当前位置:文档之家› 呼 吸 机 参 数 设 置

呼 吸 机 参 数 设 置

呼 吸 机 参 数 设 置
呼 吸 机 参 数 设 置

呼吸机参数设置

成人应用呼吸机的生理指标为:潮气量5~7ml/kg;呼吸频率12~20次/分;气道压30~35cmH2O;每分钟通气量6~10l/min。

一、呼吸频率的设置(RR)

1、若病人的自主呼吸频率基本正常(16-24次/分)或明显减弱,甚至已经停止。可将呼吸频率设置在16~20次/分。

2、若病人的自主呼吸频率明显增快(>28次/分),初始的呼吸频率不易设置过低,否则会发生呼吸机对抗,增加呼吸作功。可将呼吸频率设置在接近或略低于病人的自主呼吸。以后随着造成自主呼吸频率增快的原因被去除(缺氧、代谢性酸中毒、疼痛、精神紧张等),再将呼吸频率逐减下调至正常水平。

3、对有气道阻力增高的阻塞性肺部疾患病人,适合先用慢而深的呼吸频率。即低呼吸频率(12~15次/分)和高潮气量。

4、对患限制性肺部疾病的病人,因气道阻力基本正常,而主要表现为肺顺应性下降和有效的气体交换的肺单位减少,应使作用稍快而深的呼吸频率(18~24次/分)。

5、对肺功能正常的病人,如由于呼吸中枢受影响、呼吸机麻痹或瘫痪等所引起的呼衰,呼吸频率不考虑上述因素。设为12~15次/分(频率过快的病人除外)。

6、在ARDS等限制性通气障碍的疾病,以较快的频率辅以较小的潮气量通气,有利于减少克服弹性阻力所做的功和对心血管系统的不良影响。

二、潮气量(TV)的设置

1、一般状况下的设置:可将TV按10ml/kg水平设置,以后再根据动脉血气的指标进行相应地调整。

2、特殊状况下的设置:如肺大泡、可疑气胸、血容量减少尚未纠正、血压下降等,可初始就将TV高置在较低的水平(<8~10ml/kg)。此时为预防通气不足,可适当提高呼吸频率。

3、兼顾呼吸频率的设置:如初始的呼吸率频过高,所设置的TV水平就应当适当降低。

4、吸气平台压不超过30~35cmH2O(2.94~3.43kPa)。

5、对于肺有效通气容积减少的疾病如ARDS,应采用小潮气量6~8ml/kg。

三、通气压力(吸气压力)

1、为能达到满意TV的最低通气压力在15~20cmH2O以上。

2、PSV(压力支持通气)的水平一般不超过25~30 cmH2O。

3、应用机械通气时,通气压力一般不需设置,完成了TV的设置,就等于设置了合

理的通气压力。一般仅设置通气压力的上限或下限水平,以确保通气压力不至于

过高产生气压伤或过低造成通气不足。

4、通气压力与肺、胸的顺应性成反比,如肺水肿、ARDS、广泛肺纤维化时,需适

当提高吸气压力,才能达到满意的潮气量,吸气压力最高可达到60mmH2O,但

需严密观察,防止气压伤。有时为减轻心脏负担,可以缩短吸气时间、增加呼吸

频率来补偿。

四、吸/呼时间比

1、吸/呼时间比是指吸、呼时间各占呼吸周期中的比例。

2、吸气时间有助于吸入O2的分布,但可能对循环功能带来一些不利的影响;

3、呼气时间主要影响CO2的排出。

4、呼吸功能正常者,用1:1.5~2(1:1.5为宜,防呼碱);

5、患阻塞性通气功能障碍的病人,用1:2~2.5;

6、患限制性通气功能障碍的病人,用1:1~1.5;

7、以缺氧为主的病人,只要循环功能允许,可选择吸气时间适当长的吸/呼比;

8、以二氧化碳潴留为主的病人,可选择呼气时间稍长的吸/呼时间比;

9、无论缺氧如何严重,不主张用反比呼吸(1.5~2:1);

10、ARDS甚至可用反比通气。

五、呼气末正压(PEEP)

1、初使用呼吸机时,一般不主张立即应用或设置PEEP。

2、PEEP有加重心脏负担、减少回心血量及心排量,易引起肺气压伤等可能,故

应尽量避免。

六、FiO2的设置

1、初用呼吸机治疗时,为迅速纠正低氧随着低氧血症的纠正血症,可以应用较高浓

度的FiO2(>60%),但时间应控制在30min~1h,,再将FiO2逐渐降低至<60%的

相对安全的水平。

2、一般稳定在40~50%水平。

3、低氧血症未能完全纠正的病人,不能以一味提高FiO2的方式来纠正缺氧,应用

其它方式,或应用PEEP等。

4、低氧血症改善明显的病人,以将FiO2设置在40%~50%的水平为最佳。

5、总之,Fio2设置的原则是能使PaO2维持在60mmHg前提下的最低FiO2水平。

6、注意事项:>50%时需警惕氧中毒。在100%时持续时间不宜超过半小时到一小

时。

七、呼吸机吸气流率的设置

1.容量控制/辅助通气时,如患者无自主呼吸,则吸气流率应低于40升/分钟;如患

者有自主呼吸,则理想的吸气流率应恰好满足病人吸气峰流的需要。根据病人吸气

力量的大小和分钟通气量,一般将吸气流率调至40~100升/分钟。由于吸气流率的

大小将直接影响患者的呼吸功和人机配合,应引起临床医师重视。

2.压力控制通气时,吸气峰值流率是由预设压力水平和病人吸气力量共同决定的,当然,最大吸气流率受呼吸机性能的限制。

八、呼吸机触发灵敏度的设置

目前,呼吸机吸气触发机制有压力触发和流量触发两种。由于呼吸机和人工气道可产生附加阻力,为减少患者的额外做功,应将触发灵敏度设置在较为敏感的水平上。一般情况下,压力触发的触发灵敏度设置在-0.5~-1.5cmH20,而流量触发的灵敏度设置在1~3升/分。根据初步的临床研究,与压力触发相比,采用流量触发能够进一步降低患者的呼吸功,使患者更为舒适。值得注意的是,触发灵敏度设置过于敏感时,气道内微小的压力和流量改变即可引起自动触发,反而令患者不适。

九、呼吸机气道压力的监测和报警设置

呼吸机通过不同部位监测气道压力,其根本目的是监测肺泡内压力。常见的测压部位有呼吸机内、Y管处和隆突。测压部位离肺泡越远,测定压力与肺泡压力的差异就可能越大。当病人吸气触发时,呼吸机内压力、Y管压力、隆突压力和肺泡压力依次降低,而当呼吸机送气时,呼吸机内压力、Y管压力、隆突压力和肺泡压力依次升高。只有当气流流率为零时,各个部位的压力才相同。900C呼吸机的测压部位在呼吸机内,而Newport和Drag呼吸机的测

压部位在Y管。

呼吸机对气道压力的监测包括:

1.峰值压力峰值压力是呼吸机送气过程中的最高压力。容量控制通气时,峰值压力的高低取决于肺顺应性、气道阻力、潮气量、峰值流率和气流模式。肺顺应性和气道阻力类似的情况下,峰值流率越高,峰值压力越高。一般来说,其它参数相同的情况下,采用加速气流时的峰值压力比其它气流模式高。压力控制通气时,气道峰值压力水平与预设压力水平接近。但是,由于压力控制为减速气流,吸气早期为达到预设压力水平;呼吸机提供的气体流率很高,气道压力可能略高于预设水平1~3cmH20。

2.平台压力平台压力为吸气末屏气0.5秒(吸气和呼气阀均关闭,气流为零)时的气道压力,与肺泡峰值压力较为接近。压力控制通气时,如吸气最后0.5秒的气流流率为象则预设压力即为平台压力。

3.平均压力平均压力为整个呼吸周期的平均气道压力,可间接反映平均肺泡压力。由于呼气阻力多高于吸气阻力,平均气道压力往往低于肺泡平均压力。

4.呼气末压力呼气末压力为呼气即将结束时的压力,等于大气压或呼气末正压。当吸气延长、呼气缩短时,呼气末肺泡内压仍为正压,即产生内源性呼气末压力,此时,呼气末的气道压力和肺泡压力不同。因此,吸气末气道压力高于肺泡内压力,与气道对气流的阻力有关,而在呼气末,如气道压力低于肺泡内压力,则与内源性呼气末正压有关。

1. 呼吸模式选择

在呼吸机的操作中,首先要选择病人呼吸模式,现代机型最常用的有三种模式:

(1)A/C(辅助/控制通气):病人有自主呼吸时,机械随呼吸启动,一旦自发呼吸在一定时间内不发生时,机械通气自动由辅助转为控制型通气。它属于间歇正压通气。

(2)SIMV(同步间歇指令性通气):呼吸机于一定的间歇时间接收自主呼吸导致气道内负压信号,同步送出气流,间歇进行辅助通气。

(3)SPONT(自主呼吸):呼吸机的工作由病人自主呼吸来控制。

在以上三种基本模式下,各类呼吸机还都设计了针对各种疾病的呼吸功能,供使用时选择。例如:

(a)PEEP(呼吸终末正压):在机械通气基础上,于呼气末期对气道施加一个阻力,使气道内压力维持在一定水平的方式。

(b)CPAP(持续气道内正压通气):在自主呼吸的前提下,整个呼吸周期内人为地施以一定程度的气道内正压,可防止气道内萎陷。

(c)PSV(压力支持):在自主呼吸的条件下,每次吸气都接受一定程度的压力支持。

(d)MMV(预定的每分钟通气量):如果SPONT的每分钟通气量低于限定量,不足的气量由呼吸机供给;SPONT的每分钟通气量大于限定量,呼吸机则自动停止供气。

(e)BIPAP(双水平气道内正压):病人在不同高低的正压水平自主呼吸,可视为PSV+CPAP+PEEP。

(f)APRV(气道压力释放通气):在CPAP状态下开放低压活瓣暂时放气,降低气道压力而形成的通气。

2. 通气方式选择

在选择好呼吸模式后,就要选择或要知道通气方式:

(1)容量控制通气(VCV):设定一个潮气量,由流量×吸气时间来调节。

(2)压力控制通气(PCV):设定一个压力,它是由吸气平台压决定。

3. 触发方式选择

(1)压力触发:当管道内的压力达到一定的限值时,呼吸即切换。

(2)流量触发:当管道内的流速变化到一定值时,呼吸即切换。由于其灵敏度高、后滞时间短,已被广泛应用。

呼吸机参数的设置与调节

呼吸机参数的设置与调节 无论何种通气模式均需对吸气触发、吸气控制、吸呼切换这三个关键环节进行参数设置。 1 触发参数设定与调节 此类参数的作用在于决定呼吸机何时向患者送气。按触发信号的来源可分为由呼吸机触发和病人触发。 1.1 呼吸机触发一般是指时间触发,参数为呼吸频率(f)。呼吸机按照预设的呼吸频率定时给病人送气。此种触发方式多用于病人自主呼吸较弱或无自主呼吸时,如昏迷状态、全麻术后恢复期病人等。呼吸频率在成人通常设为12一20次/min,取决于欲达到的理想每分通气量和PaCO 目标值。 1.2 病人触发此种触发方式需要病人存在自主呼吸,触发信号为患者吸气动作导致的管路内流速或压力的变化。这种变化在呼吸机上体现为触发灵敏度(trigger sensitivity),相应的有流速触发灵敏度和压力触发灵敏度,流速触发灵敏度通常设为3—5L/min,压力触发灵敏度通常设为-0.5~-2cmH2O。现在大多采用的是流速触发。上述两种触发方式可以单独使用,亦可联合应用。相对应于自主呼吸由无到有的过程,触发方式一般是从呼吸机触发向患者触发逐渐过渡的。 2 控制参数的设定与调节 此类参数的作用在于呼吸机怎样按照预设的目标向病人送气。按照控

制目标可分为容量控制和压力控制。 2.1 容量控制是指呼吸机以一个预设的潮气量(Vt)为目标送气。这一潮气量通常可按照6—8ml/kg来计算,需注意达到预设潮气量时气道压力不可过高,以防气压伤。此控制方式下还需要设置吸气峰流速(peak flow)、气体的流速波形、吸气时间(Ti)。 吸气峰流速一般情况下以使气流满足患者吸气努力为目标,成人通常设为40—80L/min。吸气时间通常设为0.8—1.2秒。流速与送气时间的积分即为潮气量,所以潮气量设定后吸气峰流速与吸气时问只需设定其一。流速波形通常选用方波和减速波。减速波因与正常吸气时的正弦波较接近,比较符合生理状态,而较多采用。 2.2 压力控制呼吸机以一个预设的吸气压力(in.spiratory pressure)为目标送气。此压力目标通常设为35cmH2O以下,以达到合适的潮气量且防止肺内压过高。还需要设置吸气触发后达到目标压力所需的时间,这一参数在有些呼吸机上为压力上升时间(risetime),通常设为0.05—0.1秒,在有些呼吸机上为压力上升的斜率(ramp),通常设为75%左右,一般以使吸气流速晗好满足患者吸气努力为目标。 3 切换参数的设定与调节 此类参数的作用是决定吸气向呼气转换的时机,可分为时间切换、流速切换两种方式。 3.1 时间切换在呼吸频率确定后,吸呼比(I:E)或吸气时间决定了吸气向呼气切换的时间点。吸呼比通常设为1:2~1:1.5。

MasterCAM车床加工应用教程

第10章车床加工 本章主要讲述Mastercam的“车床”模块。车床模块可生成多种车削加工路径,包括简 式车削、表面车削、径向车削、钻孔、螺纹 车削、切断、C轴加工(C-axis)等加工路径。 2003.07.20Mastercam1

10.1 车床加工基础知识 车床加工系统的各模组生成刀具路径之前,也要进行工件、刀具及材料参数的设置,其材料的设置与铣 床加工系统相同,但工件和刀具的参数设置与铣床加 工有较大的不同。车床系统中几何模型的绘制方法与 铣床系统中几何模型的绘制方法有所不同,只需用绘 制零件图形的一半。在生成刀具路径后,可以用操作 管理器进行刀具路径的编辑、刀具路径模拟、仿真加 工模拟以及后处理等操作。 10.1.1车床坐标系 10.1.2刀具参数 10.1.3工件设置 2003.07.20Mastercam2

10.1.1 车床坐标系 一般数控车床使用X轴和Z轴两轴控制。其中Z 轴平行于机床主轴,+Z方向为刀具远离刀柄方向;X轴垂直于车床的主轴,+X方向为刀具离开主轴线方向。当刀座位于操作人员的对面时,远离机床和操作者方向为+X方向;当刀座位于操作人员的同侧时,远离机床靠近操作者方向为+X方向。有些车床有主轴角位移控制(C-axis),即主轴的旋转转角度可以精确控制。 2003.07.20Mastercam3

在车床加工系统中绘制几何模型要先进行数控机床坐标系设定。顺序选择主菜单中的Cplane→Next Menu进行坐标设置。常用坐标有“+XZ”、“-XZ”、 “+DZ”、“-DZ”。车床坐标系中的X方向坐标值有两种表 示方法:半径值和直径值。当采用字母X时表示输入的 数值为半径值;采用字母D时表示输入的数值为直径值。 采用不同的坐标表示方法时,其输入的数值也应不同,采用直径表示方法的坐标输入值应为半径表示方法的2 倍。 车床加工中,工件一般都是回转体,所以,在绘制几何模型时只需绘制零件的一半外形,即母线。 螺纹、凹槽及切槽面的外形可由各加工模组分别定义。有些几何模型在绘制时只要确定其控制点的位置, 而不用绘制外形。控制点即螺纹、凹槽及切槽面等外 形的起止点,绘制方法与普通点相同。 2003.07.20Mastercam4

呼吸机常见模式及参数设置

呼吸机常见模式及参数设置 间歇正压通气(IPPV) ?间歇正压通气(IPPV):最基本的通气方式。吸气时产生正压,将气体压入肺内,靠身体自身压力呼出气体。 ?优点 ?可改善病人的通气和氧合,适用于呼吸停止、通气不足和呼吸功能不全者。用于容量负荷过大心力衰竭患者的呼吸支持时,可减少静脉回心血量。 ?缺点 ?可使肺循环阻力增加,右心负荷增加,正压过高可致血压下降。对换气障碍引起的急性呼吸衰竭的疗效不理想,而且如通气压力过高可造成肺压伤。 ?辅助/控制通气(A/C) ?辅助/控制通气(A/C):病人有自主呼吸时,机器随呼吸启动,一旦自发呼吸在一定时间内不发生时,机械通气自动由辅助转为控制型通气。它属于间歇正压通气。 同步间歇指令通气(SIMV) ?同步间歇指令通气(SIMV):属于辅助通气方式,呼吸机于一定的间歇时间接收自主呼吸导致气道内负压信号,同步送出气流,间歇进行辅助通气。即(可自主呼吸)若干次自主呼吸后给一次正压通气,保证每分钟通气量,IMV的呼吸频率成人一般小于10次/分。 优点 1.是自主呼吸与控制呼吸的有机结合,有利于呼吸肌锻炼。撤离呼吸机前常使用的通气方式。 2、在有自主呼吸的前提下进行的,只负担部分通气,从而减轻心血管负担,减少气道压力损失缺点SIMV频率需人工调节,有时会发生低通气量或CO2蓄积,在实施时必须严密观察 双水平气道内正压(BiPAP) ?双水平气道内正压(BiPAP):病人在不同高低的正压水平下自主呼吸。自主呼吸或机械通气时,交替给予两种不同水平的气道正压,即气道压力周期性地在高压力和低压力之间转换,每个压力水平均可独立调节。以两个压力水平之间转换引起的呼吸容量改变来达到机械通气辅助作用。?优点是病人自主呼吸轻松作功小,危险性小,几乎适合各种病人。 呼吸机的参数 1.时间参数 2.容量参数 3.压力参数 时间参数 ?呼吸频率( f ) ?吸呼比(I/E) ?吸气时间T i (s) -----、呼气时间T e(s) ?屏气时间T P(s) -----是吸气时间的一部份,一般不超过呼吸周期的20%。 容量参数 ?分钟通气量(Minute V olume,MV )— ?潮气量(Tidal Volume,VT),V TI,V T E ?吸气流量(F,l/s),是一个动态物理参数,峰值流速F peak :影响吸呼比 ?叹气/深吸气(Sign,1.5或2倍的V T /100次)

呼吸机常用参数

呼吸机相关参数设置 呼吸机参数的设置和调节: 1、呼吸频率:8-18次/分,一般为12-15次/分,COPD及ARDS者例外。 2、潮气量:8-15ml/kg体重,根据临床及血气分析结果适当调整。 3、吸/呼比:一般将吸气时间定在1,吸/呼比以1:2-2.5为宜,限制性疾病为1:1-1.5,心功能不全为1:1.5,ARDS则以1.5-2:1为宜(此时为反比呼吸,以呼气时间定为1)。 4、吸气流速(Flow):成人一般为30-70ml/min。安静、入睡时可降低流速;发热、烦躁、抽搐等情况时要提高流速。 5、吸入氧浓度(FiO2):长时间吸氧一般不超过50%-60%,原则上吸入氧浓度逐渐降低。 6、触发灵敏度的调节:通常为0.098-0.294kPa(1-3cmH2O),一般选择2 cmH2O,根据病人自主吸气力量大小调整;流量触发者为3-6L/min。 7、吸气暂停时间:一般为0-0.6s,不超过1s。 8、PEEP的调节:当FiO2>60%,PaO2<8.00kPa(60 cmH2O)时应加PEEP,临床上常用PEEP 值为0.29-1.18kPa(3-12 cmH2O),很少超过20 cmH2O。 9、报警参数的调节:不同的呼吸机报警参数不同,根据既要安全,又要安静的原则调节。压力报警:主要用于对病人气道压力的监测,一般情况下,高压限设定在正常气道高压(峰压)上0.49-0.98 kPa(5-10 cmH2O),低压下限设定在能保持吸气的最低压力水平。FiO2:一般可高于

或低于实际设置FiO2的10%-20%.潮气量:高水平报警设置与所设置TV和MV相同;低水平报警限以能维持病人生命的最低TV、MV水平为准。PEEP或CPAP报警:一般以所应用PEEP 或CPAP水平为准。 呼吸机常见报警处理 呼吸机各种报警的意义和处理 1、气道高压high airway pressure: (1)原因:病人气道不通畅(呼吸对抗)、气管插管过深插入右支气气管、气管套管滑入皮下、人机对抗、咳嗽、肺顺应性低(ARDS、肺水肿、肺纤维化)、限制性通气障碍(腹胀、气胸、纵隔气肿、胸腔积液); (2)处理:听诊肺部呼吸音是否存在不对称、痰鸣音、呼吸音低;吸痰;拍胸片排除异常情况;检查气管套管位置;检查管道通畅度;适当调整呼吸机同步性;使用递减呼吸机同步性;使用递减流速波形;改用压控模式;使用支气管扩张剂;使用镇静剂。 2、气道低压Low airway pressure (1)原因:管道漏气、插管滑出、呼吸机参数设置不当; (2)处理:检查漏气情况;增加峰值流速或改压力控制模式;如自主呼吸好,改PSV模式;增加潮气量;适当调整报警设置。

呼吸机参数

成人应用呼吸机的生理指标为:潮气量5~7ml/kg;呼吸频率12~20次/分;气道压30~35c m H2O;每分钟通气量6~10l/m i n。 1.呼吸机的检测:依呼吸机类型而定 2.控制部分: (1)模式选择:依据病情需要 (2)参数调节: ①潮气量(Tidal Volume):8~15ml/kg ;定容:VT=Flow×Ti(三者设定两者);定压:C=ΔV/ΔP(根据监测到的潮气量来设置吸气压力Inspirator Pressure) ②吸气时间:Ti=60/RR,一般吸呼比(I:E)为1:1.5~2;吸气停顿时间:属吸气时间,一般设置呼吸周期的10%秒(应〈20%) ③吸气流速:Peak Flow键;流速波形:递增、正弦波、方波、递减 ④通气频率(RR):接近生理频率 ⑤氧浓度(FiO2,21%~100%):只要PaO2/FiO2满意,FiO2应尽量低,FiO2高于60%为高浓度氧 ⑥触发灵敏度:压力触发水平一般在基础压力下0.5~1.5cmH2O;流速触发水平一般在基础气流下1~3L/min ⑦呼气灵敏度(Esens):一般设置20~25% ⑧呼气末正压(PEEP):生理水平为3~5 cmH2O ⑨压力支持水平(Pressure Support):初始水平10~15 cmH2O ⑩吸气上升时间百分比(Insp RiseTime%)、压力上升梯度、压力斜坡(Pressure Scope)、流速加速百分比

(2)其它特殊功能键: ①吸气暂停键(InspPause):吸气末阻断法测定气道平台压 ②呼气暂停键(Exp Pause):呼气末阻断法测定auto PEEP ③手动呼吸键(Manual Breath、Manual Insp、Start Breath) ④氧雾化键(Nebulization) ⑤100% O2键 ⑥叹气功能键(Sigh) 3.报警设置 (1)分钟通气量(minute ventilation,MV,VE)上(下)限:高(低)于设定或目标分钟通气量10~15% (2)呼气潮气量上(下)限:高(低)于设定或目标潮气量10~15% (3)气道压(airway pressure)上(下)限:高(低)于平均气道压5~10 cmH2O (4)基线压(baseline pressure)上(下)限:PEEP值上(下)3 cmH2O (5)通气频率上(下)限:机控时设定值上(下)5bpm,撤机时视情况而定。 (6)FiO2:设定值上下5~10% 4.呼吸机的监测系统(有些呼吸机有监测显示屏) (1)数据监测: (2)呼吸力学曲线监测: ①三条动态曲线:压力-时间(P-T)、容量-时间(V-T)、流速-时间(F-T) ②两个环:压力-容量环(P-V)、流速-容量环(F-V)

车削粗糙度计算公式

车削粗糙度计算公式 表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方*1000/刀尖R乘8(每转进给的平方/刀尖半径X125) 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例 以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给

2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择 上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给0.15,R尖R0.4,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于0.15*0.15/0.4/8*1000=粗糙度7.0(单位微米)。 如果有要求光洁度要到0.8的话,切削参数变化如下:刀具不变依旧上面0.4的刀片,切削参数进给0.05,切深要视乎刀具的断削槽而定,通常如果进给

呼吸机参数的设置

一、呼吸机参数的设置和调节 1、呼吸频率:8-18次/分,一般为12次/分。COPD及ARDS者例外。 2、潮气量:8-15ml/kg体重,根据临床及血气分析结果适当调整。 3、吸/呼比:一般将吸气时间定在1,吸/呼比以1:2-2.5为宜,限制性疾病为 1:1-1.5,心功能不全为1:1.5,ARDS则以1.5-2:1为宜(此时为反比呼吸,以呼气时间定为1)。 4、吸气流速(Flow):成人一般为30-70ml/min。安静、入睡时可降低流速;发热、烦躁、抽搐等情况时要提高流速。 5、吸入氧浓度(FiO2):长时间吸氧一般不超过50%-60%。 6、触发灵敏度的调节:通常为0.098-0.294kPa(1-3cmH2O),根据病人自主吸气力量大小调整。流量触发者为3-6L/min。 7、吸气暂停时间:一般为0-0.6s,不超过1s。 8、PEEP的调节:当FiO2>60%,PaO2<8.00kPa(60cmH2O)时应加PEEP。临床上常用PEEP值为0.29-1.18kPa(3-12 cmH2O),很少超过1.47kPa(15 cmH2O). 9、报警参数的调节:不同的呼吸机报警参数不同,根据既要安全,又要安静的原则调节。压力报警:主要用于对病人气道压力的监测,一般情况下,高压限设定在正常气道高压(峰压)上0.49-0.98 kPa(5-10 cmH2O),低压下限设定在能保持吸气的最低压力水平。FiO2:一般可高于或低于实际设置FiO2的10%-20%.潮气量:高水平报警设置与所设置TV和MV相同;低水平报警限以能维持病人生命的最低TV、MV水平为准。PEEP或CPAP报警:一般以所应用PEEP或CPAP水平为准。 二、呼吸机各种报警的意义和处理 1、气道高压high airway pressure: (1)原因:病人气道不通畅(呼吸对抗)、气管插管过深插入右支气气管、气管套管滑入皮下、人机对抗、咳嗽、肺顺应性低(ARDS、肺水肿、肺纤维化)、限制性通气障碍(腹胀、气胸、纵隔气肿、胸腔积液) (2)处理:听诊肺部呼吸音是否存在不对称、痰鸣音、呼吸音低;吸痰;拍胸片排除异常情况;检查气管套管位置;检查管道通畅度;适当调整呼吸机同步性;使用递减呼吸机同步性;使用递减流速波形;改用压控模式;使用支气管扩张剂;使用镇静剂。 2、气道低压Low airway pressure 原因:管道漏气、插管滑出、呼吸机参数设置不当 处理:检查漏气情况;增加峰值流速或改压力控制模式;如自主呼吸好,改PSV模式;增加潮气量;适当调整报警设置。 3、低潮气量Low tidal volume(通气不足): (1)原因 *低吸气潮气量:潮气量设置过低、报警设置过高、自主呼吸模式下病人吸气力量较弱、模式设置不当、气量传感器故障。 *低呼气潮气量:管道漏气、其余同上。 (2)处理:检查管路以明确是否漏气;如病人吸气力量不足可增加PSV压力或改A/C模式;根据病人体重设置合适的报警范围;用模拟肺检查呼吸机送气情况;用潮气量表监测送气潮气量以判断呼吸机潮气量传感器是否准确。 4、低分钟通气量Low minute volume(通气不足) (1)原因:潮气量设置过低、通气频率设置过低、报警设置过高、自主呼吸模式下病人通气不足、管道漏气。 (2)处理:排除管道漏气;增加辅助通气参数;如自主呼吸频率不快可用MMV模式并设置合适的每分钟通气量;适当调整报警范围。

机械加工切削参数表

常用材料机械加工切削参数推荐表 共 26 页 2015年9月

目录 1 切削用量选定原则 ........................................ 2 车削加工切削参数推荐表 .................................. 2.1 车削要素.............................................. 2.2 车削参数............................................. 3 铣削加工切削参数推荐表 .................................. 3.1 铣削要素.............................................. 3.2 铣削参数.............................................. 4 磨削加工切削参数推荐表 .................................. 4.1 磨削要素 (23) 4.2 平面磨削.............................................. 4.3 外圆磨削.............................................. 4.4 内圆磨削..............................................

1 切削用量选定原则 选择机械加工切削用量就是指具体确定切削工序的切削深度、进给量、切削速度及刀具耐用度。选择切削用量时,要综合考虑生产率、加工质量和加工成本。 从切削加工生产率考虑:切削深度、进给量、切削速度中任何一个参数增加一倍,都可提高生产率一倍。 从刀具耐用度考虑:应首先采用最大的切削深度,再选用大的进给量,然后根据确定的刀具耐用度选择切削速度。 从加工质量考虑:精加工时,采用较小的切削深度和进给量,采用较高的切削速度。 2 车削加工切削参数推荐表 2.1 车削要素 切削速度v :工件旋转的线速度,单位为m/min 。 进给量f :工件每旋转一周,工件与刀具相对位移量,单位为mm/r 。 切削深度a p :垂直于进给运动方向测量的切削层横截面尺寸,单位为mm 。 Ra :以轮廓算术平均偏差评定的表面粗糙度参数,单位为μm 。 d w :工件直径,单位为mm 。 切削速度与转速关系: 3.3181000nd dn v = = π m/min d v d v n 3.3181000= =π r/min v :切削速度,工件旋转的线速度,单位为m/min 。 n :工件的转速,单位为r/min 。 d :工件观察点直径,单位为mm 。 2.2 车削参数 45钢热轧状态(硬度:187HB )外圆车削

呼吸机参数设置

呼吸机参数设置 一、呼吸机参数的设置和调节 1、呼吸频率:8-18次/分,一般为12次/分。COPD及ARDS者例外。 2、潮气量:8-15ml/kg体重,根据临床及血气分析结果适当调整。 3、吸/呼比:一般将吸气时间定在1,吸/呼比以1:2-2.5为宜,限制性疾病为 1:1-1.5,心功能不全为1:1.5,ARDS则以1.5-2:1为宜(此时为反比呼吸,以呼气时间定为1)。 4、吸气流速(Flow):成人一般为30-70ml/min。安静、入睡时可降低流速;发热、烦躁、抽搐等情况时要提高流速。 5、吸入氧浓度(FiO2):长时间吸氧一般不超过50%-60%。 6、触发灵敏度的调节:通常为0.098-0.294kPa(1-3cmH2O),根据病人自主吸气力量大小调整。流量触发者为3-6L/min。 7、吸气暂停时间:一般为0-0.6s,不超过1s。 8、PEEP的调节:当FiO2>60%,PaO2<8.00kPa(60cmH2O)时应加PEEP。临床上常用PEEP值为0.29-1.18kPa(3-12 cmH2O),很少超过1.47kPa(15 cmH2O). 9、报警参数的调节:不同的呼吸机报警参数不同,根据既要安全,又要安静的原则调节。压力报警:主要用于对病人气道压力的监测,一般情况下,高压限设定在正常气道高压(峰压)上0.49-0.98 kPa(5-10 cmH2O),低压下限设定在能保持吸气的最低压力水平。FiO2:一般可高于或低于实际设置FiO2的10%-20%.潮气量:高水平报警设置与所设置TV和MV相同;低水平报警限以能维持病人生命的最低TV、MV水平为准。PEEP或CPAP报警:一般以所应用PEEP或CPAP水平为准。 二、呼吸机各种报警的意义和处理 1、气道高压high airway pressure:

机加工——机加工报价计算

1.机加工方法报价表格(范例) 一般件、小批量时的单个计价方法 加工方法小类和基本参数参数1 参数2和单位价格 钻孔单个孔L/d≤2.5d≤25 X*d元 "L=孔深,d=孔径" 25≤d<60 X*d元 L/d>2.5 d≤25 X*d元(*L/d/2.5) 25≤d<60 X*d元(*L/d/2.5) 孔径公差<0.1 对应基价的倍数 X倍 孔距公差<0.1 对应基价的倍数 X倍 单个孔加工的最低价格 X元 附带攻丝钢件 X*d元 d=螺纹直径铸铁件 X*d元 L=螺纹长度铝件加不锈钢丝套费用 X*d元 不加丝套费用 X*d元 铜件 X*d元 批量优惠批量>200个孔且<10000个孔对应基价的倍数 X倍批量>10000个孔对应基价的倍数 X倍 车类加工光轴加工 "L=轴长,d=轴径,D=毛坯轴径" 一般精度L/d≤10 X*D*L元 L/d>10 X*D*L元(*L/d/10) 精度<0.05 L/d≤10 X*D*L元 L/d>10 X*D*L元(*L/d/10)

带锥度轴 L/d≤10 X*D*L元 L/d>10 X*D*L元(*L/d/10) 阶梯轴对应光轴基价的倍数 X倍 一般精度的丝杠对应光轴基价的倍数 X倍 法兰盘类零件d≤430 X*D元 d=法兰外径,D=毛坯直径 d>430 X*D元 圆螺母零件 X*D元 d=圆螺母外径,D=毛坯直径 六角螺母零件 X*D元 d=六角螺母外径,D=毛坯直径 轴套类零件(直径小于100径长比小于2)"d<100,d/L≤2" X*D元 d=轴套外径,L=轴套长度 "d<100,d/L>2" X*D元(*d/L/2) 修补轴承座(台)类零件 "t<2,d<40,B<25" X元 "t=磨损量,d=轴承外径,B=轴承座宽度" "t<2,d>40或B>25" X元(*d/40*B/25) 需要上中心架的对应上述基价的倍数 X倍 铣床加工一般键槽 L=键槽长度,B=键槽宽度位置度公差7级以下的L/B≤10 X*B元 L/B>10 X*B元(*L/B/10) 最低价 X元 位置度公差7级和以上的对应上述基价的倍数 X倍

呼吸机参数的意义

呼吸机参数的意义 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

呼吸机参数的意义: IPAP:设置的吸气相的压力EPAP:设置的呼吸相的压力 Rate:后备通气频率;当病人的自主呼吸频率低于后备通气频率时,呼吸机将进行机控呼吸 TimedInsp:后备吸气时间;吸呼比不超过1:1RiseTim e:压力上升时间VentRamp:爬坡压力设置;爬坡指的是为了提高病人对呼吸机的依从性,所这置的IPAP逐渐上升的功能 VentRamp指的是每次呼吸增加的压力,可以调整为、1、2、3cmH2O,例如IPAP为10cmH2O,EPAP为4cmH2O,VentRamp为,第一次呼吸的IPAP为 4cmH2O;第二次呼吸的IPAP为4+,为4cmH2O;第三次呼吸的IPAP为+;以此类推,经过12次呼吸后IPAP达到最高压力10cmH2O Disconnect:管道脱落报警;可以设置为15秒,30秒,60秒和OFF Apnea:窒息警报;可以设置为10秒,20秒,30秒和OFF LowMinVent:低分钟通气量报警,可以设置为0—L/min TimedatP:指的是最近一次的鼓风机工作时间;可以通过进入甚至将时间清零SystemCodes:指系统码Modem:连接网络时打开 PtAlarmsHistory:指报警的历史记录;可以进入查看 PEV:指是否适用PEV漏气伐;当适用PEV漏气伐时必须调整到YES,否则机器的自动漏气补偿功能认为有大量漏气,会进行漏气的补偿 Lockout:指键盘锁,当参数设置完成后可以通过把Lockout调整到YES,进行键盘锁定 Language:指屏幕显示语言的更改

车削加工工艺参数对切削力的影响

基于DEFORM3D的车削有限元模拟 摘要:本文在建立了车削三维有限元模型基础上,运用有限元法对45钢的车削过程中切削用量对切削力影响进行了模拟,并对结果进行了分析讨论。该模拟对现实工程应用有较大的作用。 关键字:车削模拟DEFORM3D 1 引言 金属零件的加工方式可分为塑性加工、热成形或压力成形加工、机械加工、高能加工、电及化学加工等几大类。在上述各种加工方法中,在机械制造过程所占比重最大的是机械加工中的切削加工和磨削加工;而车削加工作为切削加工中应用最广泛的加工形式,其加工过程中的工艺参数一直成为研究的对象。本文利用STFC公司的DEFORM3D软件对车削过程进行模拟,并分析了不同的切削用量对切削力的影响。 1.1 车削加工过程中切削力的来源与分解 1.1.1 切削力的来源 刀具总切削力是刀具上所有参与切削的各切削部分所产生的总切削力的合力。而一个切削部分的总切削力F是一个切削部分切削工件时所产生的全部切削力。它来源于两个方面:三个变形区(剪切区、摩擦区、挤压区)产生的弹、塑性变形抗力和切屑、工件与刀具之间的摩擦力。 切削时金属的塑性变形如图1所示,其中第Ⅰ变形区为剪切区,第Ⅱ变形区为摩擦区,第Ⅲ变形区为挤压区。

图1 切削时金属的塑性变形 1.1.2 总切削力的几何分力 刀具切削部分的总切削力是个大小、方向不易测量的力。为方便分析,常将总切削力沿选定轴系作矢量分解来推导出各分力,即总切削力的几何分力。 图2 外圆车削时力的分解

F。 (1) 切削力 C F是F在主运动方向上的正投影。在各分力中它最大,要消耗机床功率的C 95%以上。它是计算机床功率和主传动系统零件强度和刚度的主要依据。 (2) 进给力 F。 f F是F在进给运动方向上的正投影,是设计或校核进给系统零件强度和刚f 度的依据。 F (3) 背向力 p F是F在垂直于工作平面上的分力。背向力不做功,具有将工件顶弯的趋 p F。势,并引起振动,从而影响工件加工质量。用增大车刀主偏角的方法可以减小 p F与各分力之间的关系为: F=(N) 1.2 切削热和切削温度 1.2.1 切削热的来源 切削过程中所消耗的切削功绝大部分转变为切削热。切削热的主要来源是切削层材料的弹塑性变形(Q(变形)),以及切屑与刀具前面之间的摩擦(Q(前摩))、工件与刀具后面之间的摩擦(Q(后摩))。因而三个变形区也是产生切削热的三个热源区。 1.2.2 切削热的传散 切削热通过切屑、工件、刀具和周围介质(如空气、切屑液)等传散。各部分传散的比例随切削条件的改变而不同。 据热力学平衡原理,产生的热量和传散出去的热量应相等,即

呼吸机基本参数

呼吸机基本参数 呼吸机基本参数潮气量VT ,在容量控制通气模式,应 保证足够气体交换及注意病人舒适度,结合呼吸系统的顺应性和阻力进行调整,避免气道平台压超过30~35cmH2O ,常根据体重计算:成人一般为 5-15ml/kg ,一般为400-500ml ,目前主张小潮气量通气5-7ml/kg ,避免气压伤产生。PCV 模式下,主要由预设定的压力、吸气时间、呼吸系统的阻力及顺应性决定,最终应根据动脉血气分析进行调整。 通气频率f,12-20 次/分。急慢性限制性肺疾病也可根据通气量和目标PaO2水平超过20次/min。准确调整应根据动 脉血气分析的变化综合调整VT与f。呼气流速,40-100L/min , 般为40-60L/min ,可调节呼吸比,影响其到压力变化。通常应根据分钟通气量和呼吸系统的阻力和顺应性进行调整,流速波形在临床常用减速波或方波。PCV 时流速由选择的压力水平、气道阻力及受患者的吸气努力影响。 吸气时间或呼吸比I:E ,吸气时间一般需要0.8-1.2s ,呼吸比 1:1.5-2 。基于患者自主呼吸水平、氧合状态及血流动力学,适当的设置能保持良好的人机同步性。CV 患者为抬高 Pmean 、改善氧合,可适当延长吸气时间及呼/吸比,但应注意患者舒适度、PEEPi 监测水平及对心血管系统的影响。 触发灵敏度,包括压力触发和流速触发两种。压力触发,是

对气道内压力降低所产生的反应,呼吸机触发敏感度应设于最灵敏但又不至引起与病人用力无关的自发切换,通常设于 -0.5~-1.5cmH2O ,当应用PEEP 时,应将触发灵敏度设于 PEEP-1.5cmH2O 水平;流速触发,是对气道内气流流量所发生的反应,通常设于2-5L/min 。合适的触发灵敏度设置将使患者更加舒适,促进人机协调。若触发敏感度过高,会引起与患者用力无关的误触发;若设置触发敏感度过低,将显著增加患者的吸气负荷% 消耗额外呼吸功。有研究表明,流速触发较压力触发能明显减低患者的呼吸功。 吸氧浓度FiO2,机械通气初始阶段可给予高FiO2 (100% ) 水平和血流动力学状态,酌情降低FiO2 至50% 以下,并设法维持SaO2 > 90% 。若不能达到上述目标,即可加用PEEP 、增加Pmean ,应用镇静剂或肌松剂;若适当PEEP 和Pmean 以迅速纠正严重缺氧,以后依据目标PaO2 、PEEP 、Pmea 可以使SaO2 > 90%,应保持最低的FiO2。PS:通常,短 时间内可允许FiO2 > 60% ,但长时间可出现氧中毒可能, SaO2 > 90%情况下,FiO2应尽量v 60% , FiO2 一般设置于 35-50% 之间,如氧合十分困难,50% 的FiO2 不能维持SaO2 > 90% ,可叫用PEEP 增加氧合,或短时间内增加FiO2 > 60% ,待纠正缺氧后,再酌情降低FiO2 到50% 以下。全麻昏迷病人,持续24h 吸入纯氧FiO2100% 可发生氧中毒可能。高级参数PEEP ,一般设置6~8cmH2O ,高于8cmH2O

车削加工工艺参数对切削力的影响

车削加工工艺参数对切削力 的影响 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

基于DEFORM3D的车削有限元模拟 摘要:本文在建立了车削三维有限元模型基础上,运用有限元法对45钢的车削过程中切削用量对切削力影响进行了模拟,并对结果进行了分析讨论。该模拟对现实工程应用有较大的作用。 关键字:车削模拟 DEFORM3D 1 引言 金属零件的加工方式可分为塑性加工、热成形或压力成形加工、机械加工、高能加工、电及化学加工等几大类。在上述各种加工方法中,在机械制造过程所占比重最大的是机械加工中的切削加工和磨削加工;而车削加工作为切削加工中应用最广泛的加工形式,其加工过程中的工艺参数一直成为研究的对象。本文利用STFC公司的DEFORM3D软件对车削过程进行模拟,并分析了不同的切削用量对切削力的影响。 1.1 车削加工过程中切削力的来源与分解 1.1.1 切削力的来源 刀具总切削力是刀具上所有参与切削的各切削部分所产生的总切削力的合力。而一个切削部分的总切削力F是一个切削部分切削工件时所产生的全部切削力。它来源于两个方面:三个变形区(剪切区、摩擦区、挤压区)内产生的弹、塑性变形抗力和切屑、工件与刀具之间的摩擦力。 切削时金属的塑性变形如图1所示,其中第Ⅰ变形区为剪切区,第Ⅱ变形区为摩擦区,第Ⅲ变形区为挤压区。

图1 切削时金属的塑性变形 1.1.2 总切削力的几何分力 刀具切削部分的总切削力是个大小、方向不易测量的力。为方便分析,常将总切削力沿选定轴系作矢量分解来推导出各分力,即总切削力的几何分力。 图2 外圆车削时力的分解

呼吸机参数的意义

呼吸机参数的意义标准化管理部编码-[99968T-6889628-J68568-1689N]

呼吸机参数的意义: IPAP:设置的吸气相的压力EPAP:设置的呼吸相的压力 Rate:后备通气频率;当病人的自主呼吸频率低于后备通气频率时,呼吸机将进行机控呼吸 TimedInsp:后备吸气时间;吸呼比不超过1:1RiseTim e:压力上升时间VentRamp:爬坡压力设置;爬坡指的是为了提高病人对呼吸机的依从性,所这置的IPAP逐渐上升的功能 VentRamp指的是每次呼吸增加的压力,可以调整为0.5、1、2、3cmH2O,例如IPAP为10cmH2O,EPAP为4cmH2O,VentRamp为0.5cmH2O,第一次呼吸的IPAP为4cmH2O;第二次呼吸的IPAP为4+0.5cmH2O,为4cmH2O;第三次呼吸的IPAP为4.5+0.5cmH2O;以此类推,经过12次呼吸后IPAP达到最高压力10cmH2O Disconnect:管道脱落报警;可以设置为15秒,30秒,60秒和OFF Apnea:窒息警报;可以设置为10秒,20秒,30秒和OFF LowMinVent:低分钟通气量报警,可以设置为0—?L/min TimedatP:指的是最近一次的鼓风机工作时间;可以通过进入甚至将时间清零SystemCodes:指系统码Modem:连接网络时打开 PtAlarmsHistory:指报警的历史记录;可以进入查看 PEV:指是否适用PEV漏气伐;当适用PEV漏气伐时必须调整到YES,否则机器的自动漏气补偿功能认为有大量漏气,会进行漏气的补偿 Lockout:指键盘锁,当参数设置完成后可以通过把Lockout调整到YES,进行键盘锁定 Language:指屏幕显示语言的更改 Alarm:指报警声音强弱选择 呼吸参数正常值 每分钟通气量(EV):6~10L/min潮气量(VT):5~8ml/kg 呼吸频率(f):16~20次/分呼吸时间比(I/E):1.5~2.1 压力:1.5~2.9kPa(15~30cmH2O)氧浓度(FiO2):30%~40% PEEP:3~10cmH2O触发灵敏度:-1~-3cmH2O 呼吸常见报警及处理: 1.呼吸暂停:病人无呼吸或不能触发呼吸机 2.压力报警:1)高压:呼吸机管道打折,受压,积水,分泌物阻塞,气道痉挛,人 机对抗,报警设定不正确 2)低压:气囊充气不足,气囊漏气,管道脱落。漏气。报警设定不正确 3.容量报警:1)高容量:实际潮气量高于设置水平,检查所设置的通气方式, 潮气量。呼吸频率等参数,处理见高压报警 2)低容量:常见与病人的气管导管与呼吸机脱开或某处漏气,处理见低压报警 4.气源报警:氧气,空气压力不足报警 氧浓度(Fio2)报警:高于或低于实际设置10%~20% 5.电源报警:停电,电源插头脱落 呼吸机故障的紧急处理 1.立即脱开呼吸机导管与气切导管或气管插管导管

车削加工参数设置

本人一直很沉迷于机械切削加工,有时候已经属于严重脱离生产应用的范畴,纯粹属于个人爱好去研究、琢磨。关于各类型不同涂层、材质的刀具的应用、切削参数、切削效果,使用寿命等,曾经长期试验了很多。以下公布的车刀测试效果纯粹是个人经验所得,请手下留情少拍砖头 为了测试的结论比较客观、可信,所有用刀片一律为三菱出品的CCMT80度螺钉压紧式的外圆刀片,刀杆用SCLCR标准93度外圆刀杆,所有刀片槽型一致、刀尖R一致,型号均为CCMT09T304,有不同的只是刀片材质和涂层不同的区别。 由左至右材质代号分别为: 1:NX2525 (白色)此为三菱金属陶瓷的主打材质 2:AP25N (闪亮金色)此为带PVD涂层的金属陶瓷 3:U6010 (深金色))此为最常见的CVD涂层硬质合金 4:VP15TF (紫色)此为PVD涂层的硬质合金 四种刀片之中,对于一般软钢HB180`280左右的推荐切削速度范围分别为: 1:NX2525 100~250米 2:AP25N 100~350米 4:U6010 200~350米 5:VP15TF 100~150米 以下说说刀片的经济性,价格最便宜的是NX2525,其次是AP25N,然后是U6010,最贵的是VP15TF,不过由于其都是十来块一片的东西,差价也就三两块一片而已,所以刀具的使用寿命比价格重要很多!废话少说,说说我对各类型刀片的使用特性及应用范围,仅供参考: 1:NX2525 NX2525是不带涂层的金属陶瓷刀片,也是刀片材质之中最廉价的,但其硬度是最高的,所以也是最耐磨损,也最耐高温。但金属陶瓷的脆性很大,一但刀具刃口锋利性降低,切削阻

力加大,非常容易出现崩裂的现象,而不是磨损,几乎失效时都是刀片崩裂,在刀片未见严重磨损时就要更换刀片,否则刀片随时会崩裂掉一大块,导致撞机。鉴于其脆性大、硬度高、耐高温三个物理特性,2mm以内的小切深、干式切削时可以发挥最大的耐用寿命和最佳的切削效果。 湿式切削时不建议使用此材质的刀片,加了冷却液(特别是乳化液)之后对刀片的寿命会有严重降低,而且大大增加刀片爆裂的机会,非要用切削液也只能用切削油。 2:AP25N AP25N是带PVD薄膜涂层的金属陶瓷刀片,由于其涂层的作用,切削速度可以轻微提高10%,但最重要的是带涂层之后刀片抗热胀冷缩提高,可以在乳化液的切削环境中使用,但其脆性还是没有改变,依然只适合于小切深。不过经过我长期测试,带了涂层之后的效果并不明显,使用价值不大。 总的来说,金属陶瓷材质的刀具由于廉价和特殊的物理特性,比较适合于小零件小切削余量的场合使用,干式切削时尽量将切削温度提升到工件可接受范围,切削理念应为小切深,高转速,低进给的精加工要求,严禁低速大切深,高进给切削使用 3:U6010 U6010是CVD涂层的合金材质,由于CVD的技术涂层是很厚的,所以此类刀片切削范围涂层磨完之时,刀片也块到寿终正寝之日。由于起合金基底的缘故,抗冲击比金属陶瓷的要好很多,所以虽然他的硬度没金属陶瓷的高,但可实现的切削速度是最快的!强劲断续切削时几乎只能选用此刀片,刀具在失效时刀片都是以磨损为主,除非在非常不合理的切削参数和条件下才会产生大面积甭缺。 4:VP15TF VP15TF是PVD涂层的合金材质,但涂层的厚度相对CVD是很薄的,所以切削速度是最低的,但此类涂层的刀片价格是最高的!原因就是PVD涂层很抗黏结,也就是抗积屑瘤!切削不锈钢等高黏性材料时切削效果是最好的,例如不锈钢、未热处理的高速钢、高铬钢等合金成分比重大的材料时,切削最容易体会到该涂层的好处,如果用来加工一般碳钢或者低合金钢,你只会发现用更贵的刀片加工寿命更低而已。 说一个最简单的例子,我用的高精度国产数控车床,加工直径50mm的45号钢,用2.0MM 的切断刀切断,正常以120米的切削速度(恒定线速,最高4000转),进给0.15

机械加工切削全参数表

机械加工切削全参数表 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

常用材料机械加工切削参数推荐表 共 26 页 2015年9月

目录

1 切削用量选定原则 选择机械加工切削用量就是指具体确定切削工序的切削深度、进给量、切削速度及刀具耐用度。选择切削用量时,要综合考虑生产率、加工质量和加工成本。 从切削加工生产率考虑:切削深度、进给量、切削速度中任何一个参数增加一倍,都可提高生产率一倍。 从刀具耐用度考虑:应首先采用最大的切削深度,再选用大的进给量,然后根据确定的刀具耐用度选择切削速度。 从加工质量考虑:精加工时,采用较小的切削深度和进给量,采用较高的切削速度。 2 车削加工切削参数推荐表 车削要素 切削速度v:工件旋转的线速度,单位为m/min。 进给量f:工件每旋转一周,工件与刀具相对位移量,单位为mm/r。切削深度a :垂直于进给运动方向测量的切削层横截面尺寸,单位为 p mm。 Ra :以轮廓算术平均偏差评定的表面粗糙度参数,单位为μm。 d :工件直径,单位为mm。 w 外圆车削示意图内圆车削示意图

切削速度与转速关系: 3.3181000nd dn v = = π m/min d v d v n 3.3181000= =π r/min v :切削速度,工件旋转的线速度,单位为m/min 。 n :工件的转速,单位为r/min 。 d :工件观察点直径,单位为mm 。 车削参数 45钢热轧状态(硬度:187HB )外圆车削 45钢热轧状态(硬度:187HB )内圆车削

相关主题
文本预览
相关文档 最新文档