幅和振动方向相同的平面简谐波,向相反的方向传播时,叠加的合成波就是驻波,在驻波场中质点振幅最大处为波腹,质点位移振幅近似为零处为波节,相邻波腹或波长的距离为半波长(λ/2)。 ③声波波长的测量:接收器S2输出的信息有两部分:1、驻波的信息,其振幅随S2的移动而变化,在共振时,S1、S2的距离为l:,,,此时振幅较大。2、类 似行波的信息,S1、S2用的相位差,也随着S2的移动而变化,每移动λ/2,相位差改变Π(即180°)。利用这两种信息均可测量声波波长λ。(1)共振干涉法;(2)相位比较法。 四、实验方法: ①用共振干涉法测声速: 示波器的X端用内部扫描,调内部扫描与S2的信息同步,示波器上显示的是S2的交流信号按时间展开的图形,移动S2示波器上图形有时很大,有时很小。在S2移动范围内,仔细测多个出现极大值时S2的位置l1、l2、……、l n,用逐差法求出λ,再求声速v。 ②用相位比较法测声速: 示波器的X端用内部扫描,调内部扫描与S2的信息同步,移动S2示波器上的图形会从椭圆变换到一条直线,再从直线变换到一个反方向的椭圆,往复变换。在S2移动范围内,仔细测多个出现直线时S2的位置l1、l2、……、l n,用逐差法求出λ,再求声速v。 ③记录实验室的实温t。 ④用当前实温和公式求出声速,与以上两种方法求出的声速进行比较, 分析。 五、数据处理: 温度:34℃频率:37500Hz 共振干涉法(单位:mm): 218.98 213.58 209.20 204.56 199.62 194.92 190.64 185.72 180.62 176.52 相位比较法(单位:mm): 174.60 169.60 164.80 160.68 155.90 151.22 146.28 141.58 136.68 131.70 共振干涉法: λ

声速测量实验报告

声速测量实验报告 【实验目的】 1.学会测量超声波在空气中的传播速度的方法。 2.理解驻波和振动合成理论。 3.学会用逐差法进行数据处理。 4.了解压电换能器的功能和培养综合使用仪器的能力。 【实验仪器】 信号发生器、双踪示波器、声速测定仪。 【实验原理】 声波的传播速度v与声波频率f和波长的关系为: 可见,只要测出声波的频率f和波长 ,即可求出声速。f可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。 根据超声波的特点,实验中可以采用驻波法和相位法测出超声波的波长。 1. 驻波法(共振干涉法) 如右图所示,实验时将信号发生器输出的 正弦电压信号接到发射超声换能器上,超声发 射换能器通过电声转换,将电压信号变为超声 波,以超声波形式发射出去。接收换能器通过 声电转换,将声波信号变为电压信号后,送入示波器观察。 由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。此时,两换能器之间的距离恰好等于其声波半波长的整数倍。在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。 移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于

华中科技大学超声声速的测量课件

实验3.12 超声声速的测量 声波是一种机械波,它可以在气态、液态、固态物质中传播,它会引起物质的光学、电磁、力学、化学性质以及人类生理、心理等性质的变化。人耳能听到的声波称为可闻声波,频率在20Hz ~20kHz 之间,频率低于20Hz 的声波称为次声波,频率高于20kHz 则称为超声波。超声波在媒质中传播时,声速、声衰减和声阻抗都和媒质的特性及状态有关,通过测量这些声学量可以探知媒质的特性和状态变化。这些声学量的测量方法就是超声无损检测的实验基础。由于媒质中的声速与媒质的许多非声学特性都有直接或间接的关系,所以通过声速的测量可以求出固体媒质的弹性模量,进行气体成分分析,测定液体的比重,液体的成分及溶液浓度等。利用媒质的温度、压强、流速与声速的关系则可以探测这些状态参量的变化。媒质中的声速是应用最广而且测量精度也较高的声学量。测量声速依据的原理可以是t l v /=(l 表示声音传播的距离,t 表示通过这段距离的时间) ,也可以是λf v =(f 为声波的频率,λ为声波的波长)。本实验采用的共振干涉法和相位比较法均属于后者。 一、预备问题 1. 压电换能器是如何工作的? 2. 声波在媒质中传播的速度与哪些因素有关? 3. 何为共振干涉法和相位比较法? 二、引言 1.超声波的发射和接收 超声波的发射和接收都需要用换能器,换能器的作用是将其它形式的能量转换成超声波的能量(发射换能器),或将超声波的能量转换为其它可以检测的能量(接收换能器)。最常使用的是压电换能器。压电晶体(如石英)或压电陶瓷(如钛酸钡、锆钛酸铅)这类压电材料受到应力T 的作用会在材料内产生电场E ,且满足T E ?=σ(σ为压电常数),这就是压电效应。压电效应是法国人居里兄弟1880年在研究热电现象和晶体对称性的时候发现的。压电换能器接收超声波信号使之转换为电信号,从而将机械能转换为电能,利用的就是压电效应原理。当超声波频率与系统固有(共振)频率一致时所产生的电信号最强。压电材料还具有逆压电效应,压电材料在电场E 的作用下产生伸缩形变S ,且满足E d S ?=(d 为伸缩常数),在交变电场的作用下会产生周期性的收缩和伸长,当外加电场的频率和压电体固有频率相同时振幅最大。发射换能器利用逆压电效应就可以将电能转换成超声振动能,在周围媒质中激发超声波。 2.声速的测量 声波在媒质中传播的速度决定于媒质的密度、弹性模量等性质。声波在液体和固体中的传播速度一般大于在气体中的传播速度。声速也和媒质的压强、温度等状态有关,因为温度变化一般比压强大,所以温度对声速的影响也比较大。若频率已知,测出波长即可根据波长、频率和声速三者的关系λf v =求出波速。 (1)共振干涉法测声速 如图3.12-1 所示,S 1、S 2都是压电换能器,两者相互平行。由低频信号发生器输出的频率为f 的正弦电信号激励超声波发射器S 1发射出沿x 方向传播的近似平面超声波,经超声波接收器S 2反射后,在两端面间来回传播并叠加而形成驻波(严格地说还有行波的成份)。在驻波场中,x 处空气质点的位移y 可表示为

声速的测量实验报告

声速的测量实验报告 声速的测量实验报告 1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张灏、成立敬测量时间 张海涛发声 贾兴藩测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间 17∶30 温度 21℃ 发声时间 0.26 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。

声速的测量实验报告2 实验目的: 1)探究影响声速的因素,超声波产生和接收的原理。 2)学习、掌握空气中声速的测量方法 3)了解、实践液体、固体中的声速测量方法。 4)三种声速测量方法作初步的比较研究。 实验仪器: 1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。 4)信号发生器: 5)示波器 实验原理: 1)空气中: a.在理想气体中声波的传播速度为 v88 (式中8088cp cV (1) 称为质量热容比,也称比热[容]比,它是气体的质 量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T是绝对温度,R=8.314472(11.710-6)Jmol-1K-1为摩尔气体常量。) 标准干燥空气的平均摩尔质量为Mst =28.9668710-3kg/mol b.在标准状态下(T088273.15 K,p88101.388kPa),干燥空气中的声速 为v0=331.5m/s。在室温t℃下,干燥空气中的声速为 v88v0 (2)

超声波测声速实验报告

实验名称:超声波测声速实验报告 一、实验目的 (1)、了解超声波的发射和接收方法。 (2)、加深对振动合成、波动干涉等理论知识的理解。 (3)、掌握用干涉法和相位法测声速。 二、实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共装置图。 波与发射波叠加,它们波动方程分别是: 叠加后合成波为:

的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 因此只要测得相邻两波腹(或波节)的位置Xn、Xn-1即可得波长。 相位比较法测波长:从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:φ=2∏x/λ,其中λ是波长,x为S1和S2之间距离)。因为x改变一个波长时,相位差就改变2∏。利用李萨如图形就可以测得超声波的波长。 三、实验仪器 超声声速测定仪:主要部件是两个压电陶瓷换能器和一个游标卡尺。函数信号发生器:提供一定频率的信号,使之等于系统的谐振频率。示波器:示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的李萨如图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 四、实验内容 1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。

3.用相位比较法测波长和声速。 五、实验数据及处理: f=34kHz; Vp-p=5V; L=3.976cm; 六、实验结论: 波长λ=1.0612cm; 由此声速经测算为v=(354±3)m/s; U=0.8% 七、思考题: 1.固定距离,改变频率,以求声速。是否可行? 答:不行,由“v = f λ”,距离一定后使得波长无法计算。 2.各种气体中的声速是否相同?为什么? 答:不同,因为不同气体的密度不同,声波在不同介质中波长改变,根据公式可得结论。

实验:声速的测量

声速的测量 实验原理 声波的传播速度与声波频率和波长的关系为: 可见,只要测出声波的频率和波长,即可求出声速。可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。 根据超声波的特点,实验中可以采用几种不同的方法测出超声波的波长: 1. 驻波法(共振干涉法) 如右图所示,实验时将信号发生器输出 的正弦电压信号接到发射超声换能器上,超 声发射换能器通过电声转换,将电压信号变 为超声波,以超声波形式发射出去。接收换 能器通过声电转换,将声波信号变为电压信 号后,送入示波器观察。 由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。此时,两换能器之间的距离恰好等于其声波半波长的整数倍。在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。 移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于波节处)卡尺的读数(两读数之差的绝对值等于半波长),则根据公式:就可算出超声波在空气中的传播速度,其中超声波的频率可由信号发生器直接读得。 2.相位比较法 实验接线如下图所示。波是振动状态的传播,也可以说是位相的传播。在声波传播方向上,所有质点的振动位相逐一落后,各点的振动位相又随时间变化。声波波源和接收点存在着位相差,而这位相差则可以通过比较接收换能器输出的电信号与发射换能器输入的正弦交变电压信号的位相关系中得出,并可利用示波器的李萨如图形来观察。 位相差和角频率、传播时间t之间有如下关系:

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: Λ Λ3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

超声波测声速汇总

超声波测声速 声波是一种在弹性介质中传播的机械波,它是纵波,其振动方向与传播方向一致.声速是描述声波在介质中传播特性的一个基本物理量,它与介质的特性及状态因素有关,因而通过介质中声速的测定,可以了解介质的特性或状态变化。例如,测量氯气、蔗糖等气体或溶液的浓度、氯丁橡胶乳液的比重以及输油管中不同油品的分界面等等,这些问题都可以通过测定这些物质中的声速来解决。 频率低于20Hz的声波称为次声波;频率在20Hz~20kHz的声波可以被人听到,称为可闻声波;频率在20kHz以上的声波称为超声波.超声波的传播速度就是声波的速度.由于超声波具有波长短、易发射、能定向传播等优点,在超声波段进行声速测量是比较方便的. 本实验用压电陶瓷超声换能器来测定超声波在空气中的传播速度。 [实验目的] 1.学习相位比较法测定声速的原理及方法.加深对振动合成等理论知识的理解 2.了解压电换能器的工作原理和功能,进一步熟悉信号发生器、示波器的使用 3.练习使用逐差法处理数据 [实验仪器] 声速测定组合仪,信号发生器,示波器 声速测量仪: 由发射器、接收器、游标卡尺组成。当一交变正弦电压信号加在发射器上时,由于压电晶片的逆压电效应,产生机械振动发生超声波。可移动的接收器,将接收的声振动转化为电振动信号输至示波器。接收器的位置由游标卡尺读数确定。 图1. 声速测量仪 使用方法:

左击或右击换能器,可以改变换能器面与水平方向的夹角。按下右边换能器的拖动,可以改变两个换能器之间的的距离。点击或按下窗体中上部的微调按钮,可以缓慢改变两个换能器之间的距离。 信号发生器: 图2. 信号发生器 它是一种多功能信号发生器,可以输出正弦波、方波、三角波三种波形的交变信号,信号频率范围为10Hz—2000kHz,既可分档调节,又可连续调节。信号幅度可连续调节。 1.频率显示窗口:显示输出信号的频率或外测频信号的频率,用五位数字显示信号的频率,且频率连续可调(输出信号时)。 2.幅度显示窗口:显示函数输出信号的幅度,由三位数字显示信号的幅度。 3.输出波形,对称性调节旋钮(SYM):调节此旋钮可改变输出信号的对称性。当电位器处在关闭或者中心位置时,则输出对称信号。输出波形对称调节器可改变输出脉冲信号空度比,与此类似,输出波形为三角或正弦时可使三角波调变为锯齿波, 正弦波调变为正与负半周分别为不同角频率的正弦波形,且可移相180?。(仿真实验中使用方法:右键单击进行顺时针旋转,左键打击进行逆时针旋转。) 4.速率调节旋钮(WIDTH):调节此电位器可以改变内扫描的时间长短。在外测频时,逆时针旋到底(绿灯亮),为外输入测量信号经过低通开关进入测量系统。 5.扫描宽度调节旋钮(RATE):调节此电位器可调节扫频输出的扫频范围。在外测频时,逆时针旋到底(绿灯亮),为外输入测量信号经过衰减“20dB”进入测量系统。 6.外部输入插座(INPUT):当“扫描/计数键”(13)功能选择在外扫描外计数状态时,外扫描控制信号或外测频信号由此输入。 7. TTL信号输出端(TTL OUT):输出标准的TTL幅度的脉冲信号,输出阻抗为600Ω。 8.函数信号输出端:输出多种波形受控的函数信号,输出幅度20Vp–p(1MΩ负载),10Vp–p (50Ω负载)。

声速测量实验报告.doc

声速测量实验报告 只有通过实验才能知道结果,那么,下面是我给大家整理收集的声速测量实验报告,供大家阅读参考。 声速测量实验报告1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张x——测量时间 张x——发声 贾x——测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间17∶30 温度21℃

发声时间 0.26″ 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。 声速测量实验报告2 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: 双踪示波器一台,信号发生器一台,测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×10Hz 的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ × f λ=2X v = 2X × f

大学物理实验:超声声速测定

超声声速测定 声波特性的测量,如频率、波长、声速、声压衰减、相位等,是声波检测技术中的重要内容。特别是声速的测量,不仅可以了解媒质的特性而且还可以了解媒质的状态变化,在声波定位、探伤、测距等应用中具有重要的实用意义。例如,声波测井、声波测量气体或液体的浓度和比重、声波测量输油管中不同油品的分界面等等。 “声速的测量”是一个综合性声学实验。实验中采用压电陶瓷超声换能器通过驻波法(共振干涉法)和相位比较法测量超声波在空气中的传播速度,这是一个非电量电测方法的应用。通过这个实验可以重点学习如下内容:(1)实验方法:非电量的电测方法;测量声速的驻波法和相位比较法。(2)测量方法:利用示波器测量电信号的极大值和观察李萨如图形测量相位差的方法。(3)数据处理方法:求声波波长的逐差法。(4)仪器调整使用方法:双踪示波器和函数信号发生器的正确调节和使用方法。 【实验目的】 1.学习用驻波共振法和相位比较法测量超声波在空气中的传播速度。 2.了解压电换能器的功能。 3.学习用逐差法处理数据。 【实验仪器】 SVX-5型声速测试仪信号源、SV-DH系列声速测试仪、双踪示波器等

【实验原理】 频率介于20Hz ~20kHz 的机械波振动在弹性介质中的传播就形成声波,介于20kHz ~500MHz 的称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20KHz ~60kHz 之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器、效果最佳。 根据声波各参量之间的关系可知f ?=λυ,其中υ为波速, λ为波长,f 为频率。 图4-5-1共振法测量声速实验装置 在实验中,可以通过测定声波的波长λ和频率f 求声速。声波的频率f 可以直接从低频信号发生器(信号源)上读出,而声波的波长λ则常用相位比较法(行波法)和共振干涉法(驻波法)来测量。 图4-5-2 相位比较法测量声速实验装置 1.相位比较法 实验装置接线如图4-5-2所示,置示波器功能于X -Y 方式。当S1发出的平面超声波通过媒质到达接收器S2,合成振动方程为:

测定空气中的声速

【实验名称】用闪光法测不良导体的热导率 【目的要求】 1、 测定不良导体的热导率 2、 了解一种测定材料热物性参数的方法 3、 了解热物性参数测量中的基本问题 4、 学习正确使用高压脉冲光源和光路调节技术以及用微机控制实验 和采集处理数据 【仪器用具】 闪光法热导仪(包括高压脉冲氙灯和电源,光学调节系统) ,待测样 系别— 实验报告 班号 _______________ 姓名 ____________________ 第1页

品(酚醛胶木板、大理石各一片),PN结温度传感器,放大电路, AD/DA卡,计算机及相关软件 【实验原理】 1、傅里叶导热定律和热导率 热传导是指发生在固体内部或静止流体内部的热量交换过程。其微观机制是由自由电子或晶格振动波作为载体进行热量交换的过程。宏观上是由于物体内部存在温度梯度,发生从高温区向低温区传输能量的过程。 傅里叶导热定律: 其中q为热流密度矢量,表示在单位等温面上沿温度降低方向单位时间内传递的能量。入是热导率,是反映物质导热能力的重要物性参数,表示每单位时间内,在每单位长度上温度降低1K时,每单位面积上通过的热量,单位为W/(m ? K)。 2、材料热导率的测量方法

测固体材料热导率的方法有两大类,一类是稳态法,另一类是非稳态法。本次实验采用闪光法,属于非稳态法。实验中采用圆形薄试样,一面用一个脉冲型热源(氙灯)加热,测量另一面温度随时间的变化关系,利用非稳态导热微分方程,得到热扩散率a。 热导率入和热扩散率a有如下关系: ■ - :- :?c 其中C为材料的比热容,p为材料的密度 实验原理示意图: 假设脉冲光在t=0时刻垂直均匀照射在圆形薄试样表面,且被试

声速的测量

超声声速测量预习提纲 1、实验任务: (1)用相位法、共振法测空气中的声速;(必做) (2)用时差法测空气中的声速; (选做) 2、实验原理: (1)压电陶瓷换能器如何进行工作的? (2)驻波如何形成? (3)三种测量方法的主要实验原理如何? (4)i x ?是半个波长还是一个波长? (5)如何利用逐差法计算波长?(2 5 x λ=?,测10个数据用逐差法进行处 理) 3、操作规范: (1)为什么要进行谐振频率调节?如何调? (2)如何理解示波器上的的直线、椭圆图形? (3)如何避免回程差? (4)时差法中如何调节使接收波信号幅度始终保持一致? (5)如何正确使用示波器? 4、数据处理: (1)逐差法是采用逐项逐差还是隔项逐差; (2)如何设计表格及必要数据的具体计算过程; (3)为什么时差法中延迟时间1i i t t --必需是三位有效数? 5、结果讨论和误差分析:(本次实验项目的重点)。 (1)二种或三种测量方法的优劣比较,定量分析引起误差的原因; (2)百分差一般控制在5%以内。

超声声速测量数据记录表格设计提示 实验数据及结果: 1、共振干涉法: 温度:t= ± 0C 谐振频率:f = ± H 2、相位比较法:(参照共振干涉法) 数据处理: 1、 共振干涉法: 5,i i i x x +?=- ()5i i i x x x +?-?=?===仪 x S m ?= =--- x m ??==--- 2 5x m λ??=??=--- 15 i x x m ?=?∑?=--

2 5 x m λ=?=-- 2 5 x m λ??=??=-- m V f S ==--V m f S λ?=?=-- () V m V V S =±?=--±-- () 331.45S m m V V S S ===-- 100%%V V V E ??=--= 100%%S S V V V E P -?=--= 2、相位比较法: 计算过程同上 3、时差法: 3 0.01510L m -??==? 同理:6 0.510t s -??=? L m V S t ?==--? V m V S ?==-- () V m V V S =±?=--±-- 100%V V E V ?=? 100%S P S V V E V -=? 误 差 分 析 举 例 结果讨论及定性分析: 1、从百分差中可知,共振干涉法的误差最大,其次是相位比较法,最小是时差法。共振干涉法的误差最大原因:主要是每次观察正弦波波峰最大时容易出现误差,而相位比较法用里萨尔图形的斜率正、负直线观察出现误差较小,而时差法误差最小,其实验原理决定了该实验方法的误差。 2、在调节谐振频率时,由于信号源稳定性较差,开始时的谐振频率跟实验结束时的谐振频率有变化,变小,存在系统误差。

声速的测量 (2)

声速测量 一、实验目的: 1、了解压电晶体换能器的工作原理; 2、理解共振干涉法和相位比较法测量声速的基本原理; 3、掌握用共振干涉法和相位比较法测量声波在空气中以及水中传播速度的方法; 4、熟悉各种测量仪器和示波器的调节和使用。 二、实验仪器: 声速测定仪、信号发生器、示波器、屏蔽馈线。 三、实验原理 声速是描述波在媒质中传播特性的物理量,它与媒质的性质及状态有关,频率在20—20000赫兹范围内为可闻声,大于20000赫兹为超声波,由于超声波具有波长短,方向性好,抗干扰强等特点,在传播的过程中入射波与反射波容易产生干涉并形成驻波,而可闻声只能在驻波管内产生干涉形成驻波。本实验是通过测量波长λ和频率f ,由公式V f λ=算出声速。 压电陶瓷: 压电陶瓷(如:钛酸钡、锆钡酸铅)具有正压电效应和逆压电效应,当它受到压力时,表面产生电荷,形成电场,为正压电效应。在外加电场的作用下可产生形变,为逆压电效应,当交流电压作用于压电陶瓷时,它将作周期性的形变即振动从而发出声波。 利用压电陶瓷在外来振动的作用下产生变化电场的正压电效应可用来接收声波信号。 1、共振干涉法(驻波法) 如图(一)所示,超声波发射换能器与超声波接收换能器平行正对,超声波发射换能器发出超声波向右传播,遇到接收换能器后发生反射,此时发射换能器与接收换能器之间的入射波与反射波传播方向相反并且满足相干条件,因此两列波叠加干涉形成驻波,相邻波腹和波节间距离都为 2 λ ,当接收换能器移至波腹处接收信号最强,实验中通过移动接收换能器依次记下波腹位置,它满足: l k λ=,,1,2,k i i i =++L 发射换 能器 图(一)

声 速 的 测 量(超声波法)

声速的测量(超声波法) 声波是一种在弹性媒质中传播的机械波。声波在媒质中传播时,声速,声强等诸多参量都和媒质的特性与状态有关,通过测量这些声学量可以测知媒质的特性及状态变化。例如,通过测量声速可求出固体的弹性模量:气体、液体的比重、成分等参量。 在同一媒质中,声速基本与频率无关,例如在空气中,频率从20赫兹变化到8万赫兹,声速变化不到万分之二。由于超声波具有波长短,易于定向发射,不会造成听觉污染等优点,我们通过测量超声波的速度来确定声速。超声波在医学诊断,无损检测,测距等方面都有广泛应用。 声速的测量方法可分为两类;第一类方法是直接根据关系式v=S/t,测出传播距离S和所需时间t后即可算出声速,称为“时差法”。第二类方法是利用波长频率关系式v=fλ,测量出频率f和波长λ来计算出声速。 【实验目的】 1.了解超声换能器的工作原理和功能 2.学习不同方法测定声速的原理的技术 3.熟悉测量仪和示波器的调节使用 4.测定声波在空气及水中的传播速度 【实验仪器】 QSSV-2型声速测定实验仪、示波器 【实验原理】 一、声速在空气中的传播速度 在理想气体中声波的传播速度为 v=(1)式中γ =Cp/Cv称为比热比,即气体定压比热容与定容比热容的比值,μ是气体的摩尔质量,T是绝对温度,R=8.31441J/moL?K为普适气体常数。由(1)式可见,声速与温度有关,又

与摩尔质量μ及比热比γ有关,后两个因素与气体成分有关因此,测定声速可以推算出气体的一些参量。利用(1)式的函数关系还可制成声速温度计。 在正常情况下,干燥空气成分按重量比为氮:氧:氩:二氧化碳=78.084:20.946:0.934:0.033。它的平均摩尔质量为0μ=28.94×10-3 kg/moL 在标准状态下,干燥空气中的声速为0 v =331.5m/S 。在温室t ℃下,干燥空气中的声速为 0v v = (2) 式中T0=273.15K 。由于空气实际上并不是干燥的,总含有一些水蒸气,经过对空气平均摩尔质量a μ和比热比γ的修正,在温度为t 、相对温度为t 0的空气中,声速为 (3) 式中s p 为t ℃时空气的饱的和蒸气压,可从饱和蒸气压、蒸气压和温度的关系表中查出;P为大气压,取P =1.013×105Pa 即可;相对温度r 可从干湿温度计上读出。由这些气体参量可以计算出声速,故(3)式可作为空气中声速的理化计算公式。 二、测量声速的实验方法 声速的传播速度v 与声波频率f 和波长λ的关系为 v = f λ (4) 测出声波的频率和波长,就可以求出声速。其中声波频率可通过测量声源的振动频率得出,剩下的任务就是测声波波长,也就是本实验的主要任务。 波长可用下面两种方法测出: 1.相位法:波是振动状态的传播,也可以说相位传播。沿传播方向上的任何两点、如果其振动状态相同(同相)或者说其相位差为2π的整数倍,这时两点间的距离应等于波长λ的整数倍,即 L=n λ (n 为-正整数) (5) v =

声速的测量实验报告.doc

声速的测量实验报告 不会写声速的测量实验报告的朋友,下面请看我给大家整理收集的声速的测量实验报告,仅供参考。 声速的测量实验报告1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张灏、成立敬——测量时间 张海涛——发声 贾兴藩——测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间17∶30 温度21℃

发声时间 0.26″ 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。 声速的测量实验报告2 实验目的: 1)探究影响声速的因素,超声波产生和接收的原理。 2)学习、掌握空气中声速的测量方法 3)了解、实践液体、固体中的声速测量方法。 4)三种声速测量方法作初步的比较研究。 实验仪器: 1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。 4)信号发生器: 5)示波器 实验原理: 1)空气中: a.在理想气体中声波的传播速度为 v88 (式中8088cp cV (1) 称为质量热容比,也称"比热[容]比",它是气体的质 量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T 是绝对温度,R=8.314472(1±1.7×10-6)Jmol-1K-1为摩尔气体常量。)

标准干燥空气的平均摩尔质量为Mst =28.966�8�710-3kg/mol b.在标准状态下 (T0�8�8273.15 K,p�8�8101.3�8�8kPa),干燥空气中的声速 为v0=331.5m/s。在室温t℃下,干燥空气中的声速为 v88v0 (2) (T0=273.15K) c.然而实际空气总会有一些水蒸气。当空气中的相对湿度为r时,若气温为t℃时饱和蒸气压为pS,则水汽分压为rps。经过对空气平均摩尔质量 M 和质量热容比8�0 的修正,在温度为t、相对湿度为r 的空气中,声速为 (在北京大气压可近似取p�8�4 101kPa;相对湿度r 可从干湿温度计上读出。温度t℃时的饱和水汽压ps可用 lgps�8�810.286�8�2 d.式(3)的计算结果与实际的超声声速真值可能有一定偏差。 引起偏差的原因有: ~状态参量的测量误差 ~理想气体理论公式的近似性 实验方法: A. 脉冲法:利用声波传播时间与传播距离计算声速 实验中用脉冲法测量,具体测量从脉冲声源(声发射器)到声探测器

声速测量实验报告

一、实验项目名称:声速测量 二、实验目的: 1.学会测量超声波在空气中传播速度的方法。 2.理解驻波和振动合成理论。 3.学会逐差法进行数据整理。 4.了解压电换能器的功能和培养综合使用仪器的能力。 三、实验原理: 1. 声波在空气中的传播速度: 在标况下,干燥空气中的声速为v=331.5m/s,T=273.15K。室温t℃时,干燥空气的声速为v=v。(1+t/T。)^(1/2) 2. 测量声速的实验方法:v=fλ式中,v声速,f声源震动频率,波长。 I.相位法 波是震动状态的传播,即相位的传播。若超声波发生器发出的声波是平面波,当接受器端面垂直于波的传播方向时,其端面上各点都具有相同的相位。沿传播方向移动接收器时,总可以找到一个位置使得接受到的信号与发射器的激励电信号同相。继续移动接受器,直到找到的信号再一次与发射器的激励电信号同相时,移过的这段距离就等于声波的波长。 需要说明的是,在实际操作中,用示波器测定电信号时,由于换能器振动的传递或放大电路的相移,接受器端面处的声波与声源并不同相,总是有一定的相位差。为了判断相位差并测量波

长,可以利用双踪示波器直接比较发射器的信号和接收器的信号,进而沿声波传播方向移动接收器寻找同相点来测量波长;也可以利用李萨如图形寻找同相或反相时椭圆退化成直线的点。 II.驻波法 按照波动理论,超声波发生器发出的平面声波经介质到接收器,若接收面与发射面平行,声波在接收面处就会被垂直反射,于是平面声波在两端面间来回反射并叠加。当接收端面与当接受端面与发射头间的距离恰好等于半波长的整数倍时,叠加后的波就形成驻波。此时相邻两波节(或波腹)间的距离等于半个波长(即)。当发生器的激励频率等于驻波系统的固有频率(本实验中压电陶瓷的固有频率)时,会产生驻波共振,波腹处的振幅达到最大值。 声波是一种纵波。由纵波的性质可以证明,驻波波节处的声压最大。当发生共振时,接收端面处为一波节,接收到的声压最大,转换成的电信号也最强。移动接收器到某个共振位置时,示波器上又会出现了最强的信号,继续移动接收器到某个共振位置,再次出现最强的信号,则两次共振位置之间距离为λ/2。四、实验仪器: 声速测试仪、信号发生器、示波器。 五、实验内容及步骤: 用驻波法测声速 (1)按图连接电路,将信号发生器的输出端与声速仪的输出

空气中声速的测定

实验3-12空气中声速的测定 一、画出实验原理图 二、测量公式及式中各量的物理意义 三、预习自测题 1.超声波是指频率kHz的声波。 2.本实验用两个压电元件作换能器,一个换能器由高频电信号激振而产生,另一个作为接收器将高频变化的声压转换为。 3.两个换能器相对放置且端面平行时,在它们间形成驻波,当接收器位于驻波场中的处时声压最大,此时示波器显示的幅值。 4.实验中,为了使发射换能器谐振,要调节信号源的输出频率,判断其谐振与否的标志为(1);(2) 。 5.相位法测声速时,将发射器与接收器的正弦信号分别输入示波器的x轴与y轴,两个信号的合成在屏幕上形成李萨如图。当接收器移动时,图象将作周期性变化,每改变一个

周期,换能器移动的距离为 ,相位改变 。 四、原始数据记录与处理 1.驻波法实验数据 频率f = (Hz ) 室温t = (℃) 对测量量L ,其平均值的 A 类不确定度 =--=∑=25 1 )()15(51 14.1L L S i i L B 类不确定度 =? = C u 则L 不确定度 =+=22 u S u L L 这样 == L 52 λ ==L u u 5 2λ 则 ==λf V ==λfu u V 速度V 的完整表示为 当温度为t 时,空气中声速 =+ =15 .27310t V V t 则实验测量值与理论计算值的相对百分误差为 =?-= '%100t t V V V E 2.相位法实验数据(每隔2π测一次) 频率 f = (Hz ) 室温t = (℃)

对测量量L ,其平均值的 A 类不确定度 =L S B 类不确定度 =?= C u 则L 不确定度 =+=22 u S u L L 这样 =λ =λu 则 ==λf V ==λfu u V 速度V 的完整表示为 当温度为t 时,空气中声速 =+ =15 .27310t V V t 则实验测量值与理论计算值的相对百分误差为 =?-= '%100t t V V V E 3.双踪显示法实验数据(选作) 频率 f = (Hz ) 室温t = (℃)

相关主题
文本预览
相关文档 最新文档