当前位置:文档之家› 典型电气主接线图

典型电气主接线图

典型电气主接线图
典型电气主接线图

某水电站电气主接线设计毕业设计(论文)word格式

前言 电力系统是由发电厂、变电站、线路和用户组成。变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。为满足生产需要,变电站中安装有各种电气设备,并依照相应的技术要求连接起来。把变压器、断路器等按预期生产流程连成的电路,称为电气主接线。电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。用规定的设备文字和图形符号并按工作顺序排列,详细地表示电气设备或成套装置的全部基本组成和连接关系的单线接线图,称为主接线电路图。 一、主接线的设计原则和要求 主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。它表明了变压器、线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。它的设计,直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。由于电能生产的特点是发电、变电、输电和用电是在同一时刻完成的,所以主接线设计的好坏,也影响到工农业生产和人民生活。因此,主接线的设计是一个综合性的问题。必须在满足国家有关技术经济政策的前提下,正确处理好各方面的关系,全面分析有关影响因素,力争使其技术先进、经济合理、安全可靠。 Ⅰ. 电气主接线的设计原则 电气主接线的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 1.接线方式:对于变电站的电气接线,当能满足运行要求时,其高压侧应尽可能采用断路器较少或不用断路器的接线,如线路—变压器组或桥形接线等。若能满足继电保护要求时,也可采用线路分支接线。在110-220KV 配电装置中,当出线为2 回时,一般采用桥形接线;当出线不超过4 回时,一般采用分段单母线接线。在枢纽变电站中,当110-220KV 出线在4 回及以上时,一般采用双母接线。在大容量变电站中,为了限制6-10KV 出线上的短路电流,一般可采用下列措施:

110kva变电站电气主接线图分析

把变电站内的电气设备都要算上啊 一次设备:主变(中性点隔离开关、间隙保护、消弧线圈成套设备)、断路器(或开关柜、GIS等)、电压互感器(含保险)、电流互感器、避雷器、隔离开关、母线、母排、电缆、电容器组(电容、电抗、放电线圈等等),站用变压器(或接地变),有的变电站还有高频保护装置 二次设备:综合自动化、. 、逆变0000.、小电流接地选线、站用电、直流(蓄电池)、逆变、远动通讯等等 其他:支持瓷瓶、悬垂、导线、接地排、穿墙套管等等,消防装置、SF6在线监测装置等等 好像有点说多了,也可能有少点的,存在差异吧 35KV高压开关柜上一般都设有哪些保护各作用是什么? 过电流保护:1.速断电流保护:用于保护本开关以后的母排、电缆的短路故障。 2.定时限电流保护:用于下一电压级别的短路保护。 3.反时限电流保护:作用与2相同,但灵敏度比2高。 4.电压闭锁过电流保护:防止越级跳闸和误跳闸,提高供电可靠性。 5.纵联差动电流保护:专用于变压器内部故障保护。 6.长延时过负荷保护:用于保护专用设备或者电网的过负荷运行,首选发信,其次跳闸。 零序电流保护:1.零序电流速断保护:保护线路和线路后侧设备对地短路、严重漏电故障。 2.定时限零序电流保护:保护线路和线路后侧设备的轻微对地短路和小电流漏电,监测绝缘状况。可以选择作用于跳闸或发信。 过电压保护:1.雷电过电压保护。 2.操作过电压保护。1、2两种过电压通常都是用避雷器来保护,可防止线路或设备绝缘击穿。

3.设备异常过电压保护:通过电压继电器和综保定值整定来实现跳闸或发信,用于保护设备在异常过压下运行造成的发热损坏。 低电压保护:瞬时低电压保护只发信不跳闸,用于避免瞬间短路或大负荷启动造成的正常设备误跳闸。俗称躲晃电。 非电量保护:1.重瓦斯保护:用于变压器内部强短路或拉弧放电的严重故障保护。选择跳闸。 2.轻瓦斯保护:用于变压器轻微故障的检测,选择发信报警。 3.温度保护:用于检测变压器顶层油温监测,轻超温发信报警,重超温跳闸。 以上都是针对一次侧设计的保护。 二次侧的保护:1.直流失压保护,用于变电所直流设备故障时防止设备在保护失灵状况下运行。一般设备通常选择发信报警。重要设备选择跳闸。 2.临柜直流消失保护,用于监测相邻高压柜的直流电压状态,选择发信报警。 随着技术的发展,继电保护的内容越来越多,供人们在不同情况下选用。 目前使用的微机型综合保护器内都设计了各种保护功能,可以通过控制字的设定很方便地选择所需要的保护功能组合。

分析电气主接线选择及优化

分析电气主接线选择及优化 摘要:变电所主接线设计是电力系统总体设计的重要组成部份。变电所主接线形式应根据变电所在电力系统中的地位、作用、回路数、设备特点及负荷性质等条件确定,并且应满足运行可靠、简单灵活、操作方便和节约投资等要求。 关键词:电气主接线;选择;优化 引言 变电站是电力系统的重要组成部分,其可靠性直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,随着经济的发展,110kV变电站迅速发展起来。变电站的可靠性是其供电能力的直接表现,而在影响其供电可靠性的诸多因素中,主接线的选择显得尤为重要。 一、选择电气主接线时考虑的问题 (1)考虑变电站种类的影响。变电站有地区变电站、企业变电站、枢纽变电站、分支变电站和终端变电站几种,不同的特性和作用使其对电气主接线的要求也不相同。 (2)考虑主接线灵活性的影响。①可以灵活地操作,投入或切除某些变压器及线路,调配电源和负荷能够满足系统在事故运行方式,检修运行方式以及特殊运行方式下的调度要求;③主接线扩建方面:可以容易地从初期过渡到其最终接线,使其在扩建过渡时,无论是一次设备还是二次装置等所需的改造工作量最小。 (3)考虑主接线可靠性的影响。主接线可靠性的具体要求:①断路器检修时,不宜影响对系统的供电;②断路器或母线故障以及母线检修时,尽量减少停运的回路数和停运时间,并要求保证对一级负荷全部和大部分二级负荷的供电; ③尽量避免变电所全部停运的可能性。 (4)考虑主变台数产生的影响,变电站的主变台数直接影响着电气主接线,不同的传输容量有对主接线灵活可靠性的不同要求。 (5)考虑负荷的分级和出线回数的影响。一级负荷需要两个独立电源供电,如果其中一个不发生作用时,必须保证所有的一级负荷连续供电;二级负荷通常也需要两个供电电源,当一个不发生作用时,需保证大部分二级负荷继续供电;三级负荷往往只需一个电源供电。 (6)考虑备用容量的影响,备用容量主要是适应负荷突增,维持可靠供电,防止检修设备和故障停运的应急情况。 二、选择电气主接线的要求

水电站电气主接线可靠性计算

水电站电气主接线可靠性计算 崔巍,卫志农,周丽华 河海大学电气工程学院,南京 (210098) E-mail :cw053060@https://www.doczj.com/doc/a17929748.html, 摘 要:对水电站电气主接线进行可靠性计算,能为水电站的电气主接线选择提供依据。本文考虑继电保护及自动装置对可靠性的影响,对断路器模型进行修正。此外,还分析了水能在水电站电气主接线可靠性计算中的影响。最后,通过算例验证了该模型的有效性。 关键词:可靠性计算;电气主接线;断路器;水能 中图分类号:TM 732 1.引言 可靠性计算,对提高电站在电力系统运行的安全性、减少停电损失及充分发挥电站的效益都有十分重要的理论意义和现实意义。水电站电气主接线可靠性计算是指对电气主接线的供电连续性、充裕性和安全性进行评估。水电站由于其增减负荷速度快的运行特点和在整个系统中的调峰、调频作用,对系统的经济运行有重要影响,因此其主接线可靠性计算具有重要的意义。 对电气主接线的研究,首先是研究元件的模型。1971年Endrenyi 等提出了断路器的三状态模型[1],即正常状态、事故发生但尚未切除状态以及事故切除后修复状态。随后,有学者提出元件的四状态模型,即在三状态模型的基础上增加了计划检修状态。1997年,在分析传统三状态模型的缺陷后[2],Billinton 提出了一种广义n+2状态系统的马尔可夫模型[3]。 本文首先给出一系列可靠性指标和计算公式,接下来给出用最小割集方法计算主接线可靠性的流程图,然后分析考虑继电保护及自动装置影响的断路器故障模型,最后分析水能对水电站主接线可靠性计算的影响。 2. 可靠性指标和计算公式 评价发电机组、出线运行可靠性的指标[4]有:故障率λ,期望年停运时间U ,平均故障持续时间D 。 ∑∈=L i i λλ (1) ∑∈?=L i i i r U λ (2) λU D = (3) 式中,L 为导致发电机组、出线停运的事件集合,i λ为故障率,i r 为由i λ引起的导致 发电机组、出线停运的时间。对于i λ和i r ,分以下几种情况进行计算。 一重故障:i λ即为单个元件强迫停运的故障率,i r 为单个元件强迫停运的故障恢复时间。如果存在备用设备,停运时间就是备用设备投运的操作时间。 二重故障:应考虑强迫停运与计划检修停运重叠的情况。假设两个元件强迫停运的故

超大型水电站电气主接线设计

超大型水电站电气主接线设计 陈树文 (水利部水利水电规划设计总院,北京100011) 摘要:在总结分析我国超大型水电站电气主接线设计选择的基础上,对我国超大型水电站电气主接线设计选择发展趋势进行了展望,并提出新的设计理 念。 关键词:超大型水电站;电气主接线;可靠性;灵活性;经济技术指标 1 前言 电气主接线设计是超大型水电站电气设计的核心。在超大型水电站装机规模、台数,电站接入系统电压、出线回路数、距离和位置确定的条件下,主接线设计对主变压器、断路器等主要电气设备的容量、台数、型式的选择与布置,对电站主要机电设备的继电保护、监控系统的设计,对厂房布置、枢纽布置以及机电设备和土建投资,环境保护和水土保持等都密切相关,有着较大的影响。而且,电气主接线设计对电站本身和电力系统的安全、可靠、经济运行也起着十分重要的作用。因此,电气主接线设计不仅是技术含量高、涉及范围广的一项错综复杂的系统工程,又是衡量设计水平的一个重要标志。 我国超大型水电站建设起步较晚,大多数始建于20世纪80年代,至今已建成或即将建成的超大型水电站主要有白山、万家寨、小浪底、丹江口、葛洲坝、刘家峡、龙羊峡、二滩、岩滩等18座。这18座超大型水电站的电气主接线设计,主要有如下几种方式:双母线接线、一倍半接线、角形接线、单母线接线和变压器—线路组接线(详见表1)。由表1可知,按电压等级统计,其220kV电压采用双母线接线(包括双母线带旁路、分段接线,以下相同)的有7座电站,占58%;采用变压器—线路组接线的有2座电站,占17%;采用单母线、角形和1倍半接线的各1座电站,各占8%。330kV电压采用双母线接线的有2座电站,占50%;采用角形和一倍半接线的各1座电站,各占25%。500kV电压采用双母线接线的有2座电站,占22%;采用一倍半接线的有6座电站,占67%;采用角形接线的有1座电站,占11%。而按电站数量统计,在18座超大型水电站的电气主接线设计中,采用双母线接线的数量最多,为13座电站,占48%;其次为采用一倍半接线,有8座电站,占30%;采用角形接线的有3座电站,占10%;而采用变压器—线路组接线的有2座电站,占7%;单母线接线的有1座电站,占4%。由此可知,无论是按电压等 级统计,还是按电站数量统计,采用双母线接线的占多数,超过50%;其次为采用一倍半接线,接近30%。在220kV电压采用双母线接线的占多数,500kV 电压采用一倍半接线的占多数。这就是我国超大型水电站电气主接线设计的基本 状况和发展水平。 双母线接线和一倍半接线何以成为我国超大型水电站电气主接线设计的主

电气一次设备和电气主接线讲义全

电气一次设备及主接线 第一章电气设备 第1节概述 发电厂变电站的电气设备,根据其用途常分为一次设备和二次设备。一次设备是指直接生产、输送和分配电能的设备,包括有生产变换电能的设备(如发电机、变压器),开关设备(如高、低压断路器、隔离开关、接触器等),限流限压设备(如避雷器、电抗器),接地装置,载流导体(如母线、电力电缆等)。二次设备是对一次设备进行控制、测量、监视和保护的电气设备,包括测量表计(如电压表、电流表、功率表),继电保护及自动装置(如各种继电器、端子排),直流设备(如直流发电机、蓄电池)。下面主要针对部分一次设备的作用和工作原理进行介绍。 第2节母线 在发电厂变电站中,将发电机、变压器和各种电器连接的导线称为母线。母线是电气主接线和各级电压配电装置中的重要环节。它的作用是汇集和分配电能。 母线按所使用的材料可分为铜母线、铝母线和钢母线。 铜母线:具有电阻率低、机械强度高、抗腐蚀性强等特点,是很好的导电材料。但铜的储量少,属贵重金属,一般在含有腐蚀性气体的场合采用。 铝母线:电阻率比铜高,但储量丰富,比重小,加工方便,价格便宜,通常情况下采用铝母线。 钢母线:机械强度高,价格便宜,但钢的电阻率是铜的7倍,用于交流时会有很强的集肤效应,所以仅用于高压小容量回路(如电压互感器)。 母线按其截面形状可分为矩形母线、管形母线和槽形母线。 矩形母线:具有集肤效应系数小、散热条件好、安装简单、连接方便等优点,在35kV 及以下的户配电装置中多采用矩形母线。 管形母线:是空芯导体,集肤效应系数小,且电晕放电电压高。在35kV以上的户外配电装置中广泛采用。 槽形母线:电流分布比较均匀,与同截面的矩形母线相比,具有集肤效应系数小、冷却条件好、金属材料的利用率高、机械强度高等优点。当母线的工作电流很大,每相需要三条以上的矩形母线才能满足要求时,一般采用槽形母线。

浅析电气主接线设计

浅析电气主接线设计 发表时间:2014-12-15T09:44:30.280Z 来源:《科学与技术》2014年第10期下供稿作者:苏楠[导读] 明确电力负荷的等级根据对供电可靠性的要求及中断供电在政治、经济上所造成的损失或影响的程度,电力负荷分为三级。 贵阳铝镁设计研究院有限公司苏楠摘要:概述了电气主接线的基本概念,介绍了电气主接线的设计原则、基本要求和基本形式,论述了技术经济比较所涉及的内容。关键词:主接线,原则,要求,形式,技术经济比较1.引言电气主接线是发电厂、变电所电气设计中的重要组成部分,也是电力系统中电能传递的重要环节。电气主接线是指在电力系统中,把发电机、变压器、断路器和隔离开关等高压电气设备按照一定的要求和顺序连接,为满足电能输送及分配的要求而设计的,实现发电、变电、输配电任务的电路。 2.电气主接线设计的原则电气主接线设计的原则是以设计任务书为依据,以国家政策、电力行业的技术规范、标准为准绳,按照负荷性质、容量、地区供电条件,根据工程实际情况和发展规划,确定技术经济合理的设计方案。为此,在进行电气主接线设计时,应遵循的原则如下。 2.1 明确电力负荷的等级根据对供电可靠性的要求及中断供电在政治、经济上所造成的损失或影响的程度,电力负荷分为三级。每一级负荷对供电可靠性的要求不同,则变压器容量、台数以及出线回路数等配置就不一致。因此,首先要明确电力负荷的等级,确认电力负荷在电力系统中的作用和地位,才能初步确定主接线的设计方案。 2.2 考虑近期和远期的发展关系电气主接线设计应考虑近期和远期的发展关系,做到远近期结合,以近期为主,适当考虑发展的可能,按照负荷的性质、用电容量、地区供电条件,合理确定电气主接线形式、电源进线的数量和出线回路数。 2.3 主变压器容量的选择如果主变压器的容量选择过大、台数过多,则会增加建设资金、占地面积、运行费用和检修工作量,不能充分发挥供电设备的经济效益;如果主变压器的容量选择过小、台数过少,则不具备可扩展性,无法满足今后的发展需要,影响供电的灵活性和可靠性。因此,主变压器容量的选择除依据负荷计算外,还取决于主变压器的运行方式、负荷的增长速度等因素,其容量可按投运后5~10 年的预期负荷选择,并适当考虑到远期10~20 年的负荷发展。 2.4 主变压器的运行方式根据负荷等级对供电可靠性和灵活性的要求,存在多种主变压器的运行方式可供选择,例如:当配置一台主变压器时,该台主变压器独立运行,则应满足全部负荷的用电需求,并且留有15~25%的裕量;当配置两台及以上主变压器时,每台主变压器独立运行且互为备用,当断开一台时,其余主变压器的容量应能保证一、二级负荷的全部用电需求。 2.5 合理确定电压等级电压等级与用电负荷的大小、电源点至用电负荷的距离、用电设备的电压等级、用电负荷的分布情况以及地方电网可能供给的电压等因素有关,需经过多方案技术经济比较后,与电力部门共同协商确定。 3.电气主接线设计的基本要求3.1 安全性安全性是电气主接线基本要求的第一要素,是整个供电系统的核心。因为只有在保证人身安全和设备安全的前提下,才能确保整个供电系统的正常运行。否则,即使设备再先进也无法正常投入使用。 3.2 可靠性重要负荷的停电往往会给政治、经济上带来巨大的损失和影响,因此,供电可靠性是电气主接线的最基本要求,是满足各级电力负荷持续不间断供电的基本保障。评价电气主接线可靠性的标志如下:(1)一级负荷应由两个电源供电,当一个电源因故障中断供电时,另一个电源不应同时受到损坏,并且对于特别重要的一级负荷还需增设应急电源。二级负荷应由两回线路供电,做到当发生故障时,不致中断供电或中断后能够迅速恢复。(2)母线或断路器故障、母线或隔离开关检修时,应尽量减少停电的回路数和停电时间,并保证对重要负荷的供电。(3)优先选用经过长期实践考验的电气主接线形式,并选择使用可靠性高,性能先进的电气设备。 3.3 灵活性电气主接线系统无论是在正常运行中、发生事故时、需要检修时还是其他运行方式下,都应能灵活地投入和切除某些机组、变压器或线路,满足调度运行的要求,不影响电力系统的正常运行,不中断向用户的供电,达到分配电源和负荷的目的。 3.4 可扩展性根据发展的需要,在进行扩建时,可在预留的空间内进行设备的布置,并且在不影响连续供电或允许停电时间较短的情况下,对于投入的新机组、变压器或线路能够安全快速地与原有系统进行连接组网,满足扩建要求。 3.5 经济性电气主接线系统应在保证运行操作的方便以及满足技术条件的要求下,做到经济合理。一般从以下三个方面考虑:(1)节省投资电气主接线的一次系统应力求简单,尽可能简化二次回路的继电保护系统,以此节省一次和二次设备的投资,并且采取限制短路电流的措施,以便选择分断能力较小的电气设备和截面较小的导体。(2)节约用地同一电压等级下,选择不同的电气主接线方案,其占地面积有很大差别,应在保证技术要求和防火要求的前提下,充分利用地形地质紧凑合理的对主接线进行布置,并且应尽量不占或少占耕地。(3)减少电能损耗首先,根据用电负荷的大小、等级和发展需要,合理选择变压器容量和台数,以实现其经济运行;其次,尽量缩短输电线路,减少线路损耗;最后,通过技术手段提高用电系统的功率因数,加强对电气设备、线路的维护和管理,降低电能损耗。 4.电气主接线的基本形式电气主接线的基本形式分为有汇流母线和无汇流母线两种,其中有汇流母线通常包括单母线接线、单母线分段接线、双母线接线、单母线分段带旁路母线接线、一台半断路器接线等形式;无汇流母线通常包括桥型接线、多边形接线、线路变压器组接线等形式。下面就几种常用的主接线形式分析如下。 4.1 单母线接线

水电站电气主接线的设计

目录 概述 电气主接线设计 主接线方案的拟定与选择 主变压器选择 短路电流的计算 电气设备选择与校验 参考文献

一概述 1.1 课程设计的目的: 1、复习巩固本课程及其他课程的有关内容,增强工程概念,培养电力工程规划设计的能力。 2、复习《水电站电气设备》相关知识,进一步巩固电气主接线及短路计算,电气设备选择等内容。 3、利用所给资料进行电厂接入系统设计,主接线和自用电方案选择,掌握短路电流计算,会进行电气设备的配置和选型设计。 1.2 课程设计内容: 1发电厂主接线的设计 2 短路电流的计算 3 电气设备的选择 1.3 电气主接线的基本要求 1.可靠性: 电气接线必须保证用户供电的可靠性,应分别按各类负荷的重要性程度安排相应可靠程度的接线方式。保证电气接线可靠性可以用多种措施来实现。 2.灵活性: 电气系统接线应能适应各式各样可能运行方式的要求。并可以保证能将符合质量要求的电能送给用户。 3.安全性: 电力网接线必须保证在任何可能的运行方式下及检修方式下运行人员的安全性与设备的安全性。 4.经济性: 其中包括最少的投资与最低的年运行费。 5.应具有发展与扩建的方便性: 在设计接线方时要考虑到5~10年的发展远景,要求在设备容量、安装空间以及接线形式上,为5~10年的最终容量留有余地。

二电气主接线设计 2.1原始资料: 1、待设计发电厂类型:水力发电厂; 2、发电厂一次设计并建成,计划安装2×15 MW 的水力发电机组,利用小时数 4000 小时/年; 3、待设计发电厂接入系统电压等级为110kV,距系统110kV发电厂45km;出线回路数为4回; 4、电力系统的总装机容量为 600 MVA、归算后的电抗标幺值为 0.3,基准容量Sj=100MVA; 5、发电厂在电力系统中所处的地理位置、供电范围示意图如下所示。 6、低压负荷:厂用负荷(厂用电率) 1.1 %; 7、高压负荷: 110 kV 电压级,出线 4 回,为 I 级负荷,最大输送容量60 MW, cosφ = 0.8 ; 8、环境条件:海拔 < 1000m;本地区污秽等级2 级;地震裂度< 7 级;最高气温 36°C;最低温度?2.1°C;年平均温度28°C;最热月平均地下温度20°C;年平均雷电日T=56 日/年;其他条件不限。 2.2.对原始资料分析 (1)工程情况: 该电厂为一小型水电站。目前,按发电厂的容量划分:总容量在1000MW 及以上,单机容量在200MW及以上的发电厂称为大型水电厂;总容量在200~1000MW,单机容量在50~200MW的发电厂称为中型水电厂;总容量在200MW及以下,单机容量在50MW及以下的发电厂称为小型水电厂。设计电厂为2×15MW小

电气主接线图使用分析.

电气主接线图使用分析 王霞 电气1202班,电气工程及自动化,水利与能源动力工程学院,2013.11.5 摘要:电气主接线是由各种电气设备如发电机、变压器、断路器、隔离开关、互感器、母线、电缆、线路等按照一定的要求和顺序连接起来,完成电能的输送和分配的电路。电气主接线是传输强电流、高电压的网络,故又称为一次接线或电气主系统。当用国家统一规定的图形和文字符号表示各种电气设备,并按工作顺序排列,详细地表示电气主接线的全部基本组成和连接关系的接线图,称为主接线图。电气主接线的选择,直接影响着电气设备的选择和配电装置的布置,也在一定程度上决定了这些设备和装置运行的可靠性和经济性。现就发配电技术中的电气主接线图的基本形式进行分析研究。 一.对一次主接线的要求 1.安全性 对电气主接线的安全性,主要体现在:隔离开关的正确配置和隔离开关接线的正确绘制。隔离开关的主要用途是将检修部分与电源隔离,以保证检修人员的安全。在电气主接线图中,凡是应该安装隔离开关的地方都必须配置隔离开关,不能有遗漏之处,也不可以为乐节省投资而不装。在绘制隔离开关时,电源应接在通过瓷瓶与隔离开关的刀片联结,因为这样安装在打开和合上隔离开关时,刀片端的带电时间较短,这样可以保证操作人员的安全。 2.可靠性 电气主接线的可靠性不是绝对的。同样的形式在一些发电厂或变电所来说是可靠的,但对另一些发电厂或变电所则不一定能满足可靠性要求。所以在分析主接线图时,要考虑发电厂或变电所在整个系统中的地位和作用,也要考虑用户的负荷性质和类别。 (1)在分析电气主接线可靠性时,根据负荷性质,可按以下几个方面进行: 1)各断路器检修时,停电的范围和时间; 2)母线故障或检修时,停电范围和时间; 3)有没有使发电厂或变电所全部停电的可能。 电气主接线可靠性的高低直接决定着经济损失的大小,可靠性越高停电时的经济损失越少,反之,则越多。 (2)按重要性的不同,将负荷分为三类: Ⅰ类负荷——停电后将造成人员伤亡和重大设备损坏的最重要负荷。如机场和军事设施等电力

水电站电气主接线毕业设计论文

本科毕业设计(论文)某水电站电气主接线系统设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

电气主接线讲义

第五章电气主接线讲义 第一节电气主接线概述 一、电气主系统与电气主接线图 (一)电气主接线 电气主接线是由多种电气设备通过连接线,按其功能要求组成的汇聚和分配电能的电路,也称电气一次接线或电气主系统。 (二)电气主接线图 用规定的设备文字和图形符号将各电气设备,按连接顺序排列,详细表示电气设备的组成和连接关系的接线图,称为电气主接线图。 电气主接线图一般画成单线图。 二、电气主接线中的电气设备和主接线方式 (一)电气主接线中的电气设备 电气主接线中的主要电气设备包括:电力变压器、断路器、隔离开关、电压互感器、电流互感器、避雷器、母线、接地装置以及各种无功补偿装置等。(二)主接线方式 常用的主接线方式有:单母线接线、单母线分段接线、单母线分段带旁路母线接线、双母线接线、双母线带旁路母线接线、双母线分段接线、双母线分段带旁路母线接线、内桥接线、外桥接线、一台半断路器接线、单元接线、和角形接线等。 三、电气主接线的基本要求 电气主接线的选择正确与否对电力系统的安全、经济运行,对电力系统的稳定和调度的灵活性,以及对电气设备的选择,配电装置的布置,继电保护及控制方式的拟定等都有重大的影响。在选择电气主接线时,应满足下列基本要求。 1. 保证必要的供电可靠性和电能的质量; 2. 具有一定的运行灵活性; 3. 操作应尽可能简单、方便; 4. 应具有扩建的可能性; 5. 技术上先进,经济上合理。

第二节 电气主接线的基本接线形式 一、单母线接线 (一) 单母线接线的优点 简单、清晰、设备少、投资小、运行操作方便,有利于扩建和采用成套配电装置。 (二) 单母线接线的主要缺点 母线或母线隔离开关检修时,连接在母线上的所有回路都将停止工作;当母线或母线隔离开关上发生短路故障,装设母差保护时,所有断路器都将自动断开,造成全部停电;检修任一电源或出线断路器时,该回路必须停电。 二、单母线分段接线 出线回路数增多时,可用断路器或隔离开关将母线分段,成为单母线分段接线,如图所示。根据电源的数目和功率,母线可分为2~3段。 (一)单母线分段接线的优点 该接线方式由双电源供电,故供电可靠性高,同时具有接线简单、操作方便、投资少等优点。当一段母线发生故障时,分段断路器或隔离开关将故障切除,保证正常母线供电,重要用户分别取自不同母线,不会全停,提高了供电的可靠性。 (二)单母线分段接线的缺点 当一段母线或母线隔离开关故障或检修时,必须断开接在该分段上的全部电源和出线,并使该段单回路供电的用户停电;任一出线断路器检修时, 该回路

浅析小型水电站电气主接线的设计型式

浅析小型水电站电气主接线的设计型式 摘要:主接线是每个电站设计的重要组成部分,本文主要根据小型水电站电气主接线设计的特点、电气主接线的主要形式,对小型水电站电气主接线的接线方式进行简单分析。 关键词:小型水电站电气主接线接线方式 一、小型水电站电气主接线设计的特点 电气主接线是水电站电气设计的中心环节,它与电力系统、电站规模、枢纽布置、地形条件、动能参数及电站运行方式等因素密切相关,而且对电气设备布置、设备选择、继电保护和控制方式都有较大的影响。电气主接线设计的合理与否关系到电站长期安全、可靠、经济运行,因此电气主接线的设计是水电站总体设计的一个重要组成部分。 小型水电站电气主接线设计的特点是:水电站接入系统接线较为简单、回路数较少,电压等级一般为35KV、10KV,极少数为110KV,离负荷中心较近。电气主接线一般比较简单明了,容易实现自动化。 二、小型水电站电气主接线的主要形式 2.1 发电机电压接线与发电机——变压器的组合方式 一般小型水电站的主变压器数量多为一台,有的采用二台,因此,发电机电压侧接线较为简单,常分为三种形式: 2.1.1单母线与单母线分段接线 这种接线方式简单明显,运行方便,配电装置投资少,便于扩建,并且可采用成套配电装置,简化电气布;由于接线清晰,对应性强,各操作单元之间互不影响,易于实现自动化,适用于装机容量小,对供电可靠性要求不高的水电站。 单母线接线在母线检修或故障时,将造成全厂停机。因此,有的电站采用单母线分段的接线方式,可靠性比单母线高,当一段母线检修或故障时,能保持另一段母线的发电机向系统供电,但是单母线分段接线方式的继电保护较为复杂。 2.1.2 单元接线方式 发电机和主变器容量相匹配(有时容量相同),接线最清晰,故障影响范围最小,运行可靠、

水电站电气主接线优化设计浅谈

水电站电气主接线优化设计浅谈 发表时间:2016-12-23T16:01:09.807Z 来源:《电力设备》2016年第21期作者:陈思乡 [导读] 本文就以某水电站为研究对象,对单母线接线、扩大单元接线等几种形式进行了设计。 (广宁县水利水电勘测设计室 526300) 摘要:因为水电站电气主接线设计会对电力系统、水电站等安全运行造成直接的影响。因此,一定要合理的设计水电站的电气主接线,本文就以某水电站为研究对象,对单母线接线、扩大单元接线等几种形式进行了设计。通过对其经济性、灵活性和可靠性的对比,从而获得该电站最优电气主接线。 关键词:水电站;电气主接线;设计 引文:电气主接线就是将发电机、变压器、断路器、隔离开关、电抗器、电容器、互感器和避雷器等一次电气设备按照预期的生产流程构成的电能生产、转化、输送和分配的电气回路。其设计是大中小型水电站电气部分设计的重要主体之一,它直接影响各种电气设备的选择、配电装置的布置以及继电保护的确定,对于建成后水电站的安全经济运行有着至关重要的作用。 以往水电站电气主接线设计主要围绕短路计算、变压器、配电装置以及无功补偿装置等开展电气主接线具体设计,即重点在于短路计算和设备选型,对电气主接线方式分析不足。本文在总结电气主接线理论和工作经验的基础上,以某水电站为例,具体分析发电机侧和变压器侧均用单母线接线、发电机侧采用单元接线和扩大单元接线而变压器侧采用单母线接线、发电机侧单母线接线而变压器侧角形接线、电源单元及扩大单元而主变角形接线等方案的优劣,获得最优电气主接线设计方案,进而强调了电站电气主接线设计优化的重点。 1电气主接线设计原则 主接线设计应满足可靠性、灵活性和经济性3项基本要求。 1.1可靠性 供电可靠性是电力生产和分配的首要要求,主接线首先满足这个要求。可靠性的衡量标准具体如下:①断路器检修时,系统的供电不宜受影响;②断路器或者母线发生故障以及母线检修时,尽量减少停运的回路数和停运时间;③尽量避免发电厂、变电所全部停运的几率。 1.2灵活性 主接线应满足在调度、检修及扩建时的灵活性:①调度时,应可以灵活地投入和切除发电机变压器和线路,满足系统在事故运行方式、检修运行方式系统调度,并尽可能减少隔离开关的操作次数。②检修时,可以方便地停运断路器和其他继电保护装置,进行安全检修而不至于影响电力系统的组成运行和对用户的供电。 1.3经济性 具体如下:①主接线应尽量简单,以节省断路器、隔离开关、电压互感器和电流互感器、避雷器等一系设备。②要使继电保护和二次回路不过于复杂,以节省二次设备。③要能限制短路电流,以便于选择廉价的电气设备或者轻型电器。 2水电站电气主接线设计方案 2.1研究对象 某水电站装机3台,电站单机容量为500kW,总装机容量为1500kW,发电机的出口电压为3kV,主变高压侧电压为35kV电压等级,经过一回线与系统相互连接。为此,根据发电厂电气主接线设计原理,设计4种方案,见表1。 2.2具体方案 1)发电机侧和变压器侧均用单母线接线。整个配电装置发电机侧和变压器侧都有且仅各有一条母线(即单母线接线),不同的发电机进线和出线都分别通过隔离开关和断路器被连接到同一条母线上。因此,各个电源可以通过母线不仅可以确保并列工作,又能让出线回路同时经过两个冗余的变压器从3个发电机上得到产生的电能。这种接线型式简单明了、所需设备较少、成本低、利于扩建及采用成套的配电装置。 2)发电机侧采用单元接线和扩大单元接线,变压器侧采用单母线接线。单元接线是电源与变压器低压侧间只装设刀闸,变压器高压侧装置断路器。这种接线型式接线简单,空间占用少,继保简单,任何一个元件的检修或者故障只会影响此单元的运行。单元接线会使主变和高压电气设备复杂,高压设备占用空间增多,投资相对较大。 3)发电机侧单母线接线,变压器侧角形接线。发电机侧依旧采取单母线接线,而变压器侧采用角形接线。角形接线是将几台开关组合成角形状,角连接点处引出一条出线,此方案采用三角形接线。 4)发电机侧采用单元及扩大单元接线,变压器侧采用角形接线。发电机侧采用单元和扩大单元接线,使主变高压侧复杂化,成本高,变压器侧采用三角形接线会加重复杂程度。 3主接线设计对比分析 3.1经济方面比较 由于本设计是小型水电站的电气初步设计,主要考虑经济型、灵活性及可靠性,表2是对电站所需变压器、隔离开关(刀闸)、断路器的数量初步预算。见表2。

电气二次接线图和原理图轻松看懂

电气二次接线图和原理图轻松看懂 一次电路图中元器件动作均是由二次控制图来控制动作,对于二次原理图看图步骤是从左至右、从上至下逐步熟悉了解掌握。 二次接线图的内容 二次接线图是由二次设备所组成的低压回路。它包括交流电流回路、交流电压回路、断路器控制和信号回路、继电保护回路以及自动装置回路等。二次接线图是由二次设备的图形符号和文字符号,表明二次设备互相连接的电气接线图。在实际工作中,二次接线图不但常常遇到,而且数量较多,对它必须充分了解。 二次接线图的分类 二次接线图可分为原理图和安装图两大类,其中原理图分为归总式原理图、展开式原理图,安装图分为屏面布置图、屏后接线图。 (1)原理图 凡表示动作原理的二次接线图统称为原理图。由于元件的表示方法不同,原理图包括:a、归总式原理图,即各元件在图中是用整体形式来表示,如电流继电器的表示图形中,下面是线圈,上面是闭合或断开有关直流回路用的触点。 b、展开式原理图,就是将各元件分解为若干部分,例如:上述电流继电器便分成线圈和触点两部分。它们在图中并不位于一起,而是分散在有关回路中。 (2)安装图 根据安装施工的要求,将二次设备的具体位置和布线方式表示出来的图形称为安装图。 安装图包括屏面布置图和屏后接线图。屏面布置图中,各元件的尺寸和相互距离,均要详细注明,便于在屏上进行安装。而屏后接线图系将各元件及回路加上编号,施工时,即按编号进行接线,使用起来非常方便。 二次接线图中常用的图形符号 二次接线图中,为了说明各元件的连接状况,每个元件须用具有一定特征的图形和文字符号表示出来,以免发生混淆。如电流继电器文字符号为LJ;时间继电器文字符号为SJ;试验

电气主接线的基本形式及优缺点

第四章电气主接线 第2节单母线接线 主接线的基本形式,就是主要电气设备常用的几种连接方式。概括的讲可分为两大类:有汇流母线的接线形式;无汇流母线的接线形式。 变电所电气主接线的基本环节是电源(变压器)、母线和出线(馈线)。各个变电所的出线回路数和电源数不同,且每路馈线所传输的功率也不一样。在进出线数较多时(一般超过4回),为便于电能的汇集和分配,采用母线作为中间环节,可使接线简单清晰,运行方便,有利于安装和扩建。但有母线后,配电装置占地面积较大,使用断路器等设备增多。无汇流母线的接线使用开关电器较少,占地面积小,但只适于进出线回路少,不再扩建和发展的变电所。有汇流母线的接线形式主要有:单母线接线和双母线接线。 一、单母线接线 单母线接线的特点是整个配电装置只有一组母线,每个电源线和引出线都经过开关电器接到同一组母线上。供电电源是变压器或高压进线回路,母线即可以保证电源并列工作,又能使任一条出线路都可以从电源1或2获得电能。每条回路中都装有断路器和隔离开关,靠近母线侧的隔离开关称作母线隔离开关,靠近线路侧的称为线路隔离开关(在实际变电所中,通常把靠近电源侧的隔离开关称为甲刀闸,把靠近负荷侧的隔离开关称为乙刀闸。 断路器具有开合电路的专用灭弧装置,可以开断或闭合负荷电流和开断短路电流,用来作为接通或切断电路的控制电器。 隔离开关没有灭弧装置,其开合电流能力极低,只能用作设备停运后退出工作时断开电路,保证与带电部分隔离,起着隔离电压的作用。同一回路中在断路器可能出现电源的一侧或两侧均应配置隔离开关,以便检修断路器时隔离电源。 同一回路中串接的隔离开关和断路器,在运行操作时,必须严格遵守下列操作顺序:如对馈线L1送电时,须先合上隔离开关QS1和QS2,再投入断路器QF2;如欲停止对其供电,须先断开QF2,然后再断开QS3和QS2。为了防止误操作,除严格按照操作规程实行操作票制度外,还应在隔离开关和相应的断路器之间,加装电磁闭锁、机械闭锁。接地开关(又称接地刀闸)QS4是在检修电路和设备时合上,取代安全接地线的作用。当电压在110kV及以上时,断路器两侧的隔离开关和线路隔离开关的线路侧均应配置接地开关。对35kV及以上的母线,在每段母线上亦应设置1~2组接地开关或接地器,以保证电器和母线检修时的安全。

电气主接线的选择

电气主接线的选择 电气主接线的确定对电力系统整体及发电厂、变电所本身运行的可靠性,灵活性和经济性密切相关,并且对电气设备的选择、配电装置选择、继电保护和控制方式的拟定有较大影响,因此,必须正确处理好各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线方案. (一)设计的基本要求为: 1、满足对用户供电必要的可靠性和保证电能质量。 2、接线应简单、清晰且操作简便。 3、运行上要具有一定的灵活性和检修方便。 4、投资少、运行维护费用低。 5、具有扩建的可能性。 (二)设计主接线的原则: 采用分段单母线或双母线的110-220kv配电装置,当断路器不允许停电检修时,一般需设置旁路母线。对于屋内配电装置或采用SF6断路器,SF6全封闭电器的配电装置,可不设旁母.35-60kv配电装置中,一般不设旁路母线,因为重要用户多系双回路供电,且断路器检修时间短,平均每年约2-3天。如线路断路器不允许停电检修时,可设置其他旁路设施。6-10kv配电装置,可不设旁路母线。对于初线回路数多或多数线路系向用户单独供电,以及不允许停电的单母线,分段单母线的配电装置,可设置旁路母线。采用双母线的6-10kv配电装置多不设旁路母线。 对于变电站的电气接线,当能满足运行要求时,其高压侧应尽量采用断路器较少或不用断路器的接线,如线路一变压器组或桥形接线等。若能满足继电保护要求时,也可采用线路分支接线。在110-220kv配电装置,当出线不超过四回路时,一般采用分段单母线接线,四回路以上的一般采用双母线接线。 拟定可行的主接线方案2—3种,内容包括主变的形式,台数,以及各级电压配电装置的接线方式等,并依据对主接线的基本要求,从技术上论证各方案的优缺点,淘汰差的方案,保留一种较好的方案。 (三)方案的比较:

电气主接线图分析

以下是对仪器进行详细的介绍试验前应该常备的试验项目和介绍,以及仪器在现场是如何接线的,如果你需要了解更多详细的参考资料和技术说明,推荐一个不错的地方:直流高压发生器 使用直流高压试验器的工作人员必须是具有“高压试验上岗证”的专业人员。 ● 使用本仪器请用户必须按《电力安规》168条规定,并在工作电源进入试验器前加装两个明显 断开点,当更换试品和接线时应先将两个电源断开点明显断开。 ● 试验前请检查试验器控制箱、倍压筒和试品的接地线是否接好。试验回路接地线应按本说明书 所示一点接地。 ● 对大电容试品的放电应经100Ω/V放电电阻棒对试品放电。放电时不能将放电棒立即接触试品,应先将放电棒逐渐接近试品,至一定距离空气间隙开始游离放电有嘶嘶声。当无声音时可用放电 棒放电,最后直接接上地线放电。 ● 如做容性负载试验时,一定要接上限流电阻。 ● 直流高压在200kV及以上时,尽管试验人员穿绝缘鞋且处在安全距离以外区域,但由于高压直流离子空间电场分布的影响,会使几个邻近站立的人体上带有不同的直流电位。试验人员不要互 相握手或用手接触接地体等,否则会有轻微电击现象,此现象在干燥地区和冬季较为明显,但由 于能量较小一般不会对人造成伤害。 ● 试验完毕必须将接地线挂至高压输出端方可拆除高压引线。 (1).控制箱面板示意图 错误!未指定应用程序。 1.控制箱接地端子:控制箱接地端子与倍压筒接地端子及试品接地联接为一点后再与接地网相连。 2.中频及测量电缆快速联接插座:用于机箱与倍压部分的联接。联接时只需将电缆插头顺时针 方向转动到位,拆线时只需逆时针转动电缆插头。 3.过压整定拨盘开关:用于设定过电压保护值。拨盘开关所显示单位为kV ,设定值为试验电压1.1倍。 4.电源输入插座:将随机配置的电源线与电源输入插座相联。(交流220V±10%,插座内自带保 险管。) 5.数显电压表:数字显示直流高压输出电压。

二滩水电站电气主接线设计中的一些考虑

文章编号:055929342(2000)0520033203 二滩水电站电气主接线设计中的 一些考虑 刘 彦 红 (国家电力公司成都勘测设计研究院,四川成都 610072) 关键词:电气主接线;设计;二滩水电站 摘 要:二滩水电站在四川电力系统中占有极重要的地位,在电气主接线的选择上采用了可靠而灵活的接线方案,最终实施的电气主接线方案是500kV侧6回进线、4回出线,为2串4/3加2串3/2接线,并预留1回出线位置,具有可扩展性。其主要特点为:发电机和主变压器采用单元接线,发电机出口装设断路器;500kV GIS设备布置在地面与出线场相结合,采用干式电缆与主变压器连接;出线断路器不装合闸电阻,高压侧不装并联电抗器,变压器中性点采用直接接地方式。通过各机组投运前的调试和正式投运后的实践证明,二滩电站采用的电气主接线具有运行灵活、操作方便的优点。 中图分类号:T V741(271);T M645 文献标识码:B 二滩水电站位于四川攀西地区,远离负荷中心,距自贡地区476km(线路距离,下同)、成都地区656km、重庆地区624km,主供成、渝两地用电。最终实施的电站出线电压为500kV一级,第一期出线4回并预留1回出线位置。由于地形所限,500kV配电装置只能采用GIS设备。四川电力系统在二滩电站投产以前未出现过500kV电压等级,因此四川省500kV电力网络与二滩首台机组同步投运。 1 电站接入电力系统方案 系统设计单位所作的二滩水电站接入系统方案和我院针对二滩水电站的特点提出的电站接入系统专题报告,均建议二滩只以500kV一级电压向四川腹地供电。在1983年8月由原水电部电力规划设计院主持召开的接入系统汇报会和同年9月由国家计委主持召开的二滩水电站可行性研究报告审查会上,同意二滩水电站以500kV一级电压出线4回及两个接入系统方案。1984年我院提出的《二滩水电站开关站站址选择专题报告(兼电站接入系统方案补充意见)》和同年底系统设计院提出的《二滩水电站接入系统及近区供电方案研究报告》,以及在1985年元月召开的“二滩水电站初步设计阶段重大专题技术讨论会”,一致同意二滩水电站以5回500kV出线,其中:2回去自贡,2回去重庆,1回与云南联网进行功率交换。后结合当时的政策,系统设计院对二滩电站接入系统方案进行了优化,并于1988年提出了二滩电站接入系统的补充报告,经上级审查,确定二滩500kV出线(包括平台和基础)按5回考虑,其中1回预留位置(完成土建工作),设备订货及安装按4回出线设计。实施为:1回缓建,3回经西昌普提开关站至自贡地区洪沟500kV变电站(1×750M V?A),另1回至攀枝花变电站(1×750M V?A)供攀西地区用电;从洪沟出2回至龙王变电站(2×750M V?A)供成都地区,出2回至陈家桥变电站(2×750M V?A)供重庆地区。二滩水电站接入系统详见图1。 2 电气主接线 根据当初系统规划,四川电力系统2005年的总负荷为14300MW,二滩水电站装机占全网负荷约21%,单机容量占系统负荷比重为315%,故二滩电站在四川电力系统中占有极重要的地位,在电气主接线的选择上采用了可靠而灵活的接线方案。 初步设计按5回500kV出线考虑,电气主接线采用单元接线方案,发电机出口装设断路器;500kV侧6回进线、5回出线,采用5串3/2加1串双断路器接线。500kV GIS设备布置在地下主变压器室顶上,至地面出线场垂直高差约180 m,采用SF6管道母线连接。 实施的电气主接线方案是:500kV侧6回进线、4回出线,2串4/3加2串3/2接线,并预留1回出线位置,今后可将最后1串3/2接线扩为4/3接线,以增加1回出线间隔;发电机和主变压器采用单元接线,发电机出口装设断路器:500 kV GIS设备布置在地面与出线场相结合,采用干式电缆与 收稿日期:2000204217 作者简介:刘彦红(1948—),女,重庆江津人,国家电力公司成都勘测设计研究院教授级高工,现从事机电设计工作1 33 水力发电?2000年?第5期

相关主题
文本预览
相关文档 最新文档