当前位置:文档之家› 2021年液相色谱实验报告

2021年液相色谱实验报告

2021年液相色谱实验报告
2021年液相色谱实验报告

华南师范大学实验报告

欧阳光明(2021.03.07)

液相色谱分析混合样品中的苯和甲苯

一、实验目的

1、掌握高效液相色谱定性和定量分析的原理及方法;

2、了解

高效液相色谱的构造、原理及操作技术。

二、实验原理

高效液相色谱由储液器,泵、进样器、色谱柱、检测器、记录仪等几部分组成,储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动,经过反复多次的吸附—解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪。

三、主要仪器和试剂

主要仪器:岛津液相色谱仪(LC-10AT)[配有紫外检测器,

Phenomenex ODS 柱];10μL微量注射器

试剂:苯标准溶液:10.0μL/mL;

甲苯标准溶液:10.0μL/mL;

苯、甲苯混合标准溶液:10.0μL/mL;甲

醇:80% ;苯和甲苯混

合待测溶液;

四、实验步骤

1、标准溶液的配制系列

用100μL的微量注射器分别量取10μL、20μL、 50μL、100μL 的苯和甲苯的混合标准溶液(10.0μL/mL),再分别加入90μL、80μL、50μL、0μL甲醇将其稀释,作为待测液,其浓度分别为

1μL/mL、2μL/mL、5μL/mL、10μL/mL

2、色谱条件优化

①按操作规程开机,并调好色谱条件,使仪器处于工作状态。控制流动相流速为甲醇:0.8mL/min、水:0.2 mL/min;柱温30℃;检测波长254nm;观察记录保留时间,通过软件分析两峰分离效果。

②改变色谱条件,控制流动相流速为甲醇:0.95mL/min、水:

0.05 mL/min;柱温30℃;检测波长254nm;观察记录保留时间,通过软件分析两峰分离效果。

③通过观察两种色谱条件下的峰分离效果,选择最佳的色谱条件。若还不能达到最佳的分离效果,可以再设定不同的色谱条件,然后根据峰分离效果,选择最佳的色谱条件。

3、苯、甲苯定性分析

在最佳条件下,待基线走稳后,用10μL微量注射器分别进样

5μL苯和甲苯混合待测溶液,5μL苯标准溶液(10.0μL/mL)和5μL 甲苯标准溶液(10.0μL/mL)(微量注射器用甲醇润洗3~5遍),观察并记录色谱图上显示的保留时间,确定苯和甲苯的峰。

4、苯、甲苯定量分析

最佳条件下,待基线走稳后,用10μL微量注射器分别进样

1.0μL/mL 、

2.0μL/mL、4.0μL/mL、10.0μL/mL的苯和甲苯混合标准溶液5μL。观察并记录各色谱图上的保留时间和峰面积。绘制苯和甲苯混合标准溶液峰面积与相应浓度的标准曲线。

5、苯和甲苯混合待测溶液分析

最佳条件下,待基线走稳后,用10μL微量注射器进样苯和甲苯混合待测液5μL,观察并记录各色谱图上的保留时间和峰面积。根据峰面积在工作曲线上查出苯和甲苯待测液的浓度,并计算试样中苯和甲苯的含量。

五、实验数据及分析

高效液相色谱数据报告

一、色谱条件优化 0.0 1.0 2.0 3.0 4.0 5.0 6.0min 0.0

0.51.01.52.0μV (x100,000)

色谱

二、定性分析

三、 定量分析 苯、甲苯混合标准溶液浓度分别为:1 ul/ml, 2 ul/ml, 5 ul/ml,10 ul/ml 。

苯 甲苯

浓度 峰面积 浓度 峰面积

1 ul/ml 212685 1 ul/ml 387710

2 ul/ml 429291 2 ul/ml 747983

5 ul/ml 954537 5 ul/ml 1533892

10 ul/ml 1905343 10 ul/ml 2928373

Y = aX + b a = 186510.8 b = 36165.15 Y = aX + b

a = 278490.9

b = 146280.5

样品 苯 甲苯 保留时间 3.765 4.917 苯

95%

80%

R^2 = 0.9995768 R = 0.9997884 R^2 = 0.9991048 R = 0.9995523

四、未知样品浓度

未知样品苯甲苯

浓度2 2.7ul/ml 3.6ul/ml

浓度1 2.9 ul/ml 3.6ul/ml

六、实验讨论

①由于实验中待测溶液的组分只有苯和甲苯两种物质,组分比较简单,只要在实验过程中,严格控制且定量进样,就能采用操作、计算简便的标准曲线法得出准确的实验结果,因而采用标准曲线法。若采用归一化法或内标法,虽然能得到准确更高的实验结果,但由于实验操作及计算均较为复杂,实验及数据处理的时间长,效率相对不高,故实验中采用标准曲线法作为定量的方法。

②最佳色谱条件的选择是本实验准确度的关键。若苯与甲苯的峰分离效果过小,苯与甲苯的峰未能完全分离,必定影响其保留时间和峰面积的计算,是实验准确度减小,数据误差加大;若苯与甲苯的峰分离效果过好,虽然能将苯与甲苯的峰完全分离,实验准确度好,但是耗费的实验时间较长,效率不好。因而,应选择合适的色谱条件。

③为了提高标准曲线的拟合度,可以重复进样多次,并且由同一人进样,以免因个体习惯不同引起实验误差。进样针进样时确保

进样针中没有残留气泡,另外,在进不同浓度或不同的物质前因先用乙醇溶液润洗干净,以免相互影响。

简述色谱基础理论中的塔板理论和速率理论

1、简述色谱基础理论中的塔板理论和速率理论(10分) 塔板理论是由以下四个假设构成的:1、在柱内一小段长度H 内,组分可以在两相间迅 速达到平衡。这一小段柱长称为理论塔板高度H 。2、流动相(如载气)进入色谱柱不是连 续进行的,而是脉动式,每次进气为一个塔板体积(ΔVm )。3、所有组分开始时存在于第0 号塔板上,而且试样沿轴(纵)向扩散可忽略。4、分配系数在所有塔板上是常数,与组分 在某一塔板上的量无关。(3分) 速率理论:是由荷兰学者范弟姆特等提出的。结合塔板理论的概念,把影响塔板高度的 动力学因素结合进去,导出的塔板高度H 与载气线速度u 的关系: Cu u B A H ++= 其中:A 称为涡流扩散项,B 为分子扩散项, C 为传质阻力项 涡流扩散项 A 气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成 类似“涡流”的流动,因而引起色谱的扩张。由于 A=2λd p ,表明 A 与填充物的平均颗粒 直径 dp 的大小和填充的不均匀性 λ 有关,而与载气性质、线速度和组分无关,因此使用 适当细粒度和颗粒均匀的担体,并尽量填充均匀,是减少涡流扩散,提高柱效的有效途径。 分子扩散项 B/u 由于试样组分被载气带入色谱柱后,是以“塞子”的形式存在于柱的很小一 段空间中,在“塞子”的前后 ( 纵向 ) 存在着浓差而形成浓度梯度,因此使运动着的分子产 生纵向扩散。而 B=2rD g r 是因载体填充在柱内而引起气体扩散路径弯曲的因数 ( 弯曲 因子 ) , D g 为组分在气相中的扩散系数。分子扩散项与 D g 的大小成正比,而 D g 与 组分及载气的性质有关:相对分子质量大的组分,其 D g 小 , 反比于载气密度的平方根或 载气相对分子质量的平方根,所以采用相对分子质量较大的载气 ( 如氮气 ) ,可使 B 项 降低, D g 随柱温增高而增加,但反比于柱压。弯曲因子 r 为与填充物有关的因素。 传质项系数 Cu C 包括气相传质阻力系数 C g 和液相传质阻力系数 C 1 两项。所谓气相 传质过程是指试样组分从移动到相表面的过程,在这一过程中试样组分将在两相间进行质量 交换,即进行浓度分配。这种过程若进行缓慢,表示气相传质阻力大,就引起色谱峰扩张。 (7分) 2、简述HPLC 仪器的基本构成及常用的一些分离类型。(10分) HPLC 仪器一般可分为梯度淋洗系统,高压输液泵与流量控制系统,进样系统,分离柱 及检测系统等5个主要部分(5分);液相色谱有多种分离类型,根据使用的固定相不同, 主要有如下分离类型:液-固吸附色谱,液-液分配色谱、离子交换色谱,排阻色谱、亲和色 谱等。(5分) 3、色谱分析法区别于其他分析方法的主要特点是什么?(5分) 1、 分离效率高,可以分离分析复杂混合物、有机同系物、异构体、手性异构体等; 2、灵 敏度高,可以检测出μg/g 级甚至是ng/g 级的物质量;3、分析速度快,一般在几分钟或 几十分钟内可以完成一个试样的分析;4、应用范围广,气相色谱适用物沸点低于400℃ 的各种有机化合物或无机气体的分离分析。液相色谱适用于高沸点、热不稳定及生物试 样的分离分析。离子色谱适用于无机离子及有机酸碱的分离分析。 4、色谱分离过程中的热力学和动力学因素分别由哪两个参数表现出来?两个色 谱峰的保留时间较大就一定能够分离完全吗?(5分) 色谱分离过程中的热力学因数是是保留值之差,而区域宽度是色谱分离过程中的动力学因数, 他们分别是通过分离度和分配系数这两个参数表现出来的。 不一定能分离完全,判断两个峰能否分离完全是用分离度来表现的,当分离度R=1.5时,分

高效液相色谱的色谱柱的类型和流动相的选择方法_徐红

高效液相色谱的色谱柱的类型和流动相的选择方法The Choicing W ays of Chromatographic Colum n and Mobil Phase about HPLC 徐 红 侯 健 (新疆昌吉州产品质量检验所,新疆昌吉831100) 摘 要:高效液相色谱仪的核心是色谱柱。另外,流动相对改善分离效果也有重要的辅助效应。色谱柱的关键内容是制备出高效的填料。现代高效液相色谱填料多使用键合固定相。色谱柱的填充技术直接影响柱效的发挥。在研究制定一个高效液相色谱方法时,选择适宜的流动相也很重要。 关键词:高效液相色谱;色谱柱;填料;流动相;溶剂 色谱柱的关键内容是制备出高效的填料。这些填料装成的色谱柱既要有好的选择性,又要有高的柱效。要提高柱效是现代高效液相色谱的又一重要问题。所以填料和装柱技术是关键问题。 现代高效液相色谱填料多使用键合固定相,其固定相膜很薄,因而大大提高了柱效。高效液相色谱填料的基质有以下几种:(1)全多孔硅胶。现代高效液相色谱填料绝大多数用键合的方法把活性基团接枝到基质上,全多孔硅胶是使用最为普遍的基质。全多孔硅胶的孔径有三种类型:①微孔全多孔硅胶,孔径<2nm;(2)中孔全多孔硅胶,孔径<50nm,>2nm;(3)大孔全多孔硅胶,孔径>50nm。高效液相色谱填料使用中孔和大孔全多孔硅胶,在分离低分子量的混合物时,选择(6~15)nm孔径的全多孔硅胶,其比表面相当于(500~200)m2/g。在分离合成聚合物或生物大分子时,要使用(15~100)nm的全多孔硅胶。如果使用<2nm的全多孔硅胶,色谱峰就会拖尾。(2)其他金属氧化物基质。由于硅胶有一些缺点:在碱性介质中(pH>8)不稳定;在孔隙中大分子扩散困难,降低柱效;硅胶表面上的剩余硅羟基有离子交换作用。为此近年来用氧化铝、氧化锆、氧化钍和氧化钛作为高效液相色谱填料的基质有很大的H PLC应用前景。高效液相色谱固定相有以下几种:(1)硅胶表面键合或涂渍各种聚合物。(2)其他氧化物表面上涂渍聚合物。(3)无孔单分散填料。(4)有机高聚填料。(5)灌注色谱填料。(6)手性固定相填料。 色谱柱的填充技术直接影响柱效的发挥。如果色谱柱填充不好,如填料颗粒之间不均匀、不密实,就会使涡流扩散项增加,导致柱效下降。高效液相色谱柱的性能主要决定于固定相填料,但是色谱柱的填充好坏也有很大的影响。填充色谱柱的方法有干法和湿法两种,一般大颗粒的(如外径>20nm)可以用干法填充;一般小粒径的填料宜用湿法填充。湿法填充也称作匀浆法,即用密度和填料相近的液体或混合液作分散介质,用超声波处理此浆液,然后用高压泵快速压入色谱柱管中,这样就可以制备出高效的色谱柱。 在研究制定一个高效液相色谱方法时,选择适宜的流动相也很重要。在选择流动相溶剂时,首先要考虑的是溶剂的物理性质,其次要考虑溶剂对所要分离样品的容量因子,最后是所使用的溶剂要有分离能力。用作高效液相色谱流动相溶剂,首先要满足以下几点要求:(1)容易得到;(2)适合于所用的检测器;(3)纯净、有一定的惰性;(4)无毒、使用安全;(5)对所分离的样品有一定的溶解性能。 下面介绍选择流动相的要点: (1)首先要考虑溶剂对检测器的适应性。 高效液相色谱在多数情况下要使用紫外检测器,所以必须考虑所用溶剂在紫外波段的吸收。如使用示差折光检测器,要考虑溶剂的折光率。 (2)溶剂的活性 有许多溶剂可能与样品发生反应,或在某些固定相的存在下产生聚合,他们就不能作为流动相使用。 (3)溶剂的沸点和粘度 溶剂的沸点和粘度密切相关,低沸点的溶剂通常其粘度也低。通常选用沸点高于柱温(20~50)℃、粘度不大于5×10-4Pa.S的流动相。 (4)高效液相色谱流动相溶剂的极性 在分配色谱和吸附色谱中,溶剂的极性是用混合溶剂的比例来调节的,一个极性强的溶剂和一个极性弱的溶剂经过适当的混合可以得到一定极性的混合溶剂。 (5)溶剂的选择性和溶剂的分类 选择流动相的极性能使被分离样品的分配容量在1~5之间,这时如果有两个或几个色谱峰重叠,可以通过调节溶剂的选择性来解决。 选择合适的色谱柱和流动相是高效液相色谱的关键。 参考文献 [1]富玉,陈能武.高温液相色谱的原理及研究进展.中国测试技术, 2006(3)36. 作者简介:徐红,女,副高级工程师,所长。工作单位:新疆昌吉州产品质量检验所。通讯地址:831100新疆昌吉市健康西路17号。 侯健,新疆昌吉州产品质量检验所(昌吉831100)。 收稿时间:2009-10-16   10 《计量与测试技术》2010年第37卷第2期

气相色谱法实验报告记录

气相色谱法实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验五—气相色谱法实验 姓名:张瑞芳 学号:2013E8003561147 班级:化院413班 培养单位:上海高等研究院 指导教师:李向军 组别:2013年12月30日第二组

气相色谱法实验 一、实验目的 1.了解气相色谱仪的各部件的功能。 2.加深理解气相色谱的原理和应用。 3.掌握气相色谱分析的一般实验方法。 4.学会使用FID气相色谱对未知物进行分析。 二、实验原理 1.气相色谱法基本原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。气相色谱仪器框图如图1所示: 图1.气相色谱仪器框图 仪器均由以下五个系统组成:气路、进样、分离、温度控制、检测和记录系统。 2.气相色谱法定性和定量分析原理 在这种吸附色谱中常用流出曲线来描述样品中各组分的浓度。也就是说,让

分离后的各组分谱带的浓度变化输入换能装置中,转变成电信号的变化。然后将电信号的变化输入记录器记录下来,便得到如图2的曲线。它表示组分进入检测器后,检测器所给出的信号随时间变化的规律。它是柱内组分分离结果的反映,是研究色谱分离过程机理的依据,也是定性和定量的依据。 图2.典型的色谱流动曲线 3.FID的原理 本次试验所用的为氢火焰离子化检测器(FID),它是以氢气和空气燃烧的火焰作为能源,利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。 三.实验试剂和仪器 (1)试剂:甲醇、异丙醇、异丁醇 (2)仪器:气相色谱仪带氢火焰离子化检测器(GC-2014气相色谱仪); 氢-空发生器(SPH-300氢气发生器)、氮气钢瓶; 色谱柱; 微量注射器。 四.实验步骤 1.打开稳定电源。 2.打开N2钢瓶(减压阀),以N2为载气,开始通气,检漏;调整柱前压约为 0.12MPa。

塔板理论

第二章 气相色谱分析gas chromatographic analysis,GC 第二节 色谱理论基础fundamental of chromatograph theory 色谱理论需要解决的问题:色谱分离过程的热力学和动力学问题。影响分离及柱效的因素与提高柱效的途径,柱效与分离度的评价指标及其关系。 组分保留时间为何不同色谱峰为何变宽 组分保留时间:色谱过程的热力学因素控制;(组分和固定液的结构和性质) 色谱峰变宽:色谱过程的动力学因素控制;(两相中的运动阻力,扩散) 两种色谱理论:塔板理论和速率理论; 一、塔板理论-柱分离效能指标 1.塔板理论(plate theory ) 半经验理论; 将色谱分离过程比拟作蒸馏过程,将连续的色谱分离过程分割成多次的平衡过程的重复 (类似于蒸馏塔塔板上的平衡过程); 塔板理论的假设: (1) 在每一个平衡过程间隔内,平衡可以迅速达到; (2) 将载气看作成脉动(间歇)过程; (3) 试样沿色谱柱方向的扩散可忽略; (4) 每次分配的分配系数相同。 色谱柱长:L ,虚拟的塔板间距离:H ,色谱柱的理论塔板数:n , 则三者的关系为: n = L / H 理论塔板数与色谱参数之间的关系为: 保留时间包含死时间,在死时间内不参与分配! 2.有效塔板数和有效塔板高度 ?单位柱长的塔板数越多,表明柱效越高。 ?用不同物质计算可得到不同的理论塔板数。 2 22116545)()( ./b R R W t Y t n ==

?组分在t M 时间内不参与柱内分配。需引入有效塔板数和有效塔板高度: 3.塔板理论的特点和不足 (1)当色谱柱长度一定时,塔板数 n 越大(塔板高度 H 越小),被测组分在柱内被分配的次数越多,柱效能则越高,所得色谱峰越窄。 (2)不同物质在同一色谱柱上的分配系数不同,用有效塔板数和有效塔板高度作为衡量柱效能的指标时,应指明测定物质。 (3)柱效不能表示被分离组分的实际分离效果,当两组分的分配系数K 相同时,无论该色谱柱的塔板数多大,都无法分离。 (4) 塔板理论无法解释同一色谱柱在不同的载气流速下柱效不同的实验结果,也无法指出影响柱效的因素及提高柱效的途径。 二、 速率理论-影响柱效的因素 1. 速率方程(也称范弟姆特方程式) H = A + B /u + C ·u H :理论塔板高度, u :载气的线速度(cm/s) 减小A 、B 、C 三项可提高柱效; 存在着最佳流速; A 、 B 、 C 三项各与哪些因素有关 A —涡流扩散项 A = 2λdp dp :固定相的平均颗粒直径λ:固定相的填充不均匀因子 固定相颗粒越小dp ↓,填充的越均匀,A ↓,H ↓,柱效n ↑。表现在涡流扩散所引起的色谱峰变宽现象减轻,色谱峰较窄。 222/1)(16)(54.5b R R W t Y t n ==理有效 有效有效n L H W t Y t n b R R ===2'22/1')(16)(54.5

高效液相色谱仪流动相配置操作规程

高效液相色谱仪流动相配制标准操作规程1.目的 明确高效液相色谱法流动相配制过程,保证操作过程的规范性。 2.适用范围 适用于实验室高效液相色谱法流动相配制。 3.职责 实验室分析人员负责按本规程进行操作。 4. 内容 4.1流动相批号的编写原则:流动相批号按配制日期编制,如批号20150609,代表2015年06月09日配制。 4.2流动相配制 4.2.1含水流动相和不含水流动相的配制所用量筒应区分开,配制不含水的有机溶剂类流动相所用量筒必须是干燥状态,不得有水。 4.2.2根据样品分析方法所规定的流动相体积比例配制,在清洁的带塞量筒中分别倒入相应的溶剂,若该流动相需加入适量的酸或碱,则戴上一次性手套,用专用注射器吸取规定体积的酸或碱,加入量筒,盖上塞子摇匀,振动过程应主要排气。 4.2.3含盐的缓冲液类流动相的配制应根据规定比例配制,分别秤取规定重量的盐于清洁的带塞量筒中,加入适量纯水,振摇,待固体完全溶解后,再加纯水至规定刻度,盖上塞子,摇匀。 4.2.4若该流动相对PH值有特殊要求,根据流动相配制规定的体积比例,用酸或碱调节PH值,用PH计测定直至规定范围内。

4.3流动相抽滤 4.3.1含水流动相和不含水流动相的抽滤装置应区分,抽滤不含水的有机溶剂类流动相所用装置必须是干燥无水的。 4.3.2抽滤装置准备:将过滤器套在三角烧瓶上,用镊子夹取0.45μm的水系或有机滤膜一张,放在砂芯过滤器上(注意:滤膜应将过滤面完全覆盖);再将量杯压在滤膜上,量杯边缘和过滤器的边缘对齐;用配套的夹子将过滤器和量杯接头边缘固定(注意夹子位置应避开抽滤嘴);将抽滤软管套在抽滤嘴上。 4.3.3抽滤:将少量配置好的流动相倒入量杯内,观察是否有漏液现象,若出现漏液须重新固定过滤器和量杯。如未漏液则继续倒入流动相(注意不要超过量杯最大刻度线),开启真空泵抽滤。抽滤结束先拔掉与抽滤嘴连接的真空软管,再关闭真空泵。 4.3.4脱气:将抽滤好的流动相转入流动相试剂瓶内(少量润洗一次倒入废液桶内再盛装),盖上瓶盖(瓶盖不得拧紧),常温下超声波超声15至20分钟。4.4流动相储存及标识 流动相全部转入专用试剂瓶内后拧紧瓶盖,及时填写《流动相标签》贴于试剂瓶身中间位置,备用。 4.5流动相有限期如下: 4.6流动相配制工具清洁 4.6.1配制含水流动相用器具:先用自来水清洗一次,再用纯化水清洗3次,沥干后封口备用。

液相色谱分析混合样品中的苯和甲苯

华南师范大学实验报告 课程名称仪器分析实验实验项目液相色谱分析混合样品中的苯和甲苯 实验类型□验证□设计□综合实验时间2010 年 3 月31 日 实验指导老师实验评分 一、实验目的 1.掌握高效液相色谱定性和定量分析的原理及方法; 2.了解高效液相色谱的构造、原理及操作技术。 二、实验原理 高效液相色谱由储液器,泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱内。由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动是,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,记录成数据。 液相色谱的定性依据是保留时间的相对性,通常相对误差不能大于5%。定量参数常常采用峰高、峰面积、相对峰高、相对峰面积等。定量方法通常采用外标法、内标法和面积归一化法。外标法为标准物质标准溶液制定标准曲线法;内标法为在标准溶液、样品溶液中加入内标物质,以相对峰高、相对面积对标准物质的浓度制定标准曲线;面积归一化法假定所有出峰物质的吸光系数相同,计算某物质的峰面积占所有峰面积的百分比。 三、仪器与试剂: 1.仪器:SCL-10A vp紫外可见双波长检测器;SPD-M10A vp柱温箱;LC-10AT高效液相

色谱仪;10μL微量注射器 2.试剂:2μL/mL苯标液;2μL/mL甲苯标液;0.2μL/mL、2μL/mL、4μL/mL、10μL/mL 的苯与甲苯的混合标准溶液;甲醇溶液;待测试样溶液 四、实验内容与步骤: 1.选择合适的流动相配比,优化色谱条件 设置有关参数:控制流速为1mL/min。柱温30℃,检测波长354nm。 设置流动相配比(甲醇:水=1:1),用10μL微量注射器注射5μL的10μL/mL苯与甲苯的混合标准溶液进行测定,观察其分离度和出峰时间。然后改变流动相配比,改进分离,调整出峰时间。从而得到最佳测定条件。 2.苯、甲苯定性分析: 在最佳的测定条件下,用10μL微量注射器,分别注射5μL2μL/mL苯的标准溶液和2μL/mL甲苯的标准溶液。观察记录保留时间,确定苯和甲苯的峰。 3.苯、甲苯定量分析: 在最佳的测定条件下,用10μL微量注射器,分别注射5μL 0.2μL/mL、2μL/mL、4μL/mL、10μL/mL苯与甲苯的混合标准溶液,再分别测定苯和甲苯的峰面积,以峰面积对浓度作图,做出工作曲线。 在最佳的测定条件下,用10μL微量注射器,注射5μL的试样,观察记录保留时间和峰面积。根据峰面积在工作曲线上查处苯和甲苯待侧溶液的浓度,并计算试样中苯和甲苯的含量。 五、数据记录及结果分析: 1. 优化色谱条件

高效液相色谱仪的操作步骤及注意事项

高效液相色谱仪的操作步骤及注意事项 一、操作步骤: 1.开机前先将流动相过滤和超声:水流动相用混合滤膜(0.2μm)过滤,有机流动相用有机滤膜过滤,之后超声脱气15-20分钟。(过滤的目的是除去流动相里的杂质,以免杂质进入色谱柱堵塞色谱柱;超声的目的是排除流动相里面的气体,以防气体进入色谱柱损害色谱柱,影响柱效能) 注:试验过程中由于只有0.45μm的混合滤膜,第一次使用时感觉效果不好,于是过滤水时同时使用两张混合滤膜过滤水流动相。 2.超声结束后,将流动相放置到规定位置(1号泵接水流动相,2号泵接有机流动相),开机逐个排气(先启动泵,排气结束后再打开检测器)。 3.排气结束后,关闭所有排气阀。先用纯有机流动相冲洗色谱柱20-30分钟,基线走稳之后,再打开水流动相(注意:水流动相和有机流动相流速之和为1ml/min),继续走基线,直到基线平稳。 注意:实验结束后,再用纯有机流动相冲洗色谱柱20-30分钟,冲出色谱柱内残留的样品物质,预防长时间不使用仪器样品的残留物质沉积在色谱柱内,导致下次使用难以冲出,色谱柱柱压偏高,基线不稳,出现大量鬼峰。(不同规格的色谱柱其所允许的最大流速之和不同) 4.走基线时,应将进样阀处于Load状态,用注射器进样时应快速进样,进样后将进样阀立即扳回到Inject状态,此时液相系统开始进入采样状态。采样结束后,可在数据分析里面查看分析结果并可进行编辑,也可以在脱机状态下查看样品的分析结果并编辑。 二、使用中常见的问题及注意事项 1.过滤时有时会出现流动相漏液。可能的原因是滤膜放置不正确(有点偏)和接头有点错位,导致流动相从缝隙中漏出。 注意:操作时,应先向滤瓶内倒入少量流动相,观察是否漏液并开始过滤,若未漏液,再向滤瓶中添加流动相。 2.超声时,瓶外液体的液面应高于瓶内流动相的液面,否则流动相内的气体可能无法排出液体,气体仍然残留在流动相内,以致开机排气时无气泡排出。

高效液相色谱实验报告

高效液相色谱实验报告 一、实验目的 1了解液相色谱的发展历史及最新进展 2 学习液相色谱的基本构造及原理 3 掌握液相色谱的操作方法和分析方法,能够通过HPLC分离测定来对目标化合物的分析鉴定。 二、实验原理 液相色谱法采用液体作为流动相,利用物质在两相中的吸附或分配系数的微小差异达到分离的目的。当两相做相对移动时,被测物质在两相之间进行反复多次的质量交换,使溶质间微小的性质差异产生放大的效果,达到分离分析和测定的目的。液相色谱与气相色谱相比,最大的优点是可以分离不可挥发而具有一定溶解性的物质或受热后不稳定的物质,这类物质在已知化合物中占有相当大的比例,这也确定了液相色谱在应用领域中的地位。 高效液相色谱可分析低分子量、低沸点的有机化合物,更多适用于分析中、高分子量、高沸点及热稳定性差的有机化合物。80%的有机化合物都可以用高效液相色谱分析,目前以已经广泛应用于生物工程、制药工程、食品工业、环境检测、石油化工等行业。 三、高效液相色谱的分类 吸附色谱法、分配色谱法、空间排阻色谱法、离子交换色谱法、亲和色谱法、化学键合相色谱法 四、高效液相色谱仪的基本构造 高效液相色谱至少包括输液系统、进样器、分离柱、检测器和数据处理系统等几部分。 1 输液系统: 包括贮液及脱气装置、高压输液泵和梯度洗脱装置。贮液装置用于存贮足够量、符合HPLC要求的流动相。高效液相色谱柱填料颗粒比较小,通过柱子的流动相受到的流动阻力很大,因此需要高压泵输送流动相。 2 进样系统: 将待测的样品引入到色谱柱的装置。液相色谱进样装置需要满足重复性好、死体积小、保证柱中心进样、进样时引起的流量波动小、便于实现自动化等多项要求。进样系统包括取样、进样两项功能。 3 分离柱: 色谱柱是色谱仪的心脏、柱效高、选择性好、分析速度快是对色谱柱的一般要求。商品化的HPLC微粒填料,如硅胶和以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)等的粒度通常在3μm、5μm、7μm、以及10μm。采用的固定相粒度甚至可以达到1μm,而制备色谱所采用的固定相粒度通常大于10μm。HPLC填充柱效的理论值可以达到50000/m~160000/m理论板,一般采用100-300mm的柱长可满足大多数样品的分析的需要。由于柱效内、外多种因素的影响,因此为使色谱柱达到其应有的效率。应尽量的减小系统的死体积。 4 检测系统: HPLC检测器分为通用型检测器和专用型检测器两类。通用型检测器可连续测量色谱柱流出物(包括流动相和样品组分)的全部特性变化。这类检测仪器包括示差折光检测器、介

高效液相色谱流动相选择(活动za)

高效液相色谱流动相选择 流动相 流动相的性质要求:一个梦想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征。 流动相选择 :由强到弱:一般先用的乙腈(或甲醇)水(或缓冲溶液)进行试验,这样可以很快地得到分离结果,然后根据出峰情况调整有机溶剂(乙腈或甲醇)的比例。:三倍规则:每减少的有机溶剂(甲醇或乙腈)的量,保留因子约增加倍,此为三倍规则。这是一个聪明而又省力的办法。调整的过程中,注意观察各个峰的分离情况。:粗调转微调:当分离达到一定程度,应将有机溶剂的改变量调整为,并据此规则逐渐降低调整率,直至各组分的分离情况不再改变。 选择流动相时应考虑以下几个方面: ①流动相应不改变填料的任何性质。低交联度的离子交换树脂和排阻色谱填料有时遇到某些有机相会溶胀或收缩,从而改变色谱柱填床的性质。碱性流动相不能用于硅胶柱系统。酸性流动相不能用于氧化铝、氧化镁等吸附剂的柱系统。②纯度。色谱柱的寿命与大量流动相通过有关,特别是当溶剂所含杂质在柱上积累时。③必须与检测器匹配。使用检测器时,所用流动相在检测波长下应没有吸收,或吸收很小。当使用示差折光检测器时,应选择折光系数与样品差别较大的溶剂作流动相,以提高灵敏度。④粘度要低(应<)。高粘度溶剂会影响溶质的扩散、传质,降低柱效,还会使柱压降增加,使分离进度延长。最好选择沸点在℃以下的流动相。⑤对样品的溶解度要适宜。如果溶解度欠佳,样品会在柱头沉淀,不但影响了纯化分离,且会使柱子恶化。⑥样品易于回收。应选用挥发性溶剂。 流动相的值 采用反相色谱法分离弱酸(≤≤)或弱碱(≤≤)样品时,通过调节流动相的值,以抑制样品组分的解离,增加组分在固定相上的保留,并改善峰形的技术称为反相离子抑制技术。对于弱酸,流动相的值越小,组分的值越大,当值远远小于弱酸的值时,弱酸主要以分子形式存在;对弱碱,情况相反。分析弱酸样品时,通常在流动相中加入少量弱酸,常用磷酸盐缓冲液和醋酸溶液;分析弱碱样品时,通常在流动相中加入少量弱碱,常用磷酸盐缓冲液和三乙胺溶液。 注:流动相中加入有机胺可以减弱碱性溶质与残余硅醇基的强相互作用,减轻或消除峰拖尾现象。所以在这种情况下有机胺(如三乙胺)又称为减尾剂或或除尾剂。 (三乙胺氨分子中的氢原子被个乙基取代的产物。分子式()。易挥发的无色液体,有氨的气味。熔点℃,沸点℃,相对密度 (℃)。溶于水和乙醇、乙醚等有机溶剂。三乙胺有碱性,与无机酸能生成易溶于水的盐类。可由,二乙基乙酰氨与氢化铝锂反应制取,也可用乙醇胺进行

HPLC实验高效液相色谱分析实验

仪器分析实验报告实验名称:高效液相色谱分析实验

一、实验目的 1. 了解HPLC的结构,了解仪器的开、关程序。 2. 了解流动相的制备和样品溶液的制备。 3. 知道仪器的运行程序和进行样品分析。 二、仪器和试剂 仪器:美国安捷伦1200型HPLC、10μL的微量注射器 试剂:磷酸乙腈溶液(PH=3)、重蒸水、邻氯苯甲酸 三、实验步骤 1.流动相的准备 流动相只有一组:PH=3的磷酸乙腈溶液,进过脱气,用蠕动泵输送。2.开机,色谱柱平衡 当1完成后,开机,待色谱柱平衡。 3.样品溶液的准备 配置好邻氯苯甲酸溶液,按要求选好滤纸的孔径大小。用低压过滤装置过滤,由于美国安捷伦1200型HPLC配有脱气装置,因此滤液无需事先脱气就可以进行分析。 4.基线的查看 由于仪器内部压力的变化可以引起基线的不断波动,因此,需等待压力稳定后,基线平稳才能进行进样。 5.样品进样分析

用10μL的微量注射器取5μL的邻氯苯甲酸,微量注射器中不能有气泡,将微量注射器的针头插入到注射的孔时,打开微量注射阀,将邻氯苯甲酸注射进去后,迅速关闭阀门,抽出针头,等待仪器的分析结果。 6.色谱柱的清洗 分析工作结束后,要清洗进样阀中的残留样品,也要用适当的液体来清洗色谱柱。 7.关机 实验完毕后,关闭仪器和电脑。 四、实验数据及处理 1.LC参数 2.色谱柱参数 3.四元泵状态 A:0.0%流速:1.000ml/min B:0.0%压力:91bar C:0.0% D:0.0%

5.色谱分析谱图见附页,经过注射5μL的邻氯苯甲酸,得到三组实验色谱图, 根据谱图列表数据如下: 色谱柱长(L)、理论塔板高度(H)与理论塔板数(n)三者的关系为: n = L / H 理论塔板数和色谱参数之间的关系为: n = 16 ( t R / W b ) 2 = 5.54 ( t R / Y1/2 ) 2 则取第五组数据计算得: t R=2.437 min = 146.22s Y1/2 = 2.354(0.1375min / 4 ) = 4.855125 s n = 5.54 ( t R / Y1/2 ) 2 =5025 (块)

液相色谱实验报告

华南师范大学实验报告 液相色谱分析混合样品中的苯和甲苯 一、实验目的 1、掌握高效液相色谱定性和定量分析的原理及方法; 2、了解高效液相色谱的构造、原理及操作技术。 二、实验原理 高效液相色谱由储液器,泵、进样器、色谱柱、检测器、记录仪等几部分组成,储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动,经过反复多次的吸附—解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪。 三、主要仪器和试剂 主要仪器:岛津液相色谱仪(LC-10AT)[配有紫外检测器,Phenomenex ODS 柱]; 10μL微量注射器 试剂:苯标准溶液:10.0μL/mL; 甲苯标准溶液:10.0μL/mL; 苯、甲苯混合标准溶液:10.0μL/mL; 甲醇:80% ; 苯和甲苯混合待测溶液; 四、实验步骤 1、标准溶液的配制系列 用100μL的微量注射器分别量取10μL、20μL、50μL、100μL的苯和甲苯的混合标准溶液(10.0μL/mL),再分别加入90μL、80μL、50μL、0μL甲醇将其稀释,作为待测液,其浓度分别为1μL/mL、2μL/mL、5μL/mL、10μL/mL 2、色谱条件优化 ①按操作规程开机,并调好色谱条件,使仪器处于工作状态。控制流动相流速为甲醇: 0.8mL/min、水:0.2 mL/min;柱温30℃;检测波长254nm;观察记录保留时间,通过软件分析两峰分离效果。 ②改变色谱条件,控制流动相流速为甲醇:0.95mL/min、水:0.05 mL/min;柱温30℃;检测波长254nm;观察记录保留时间,通过软件分析两峰分离效果。

高效液相色谱习题及参考答案

高效液相色谱习题及参考答案 一、单项选择题 1. 在液相色谱法中,按分离原理分类,液固色谱法属于()。 A、分配色谱法 B、排阻色谱法 C、离子交换色谱法 D、吸附色谱法 2. 在高效液相色谱流程中,试样混合物在()中被分离。 A、检测器 B、记录器 C、色谱柱 D、进样器 3. 液相色谱流动相过滤必须使用何种粒径的过滤膜? A、0.5μm B、0.45m C、0.6μm D、0.55μm 4. 在液相色谱中,为了改变色谱柱的选择性,可以进行如下哪些操作? A、改变流动相的种类或柱子 B、改变固定相的种类或柱长 C、改变固定相的种类和流动相的种类 D、改变填料的粒度和柱长 5. 一般评价烷基键合相色谱柱时所用的流动相为() A、甲醇/水(83/17) B、甲醇/水(57/43) C、正庚烷/异丙醇(93/7) D、乙腈/水(1.5/98.5) 6. 下列用于高效液相色谱的检测器,()检测器不能使用梯度洗脱。 A、紫外检测器 B、荧光检测器 C、蒸发光散射检测器 D、示差折光检测器 7. 在高效液相色谱中,色谱柱的长度一般在()范围内。 A 、10~30cm

B、20~50m C 、1~2m D、2~5m 8. 在液相色谱中, 某组分的保留值大小实际反映了哪些部分的分子间作用力() A、组分与流动相 B、组分与固定相 C、组分与流动相和固定相 D、组分与组分 9. 在液相色谱中,为了改变柱子的选择性,可以进行()的操作 A、改变柱长 B、改变填料粒度 C、改变流动相或固定相种类 D、改变流动相的流速 10. 液相色谱中通用型检测器是() A、紫外吸收检测器 B、示差折光检测器 C、热导池检测器 D、氢焰检测器 11. 在环保分析中,常常要监测水中多环芳烃,如用高效液相色谱分析,应选用下述哪种检波器 A、荧光检测器 B、示差折光检测器 C、电导检测器 D、紫外吸收检测器 12. 在液相色谱法中,提高柱效最有效的途径是() A、提高柱温 B、降低板高 C、降低流动相流速 D、减小填料粒度 13. 在液相色谱中,不会显著影响分离效果的是() A、改变固定相种类 B、改变流动相流速 C、改变流动相配比

高效液相色谱法测定邻苯二甲酸酯实验报告记录

高效液相色谱法测定邻苯二甲酸酯实验报告记录

作者: 日期: 2

高效液相色谱法测定邻苯二甲酸酯 1553607胡艺蕾 实验时间:2017年4月1日实验温度:19.0 C 、实验目的 1、了解高效液相色谱仪的组成及其工作原理和基本操作。 2、对邻苯二甲酸酯进行分离和测定。 3、探究不同流动相及不同流动相比例对流速、柱压、保留时间及分离度的影响。 4、了解液相色谱法定量测定的原理。 二、实验原理 1、实验采用的反相液固吸附色谱法,其分离机理是:当流动相通过吸附剂时,在吸附剂(固体相)表面发生了溶质分子取代吸附剂上的溶剂分子的吸附作用。固体相为非极性分子,如十八烷基键合相,流动相为极性分子。 2、组分分子与吸附剂之间作用力的强弱决定它的保留时间。溶质分子官能团的性质和分子结构的空间效应都会影响其出峰的顺序。本次实验为邻苯二甲酸酯,其分子官能团都相同, 但由于DMP其官能团相邻的烷基较小,导致其保留值最小,因此出峰顺序为:DMP(邻苯二甲酸二甲酯)>DEP邻苯二甲酸二乙酯)>DBP(邻苯二甲酸二丁酯)。 3、在吸附色谱中,流动相的洗脱能力与溶剂的极性有关,极性越大,洗脱强度也越大。本次实验使用的三个流动相的极性大小为:水>乙腈>甲醇。通常选择二元混合溶剂作为流动相。 4、定量分析中,定量峰与其他峰之间的分离程度称为分离度 R: 通常用塔板数n来描述色谱的柱效: 三、实验仪器与试剂 1、仪器 Agilent1260高效液相色谱仪:

脱气机:真空室内半透膜管路,对流动相进行脱气四元泵:二元泵各控制一种溶剂可设置的流速范围:0.001 - 10 mL/min 0.001 mL/min 步进UV检测器:用于检测通过样品后的紫外光 类型:双光束光路设计 光源:氘灯波长范围:190 - 600 nm 手动进样器:进样20L 色谱柱:填料汁八烷(适合中性、弱酸碱) 4.6x 100mm, 3.5 1 m 2、试剂 流动相:纯水、甲醇、乙腈 样品:DMP、DEP DBP 四、实验步骤 1、开启电脑,开启脱气机、泵、检测器等的电源,启动软件。 2、预先脱气(直到导管中无气泡),设定波长:220nm。 3、设定流速、流动相比例等参数,选择合适的流动相。 4、进样阀柄置于“ LOAD',进样针用乙醇洗涤2-3次,取样,进样,将进样阀扳至 5、保存并处理数据。 五、实验结果 1、样品:DMP1:20水溶液201 L流动相的比例为:高纯水:30%乙腈:70%流速: “INJECT。 1.00ml/min 4

填料精馏塔理论塔板数的测定(精)

实验五 填料精馏塔理论塔板数的测定 精馏操作是分离、精制化工产品的重要操作。塔的理论塔板数决定混合物 的分离程度,因此,理论板数的实际测定是极其重要的。在实验室内由精馏装 置测取某些数据,通过计算得到该值。这种方法同样可以用于大型装置的理论 板数校核。目前包括实验室在内使用最多的是填料精馏塔。其理论板数与塔结 构、填料形状及尺寸有关。测定时要在固定结构的塔内以一定组成的混合物进 行。 一. 实验目的 1.了解实验室填料塔的结构,学会安装、测试的操作技术。 2.掌握精馏理论,了解精馏操作的影响因素,学会填料精馏塔理论板 数的测定方法 3.掌握高纯度物质的提纯制备方法。 二. 实验原理 精馏是基于汽液平衡理论的一种分离方法。对于双组分理想溶液,平衡时 气相中易挥发组分浓度要比液相中的高;气相冷凝后再次进行汽液平衡,则气 相中易挥发组分浓度又相对提高,此种操作即是平衡蒸馏。经过多次重复的平 衡蒸馏可以使两种组分分离。平衡蒸馏中每次平衡都被看作是一块理论板。精 馏塔就是由许多块理论板组成的,理论板越多,塔的分离效率就越高。板式塔 的理论板数即为该塔的板数,而填料塔的理论板数用当量高度表示。填料精馏 塔的理论板与实际板数未必一致,其中存在塔效率问题。实验室测定填料精馏 塔的理论板数是采用间歇操作,可在回流或非回流条件下进行测定。最常用的 测定方法是在全回流条件下操作,可免去加回流比、馏出速度及其它变量影响,而且试剂能反复使用。不过要在稳定条件下同时测出塔顶、塔釜组成,再由该 组成通过计算或图解法进行求解。具体方法如下: 1.计算法 二元组份在塔内具有n 块理论板的第一块板的汽液平衡关系符合平衡方 程式为: 1 11y y -=w w N m x x -+11α (1) y 1——第一块板的气相组成 x w ——塔釜液的组成 m α——全塔(包括再沸器)α(相对挥发度)的几何平均值m α=w p αα N ——理论板数

液相色谱实验报告

液相色谱实验报告 姓名:XXX 专业:有机化学学号:312070303004 时间:2012.11.11 一、实验目的: 1 .了解液相色谱仪的基本构造、工作原理。 2. 掌握液相色谱的操作方法和分析方法,能够通过高效液相色谱(HPLC)对目标化合物进行分析鉴定。 二、实验原理: 液相色谱法采用液体作为流动相,利用物质在两相中的吸附或分配系数的微小差异达到分离的目的。当两相做相对移动时,被测物质在两相之间进行反复多次的质量交换,使溶质间微小的性质差异产生放大的效果,达到分离分析和测定的目的。被分离成单个组分后依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪。 三、液相色谱法的特点: 高压——压力可达150~300 kg/cm2。色谱柱每米降压为75 kg/cm2以上。 高速——流速为0.1~10.0 mL/min。 高效——塔板数可达5000/米。在一根柱中同时分离成份可达100种。 高灵敏度——紫外检测器灵敏度可达0.01ng。同时消耗样品少。 高效液相色谱(HPLC)与经典液相色谱相比有以下优点: 速度快——通常分析一个样品在15~30 min,有些样品甚至在5 min内即可完成。 分辨率高——可选择固定相和流动相以达到最佳分离效果。 灵敏度高——紫外检测器可达0.01ng,荧光和电化学检测器可达0.1pg。 色谱柱可反复使用——用一根色谱柱可分离不同的化合物。 样品量少,容易回收——样品经过色谱柱后不被破坏,可以收集单一组分或做制备。 四、液相色谱仪的组成: 液相色谱仪主要包括输液系统、进样器、分离柱、检测器和数据处理系统等几部分。 1 输液系统: 包括贮液及脱气装置、高压输液泵和梯度洗脱装置。贮液装置用于存贮足够量、符合HPLC要求的流动相。高效液相色谱柱填料颗粒比较小,通过柱子的流动相受到的流动阻力很大,因此需要高压泵输送流动相。 2 进样系统: 将待测的样品引入到色谱柱的装置。液相色谱进样装置需要满足重复性好、死体积小、保证柱中心进样、进样时引起的流量波动小、便于实现自动化等多项要求。进样系统包括取样、进样两项功能。 3 分离柱: 色谱柱是色谱仪的心脏、柱效高、选择性好、分析速度快是对色谱柱的一般要求。商品化的HPLC微粒填料,如硅胶和以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)等的粒度通常在3μm、5μm、7μm、以及10μm。采用的固定相粒度甚至可以达到1μm,而制备色谱所采用的固定相粒度通常大于10μm。HPLC填充柱效的理论值可以达到50000/m~160000/m理论板,一般采用100-300mm的柱长可满足大多数样品的分析

高效液相色谱原理

高效液相色谱法(HPLC) 一、方法原理 1、液相色谱法概述 高效液相色谱分析法

其工作流程为:高压输液泵将贮液器中的流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导人,流动相将样品依次带入预柱、色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,检测到的信号送至数据处理系统记录、处理和保存。

HPLC仪器的基本结构 2、高效液相色谱法的特点(HPLC) 与经典柱色谱原理相同,是由液体流动相将被分离混合物带入色谱柱中,根据各组分在固定相及流动相中吸附能力、分

配系数、离子交换作用或分子尺寸大小的差异来进行分离。 由于高压输液泵、高灵敏度检测器和高效固定相的使用,提高了柱效率,降低了检出限,缩短了分析时间。 特点是选择性高、分离效能高、分析速度快的特点。 高沸点有机物的分析、离子型化合物、高分子化合物、热稳定性差的化合物以及具有生物活性的物质,弥补了气相色谱法的不足。 高效液相色谱法与气相色谱法相比,各有所长,互相补充。 如果能用气相色谱法分析的样品,一般不用液相色谱法,因为气相色谱法分析速度更快、更方便、成本更低。 3、高效液相色谱法的固定相和流动相 (1)固定相 表面多孔型和全多孔型两大类。 (2)流动相(淋洗液) 流动相的选择对改善分离效果产生重要的辅助效应。 从实用,选用的流动相具有廉价、易购的特点外,还应满足下列要求: ①与固定相互不相溶,并能保持色谱柱的稳定性。 ②高纯度,以防所含微量杂质在柱中积累,引起柱 性能的改变。 ③与所用的检测器相匹配。 ④应对样品有足够的溶解能力,以提高测定的灵敏 度。 ⑤具有低的黏度(可减少溶质的传质阻力,提高柱 效)和适当低的沸点。

色谱法测催化剂比表面积实验报告

化工专业实验报告 实验名称:色谱法测定固体催化剂的表面积 实验人员:同组人: 实验地点:天大化工技术实验中心606室 实验时间:2015年4月17号 年级;专业;组号;学号指导教师: 实验成绩: 天津大学化工技术实验中心印制 一.实验目的 1.掌握用流动吸附色谱法测定催化剂比表面积的方法。 2.通过实验了解BET多层吸附理论在测定比表面积方面的应用。 二.实验原理 催化剂的表面积是其重要的物性之一。表面积的大小直接影响催化剂的效能。因此在催化剂研究、制造和应用的过程中,测定催化剂的表面积是十分重要的。固体催化剂表面积的测定方法较多。经典的BET法,由于设备复杂、安装麻烦,应用受到一定限制。气相色谱的发展,为催化剂表面积测定提供了一种快速方法。色谱法测定催化剂固体表面积,不需要复杂的真空系统,不接触水银,操作和数据处理较简单,因此在实验室和工厂中得到了广泛应用。色谱法测固体比表面积是以氮为吸附质、以氢气或氦气作为载气,二者按一定的比例通入样品管,当装有待测样品的样品管浸入液氮时,混合气中的氮气被样品所吸附,而载气不被吸附,He-N2混气或H2-N2混气的比例发生变化。这时在记录仪上出现吸附峰。各种气体的导热系数不尽相同,氢和氦的导热系数比氮要大得多,具体各种气体的导热系数如下表1。 表1气体导热系数表 气体组分H2He Ne O2 N2 导热系数39.7 33.6 10.87 5.7 5.66

Cal/cm·sec·c°×105 同样,在随后的每个样品解吸过程中,被吸附的N2又释放出来。氮、氦气体比例的变化导致热导池与匹配电阻所构成的惠斯登电桥中A、B二端电位失去平衡,计算机通过采样板将它记录下来得到一个近似于正态分布的电位-时间曲线,称为脱附峰。最后在混合气中注入已知体积的纯氮,得到一个校正峰。根据校正峰和脱附峰的峰面积,即可计算在该相对压力下样品的吸附量。改变氮气和载气的混合比,可以测出几个氮的相对压力下的吸附量,从而可据BET公式计算表面积。BET公式: (1) 式中:P—氮气分压,Pa; P0—吸附温度下液氮的饱和蒸气压,Pa; V m—待测样品表面形成单分子层所需要的N2体积,ml; V—待测样品所吸附气体的总体积,ml;C-与吸附有关的常数 其中 V=标定气体体积×待测样品峰面积/标定气体峰面积 标定气体体积需经过温度和压力的校正转换成标准状况下的体积。以P/[V(P0-P)]对P/P0作图,可得一条直线,其斜率为(C-1)/(V m C),截距为1/(V m C),由此可得:V m=1/(斜率+截距)(2) 若知每个被吸附分子的截面积,可求出催化剂的表面积,即 S g=(V m N A A m)/(22400W)(3) 式中S g—催化剂的比表面积,m2/g; N A—阿弗加德罗常数; A m—被吸附气体分子的横截面积,其值为16.2×10-20m2; W——待测样品重量,g; BET公式的使用范围P/P0=0.05~0.35,相对压力超过此范围可能发生毛细管凝聚现象三.实验流程 本实验采用3H-2000Ⅱ型氮吸附比表面仪用色谱法测定催化剂的比表面,见图1。

相关主题
文本预览
相关文档 最新文档