当前位置:文档之家› 一维传输矩阵法

一维传输矩阵法

一维传输矩阵法
一维传输矩阵法

na=2.10;nb=1.46;n1=1;n2=1;

for d=300:1600;

c3=0;c1=asin(n1*sin(c3)/na);c2=asin(na*sin(c1)/nb);c4=asin(nb*sin(c2)/n2); d1=1064;

a=d1/(4*na);b=d1/(4*nb);

Ba=2*pi*na*a*cos(c1)/d;

Bb=2*pi*nb*b*cos(c2)/d;

f=4*pi*1e-7;

e=1e-9/(36*pi);

m=sqrt(e/f);

za=m*cos(c1)*na;zb=m*cos(c2)*nb;z1=f*cos(c3)*n1;z2=f*cos(c4)*n2;

p1=cos(Bb);p2=-i*sin(Bb)/zb;p3=-i*zb*sin(Bb);p4=cos(Bb);

P=[p1 p2;p3 p4];

q1=cos(Ba);q2=-i*sin(Ba)/za;q3=-i*za*sin(Ba);q4=cos(Ba);

Q=[q1 q2;q3 q4];

O=Q*P;k=acos((O(1,1)+O(2,2))/2)/(a+b);

s=d-299;

h(1,s)=k;

end

na=2.10;nb=1.46;n1=1;n2=1;

d1=1064;

a=d1/(4*na);b=d1/(4*nb);c=a+b;

d=300:1600;x=h.*(c/pi);

y=d1./d;

plot(x,y)

第一章 第二讲 矩阵及矩阵初等变换2

第二讲 矩阵及初等变换(4节) 在上一讲中,我们简单介绍了n 元线性方程组的求解过程是如何用数表的形式来表达的思想,这种既能简化求解方程组的过程又使得求解形式简单明了的数表,我们称之为矩阵。 矩阵是线性代数中重要的概念之一,它的理论与方法在数学、经济、工程技术等方面都有较广泛的应用。著名的列昂节夫投入—产出模型就是利用矩阵这一数学工具建立起来的。因此掌握矩阵这一数学工具是非常必要的。 本讲的主要内容就是给出矩阵的概念及运算性质,为下一步更好地利用矩阵理论与方法讨论线性方程组提供有力的理论支撑。 1.2.1矩阵的概念 定义2.1 由m n ?个数i j a (=1,2,,i m ;=1,2,j n )排成了m 行n 列的矩形数表 11121212221 2 n n m m m n a a a a a a a a a 称其为m 行n 列矩阵,记作 11121212221 2 n n m m m n m n a a a a a a a a a ??? ? ? ? ??? 。 其中称ij a 是矩阵的第i 行第j 列元素。矩阵常用大写字母m n A ?,m n B ?… ...表示,或简记m n A ?=()ij m n a ?,m n B ?=()ij m n b ?… … 等. 注意:矩阵的行数m 与列数n 可以不相等,行列相同的矩阵称为方阵. 例如 2行3列矩阵 23231 0-2=2 5 -3A ???? ??? , 2行2列矩阵 2222 2 1=1 6B ???? ?-??。 例2.1例:给个具体的矩阵表示实例 1.2.2矩阵的运算 矩阵也有加、减、数乘、乘法等基本运算法则,以及转置运算等.由于矩阵是个数表,所以它的运算法则与数之间的运算法则有本质上的区别。下面我们先给出矩阵的基本的运算. 定义2.2 若两个行列相同的矩阵() () ,ij ij m n m n A a B b ??==其对应元素相等,即

传递矩阵-matlab程序

%main_critical.m %该程序使用Riccati传递距阵法计算转子系统的临界转速及振型 %本函数中均采用国际单位制 % 第一步:设置初始条件(调用函数shaft_parameters) %初始值设置包括:轴段数N,搜索次数M %输入轴段参数:内径d,外径D,轴段长度l,支撑刚度K,单元质量mm,极转动惯量Jpp[N,M,d,D,l,K,mm,Jpp]=shaft_parameters; % 第二步:计算单元的5个特征值(调用函数shaft_pra_cal) %单元的5个特征值: %m_k::质量 %Jp_k:极转动惯量 %Jd_k:直径转动惯量 %EI:弹性模量与截面对中性轴的惯性矩的乘积 %rr:剪切影响系数 [m_k,Jp_k,EI,rr]=shaft_pra_cal(N,D,d,l,Jpp,mm); % 第三步:计算剩余量(调用函数surplus_calculate),并绘制剩余量图 %剩余量:D1 for i=1:1:M ptx(i)=0; pty(i)=0; end for ii=1:1:M wi=ii/1*2+50; [D1,SS,Sn]=surplus_calculate(N,wi,K,m_k,Jp_k,JD_k,l,EI,rr); D1; pty(ii)=D1; ptx(ii)=w1 end ylabel(‘剩余量’); plot(ptx,pty) xlabel(‘角速度red/s’); grid on % 第四步:用二分法求固有频率及振型图 %固有频率:Critical_speed wi=50; for i=1:1:4 order=i [D1,SS,Sn]=surplus_calculate(N,wi,k,m_k,Jp_k,Jd_k,l,EI,rr); Step=1; D2=D1; kkk=1; while kkk<5000 if D2*D1>0 wi=wi+step;

第一章矩阵(华农线代)

第一章矩阵 1.1 矩阵及其运算 1.1.0区别 1、齐次线性方程组与非齐次线性方程组 1.1.1相关概念 1.1定义1.1:将m X n个数a ij(i = 1,2,3…,m;j = 1,2,3…,n)排成一个m行n列的数表 称为一个m行n列矩阵(matrix),或mXn矩阵,简记为:A = (a ij)mXn或A = (a ij),通常用大写字母A,B,C表示矩阵,其中横向各排称作行(row),纵向各排 称作列(cloumn), mXn个数叫做矩阵A的元素;所有元素均为0的矩阵,称为 零矩阵,记作O. 1.2如果矩阵A = (a ij)的行数与列数都等于n,则A称为n阶矩阵,或称为n阶方 阵。 1.3单位矩阵,又称单位阵,即主对角线的元素数据值为1,其余元素为0的n阶方阵, 记为I n或I。 1.4主对角线以外元素全为零的n阶方阵称为对角线矩阵,简称对角阵,记为: A = diag(λ1,λ2,λ3,…,λn). 易知,n阶单位阵是n阶对角阵的特例。 在方阵中,从左上角到右下角的对角线称为主对角线,主对角线上的元素称为对角元素。主对角线一侧所有元素都为零的方阵称为三角形矩阵.三角形矩阵有两 种,分别称为上三角形矩阵和下三角形矩阵。 对称矩阵,沿着主对角线对称的矩阵叫作对称矩阵。

1.5 行矩阵:只有一行的矩阵,又称为行向量。 1.6 列矩阵:只有一列的矩阵,又称为列向量。 1.7 定义1.2:如果两个矩阵A,B 有相同的行数和相同的列数,并且对应位置的元素均 相等,则称矩阵A 与矩阵B 相等(equal ),记为A=B.即如果A = (a ij )mXn ,B = (b ij )mXn ,且a ij = b ij (i = 1,2,3…,m;j = 1,2,3…,n ),则A=B 。 1.1.2矩阵的运算及其性质 定义1.3:设有两个mXn 矩阵A = (a ij )mXn ,B = (b ij )mXn ,称 A+B = ????????????????? ???? ??? ??? ? ?? ???? ? ? ++++++mn mn m m n n n n b a b a b a b a b a b a ... ...... ......... 11222121111111 为A+B 的和矩阵,这种运算称为矩阵的加法运算,只有同型矩阵才可以进行加法运算,即:行数和列数对应相等的矩阵。 矩阵加法满足下列运算规律: (1) A+B = B+A (2) (A+B)+C=A+(B+C) 设矩阵A=(a ij ),记 -A=(- a ij ),

(整理)传输矩阵法.

传输矩阵法 一、 传输矩阵法概述 1. 传输矩阵 在介绍传输矩阵的模型之前,首先引入一个简单的电路模型。如图1(a)所示, 在(a)中若已知A 点电压及电路电流,则我们只需要知道电阻R ,便可求出B 点电压。传输矩阵具有和电阻相同的模型特性。 (a) (b) 图1 传输矩阵模型及电路模拟模型 如图1(b)所示,有这样的关系式存在:E 0=M(z)E 1。M(z)即为传输矩阵,它将介质前后空间的电磁场联系起来,这和电阻将A 、B 两点的电势联系起来的实质是相似的。 图2 多层周期性交替排列介质 传输矩阵法多应用于多层周期性交替排列介质(如图2所示), M(z)反映的介质前后空间电磁场之间的关系,而其实质是每层薄膜特征矩阵的乘积,若用 j M 表示第j 层的特征矩阵,则有: 1 2 3 4 …… j …… N

(1) 其中, (2) j δ为相位厚度,有 (3) 如公式(2)所示,j M 的表示为一个2×2的矩阵形式,其中每个矩阵元都没有任何实际物理意义,它只是一个计算结果,其推导过程将在第二部分给出。 2. 传输矩阵法 在了解了传输矩阵的基础上,下面将介绍传输矩阵法的定义: 传输矩阵法是将磁场在实空间的格点位置展开,将麦克斯韦方程组化成传输矩阵形式,变成本征值求解问题。 从其定义可以看出,传输矩阵法的实质就是将麦克斯韦方程转化为传输矩阵,也就是传输矩阵法的建模过程,具体如下:利用麦克斯韦方程组求解两个紧邻层面上的电场和磁场,从而可以得到传输矩阵,然后将单层结论推广到整个介质空间,由此即可计算出整个多层介质的透射系数和反射系数。 传输矩阵法的特点:矩阵元少(4个),运算量小,速度快;关键:求解矩阵元;适用介质:多层周期性交替排列介质。 二、 传输矩阵的基础理论——薄膜光学理论 1.麦克斯韦方程组 麦克斯韦方程组由四个场量:D 、E 、B 、H ,两个源量:J 、ρ以及反映它们之间关系的方程组成。而且由媒质方程中的参数ε、μ、σ反映介质对电磁场的影响。方程组的实质是描述电磁场的传播,即:一个变化的磁场引起邻近区域的电场变化,而此电场的变化又引起邻近磁场的变化,如此进行下去,便可抽象出电磁场的传播。如图3 所示。 ? ? ? ???==∏=D C B A M z M N j j 1)(?? ??? ?????=j j j j j j j i i M δδηδηδcos sin sin cos j j j j d N θλπ δcos 2=ε

第一章行列式与矩阵计算练习(含答案)

行列式及矩阵的计算(课堂练习) 一、填空 1.已知三阶方阵A 的行列式为3,则 2A -= -24 2. 设12,01A -?? = ???1()32x g x x -= -+,则()g A =0800-?? ??? 3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若 3,A B =则=,,,,6αβγ βγα+= 4.行列式1 1 1 11 1 11 ---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=k A 1021k ?? ??? 。(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=, 1232,,,n αααβ=,则12312,,,2αααββ-=16m n + 解:11231232,,,2,,,D αααβαααβ=+- 14412312322,,,(1),,,16m n αααβαααβ=+-=+ 7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分 别为3,-2,1,1,则行列式D =-3 .

解:D =1×3+3×(-2)+(-2)×1+2×1=-3 二、判断题 1.设A 、B 均为n 阶方阵,则A B A B =. ( × ) 2.设A 、B 均为n 阶方阵,则AB A B =. (√ ) 三、行列式计算 (1)4 3 3 3 34333 343 3334 Λ ΛΛΛΛΛΛ ΛΛ=n D 解: n D n c c c c c c +++13121M 4 3 3 1 334313334133331 3Λ ΛΛΛΛΛΛΛΛ++++n n n n 1 1312r r r r r r n ---M 1 01000 0103 3313Λ ΛΛΛΛΛΛΛΛ+n =13+n (2)11111231 149118271 D --=-- 解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2- 1)=-240 五、a 为何值时,线性方程组:??? ??-=++=++=++a ax x x x ax x x x x a 322321 321321有唯一解? 解:2 )1)(2(11111 1det -+==a a a a a A ,2-≠a 且1≠a 时,有唯一解.

传输矩阵在物理学

传输矩阵在物理学中的前沿应用 2013261021 李霄强

传输矩阵在物理学中的前沿应用 2013261021 李霄强 传输矩阵法(TMM) 就是将麦克斯韦方程组转换为传输矩阵的形式, 应用传输矩阵进行分析的方法。 为了了解传输矩阵的前沿应用,我查找并阅读了几篇关于传输矩阵应用的文献,这些都是使用传输矩阵解决问题。列如《传输矩阵法在行波管内部反射引起的增益波动计算中的应用》、《光纤光栅法布里-珀罗腔的V-I传输矩阵法研究》及《用传输矩阵法研究微波波段准一维同轴光子晶体能隙结构》。 在《传输矩阵法在行波管内部反射引起的增益波动计算中的应用》一文中,研究者分析了由于行波管慢波结构制造误差引入的多个不连续点对小信号增益的影响. 行波管内部反射对增益波动的影响, 须采用考虑反射波的四阶模型进行分析, 用传输矩阵法对节点处的自左至右入射和自右至左入射两种散射类型建立传输矩阵, 研究在不同空间电荷参量下, 慢波电路的单个反射节点以及慢波电路的皮尔斯速度参量b 和增益参量C 的多个随机分布不连续性对行波管小信号增益的影响。即通过传输矩阵可以将一个层面上的电磁波幅值与紧邻的另一个层面的电磁波幅值联系起来,如果知道了第一段入射波分布, 就可以利用传输矩阵法计算最后一段电磁波分布,将第一段电磁波幅值与最后一段电磁波幅值联系起来, 通过求解边界条件, 就可以求任一段电磁波幅值,也可以求出行波管的增益。 在《光纤光栅法布里-珀罗腔的V-I传输矩阵法研究》中,研究者要进行光纤光栅法布里-珀罗腔反射光谱特性的分析,由于目前对于结构简单的光栅构成的法布里-珀罗腔的特性分析多采用偶合模理论。但对于复杂结构的光栅,由于难以得到解析解,一般采用四阶的龙格-库塔方法进行数值求解或采用多层膜法进行分析计算。这两种方法都可以保证分析精度,但求解速度较慢。要快速实时获得光器件、光通信系统以及光传感系统的特性,由于庞大的运算量而引起耗费时间过长成为突出问题。研究者将V-I传输矩阵法用于光纤光栅法布里-珀罗腔反射光谱特性的分析,并建立了V-I传输矩阵模型。V-I传输矩阵法是2003年Capmany 基于多层膜方法提出的用于计算光纤光栅反射谱特性的方法,采用该模型对三种不同结构的光纤光栅法布里-珀罗腔在不同参数下的光谱特性进行分析,并与传统多层膜法的分析结果相比较,表明V-I传输矩阵法能够在保证分析精度的前提下大大节省运算时间。而且实验结果表明,V-I传输矩阵法对光纤光栅法布里-珀罗腔特性的分析结果比耦合模法更准确。这表明,传输矩阵法将会推动对级联光纤光栅、多法布里-珀罗腔级联的理论研究,并进一步发挥更大的作用。 在《用传输矩阵法研究微波波段准一维同轴光子晶体能隙结构》一文中,作者使用ABCD 传输矩阵传输线等效模型和布洛赫周期性边界条件分析计算了同轴准一维光子晶体中具有明显的光子带隙,而且计算结果与实验测试结果能很好地吻合。该文章中,作者写出了运用ABCD矩阵的详细过程。即利用ABCD传输矩阵与周期性边界条件分析输入变量和输出变量之间存在的关系,得到计算结果。 传输矩阵方法作为一种时域的数值方法,可以克服一般的频域分析方法所难以克服的问题,即(1)由于频域分析方法基于叠加原理,故而很难处理非线性问题。(2)不能处理具有时变特性的结构和介质的场问题。(3)由于一般的频域分析方法都要进行空间的傅里叶变换,故而很难处理具有复杂的,不规则的结构和边界的场问题。 传输矩阵方法也具有以下优点:(1)传输矩阵方法避免了求解复杂的方程组,因而不存在收敛与否,稳定与否和有无奇异解的问题。(2)物理概念清晰,非常便于计算机程序实现,而且程序的通用性很强。不同的结构、不同的介质只需改变相应的数据文件就可以计算。(3)可以用于分析高频(几十GHz到几百GHz的频率)、高速微波和数字电路的特性。

机床动力学建模的拓展传递矩阵法

万方数据

万方数据

万方数据

万方数据

2010年11月吴文镜等:机床动力学建模的拓展传递矩阵法73 刀。Q=F(9)Q=E522'Jo+E623’10+E7乙110+ 毛毛.10+岛乞J0+Eloz7'j0+ 层Ilz8.10+层12磊.10+E13zF+E30zD(10) F=E14互.10+E15乞.10+巨6毛'lo+ 巨725’10+E18乙J0+E927'lo+ £20磊_lo+E2lz9.10+£22磊+E3l乞(11) 互.o=ElZ6.1+E227.I+E328.1+层429.1(12) 由式(7)~(11)得 (五oE5一E14)互Z2.o+(正oE6一E15)五z3.o+ (五oE7一E16)五乙.o+(五oE8一E17)毛z5.o+ (墨oE9一E18)r6瓦.1+(互oElo—E19)弓Z7.1+ (互oEll—E20)磊z8,1+(正。巨2一E21)写z9.1+ (7ioEl3一E22)z-+(7io岛。一百31)ZF=0(13) 由式(6)、(12)得 互,D(El乙,J+E227.1+E328.I+E4毛,1)=rl,』Z1.,(14)对于状态矢量磊'l、历'l、z8'1、而,1均为刚体1上的状态矢量,位移元素线性相关,有 易327.1=E24互,,(15) 易3磊,l=E25五,J(16) £2329.1=E26互.,(17)联合(13)~(17)将其写成矩阵的形式有 瓦lzalI=048×l(18)zall=(乏,o召。别,。罨。烈,。 z五磊。罨。z0砟磊)1 磊和Zo分别为激振点和拾振点的状态矢量,兀¨为48×69的高维矩阵。 3.2结合面参数 直线进给功能部件中主要存在直线滚动导轨结合面以及电动机定子与滑板之间的螺栓结合面。对于导轨结合面模型简化为1个法向线性弹簧一阻尼系统、1个横向的线性弹簧一阻尼系统和3个转动方向的扭转弹簧一阻尼系统,以综合反映结合部各方向的微幅振动。通过锤击试验分别测定导轨法向和横向及3个扭转方向的传递函数,定义法向为Z,横向为y,3个坐标轴分别为A、B、C。 根据单自南度系统振动方程计算出导轨各方向的接触刚度,根据半功率法计算接触阻尼。最终计算得到导轨结合面参数如表l所示。电动机与滑板之问的螺栓结合面参数如表2所示。导轨结合面参数测试结果见图7。 表l导轨结合部参数结果 参数数值 刚度kr/(MN?m‘1253 刚度kJ(GN?m“12.14 刚度“/(kN?m?rad。。1693 }94度ks/(MN?m?rad‘)1.73 刚度kd(kN?m?rad。1727 阻尼c;l(N?s?m“1641.5 阻尼cJ(N?s?m’)l034.9 雕尼“/(N?m?s?rad。)0.1447 阻尼c洲N?m?s?rad。。)2.011 阻尼Cc/(N?1tl?s?md1)09602 表2螺栓结合部参数 参数数值 刚度k,/(GN?m。。1o.25 刚度k,J(GN?m’)0,25 刚度kfl(GN?m。)2.10 阻尼c.r/(N?s?m。)125 阻尼e,I(N?s?m。。1125 阻尼c∥(N?s?m“)250 (a)测试现场 {||卜M以旷藩三h∥ 迎卜—t——专—上‘_妻蔫k套 图7导轨结合面参数测试结果 3.3滑板有限元自由度缩减模型建-fr 创建有限元自由度缩减模型首先采用通用有限元软件得到零件的有限元法(Finiteelementmethod,FEM)}-莫-型,根据零件特点选择质量集中点、 结合面连接节点、外力作用节点以及需要考察的节 万方数据

第一讲 矩阵的概念、运算

第一讲 Ⅰ 授课题目(章节): §2.1 矩阵的概念; §2.2 矩阵的计算 Ⅱ 教学目的与要求: 理解矩阵概念; 掌握矩阵的线性运算、乘法、转置及其运算规律。 Ⅲ 教学重点与难点: 矩阵的乘法 Ⅳ 讲授内容: §2.1 矩阵 定义2.1 由n m ?个数),,2,,1;,,2,1(n j m a ij =排成的m 行n 列的数表 mn m m n n a a a a a a a a a 21222 21112 11 称为m 行n 列矩阵,简称n m ?矩阵.为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示它,记作 ??????? ??=?mn m m n n n m a a a a a a a a a A 212222111211 两个矩阵B A ,,如果都是m 行n 列的,称它们是同型矩阵。否则,称它们是不同型的。 n 行n 列的矩阵n n A ?称为n 阶矩阵(或n 阶方阵) ,简记为n A 。 只有一行的矩阵)(21n a a a A =称为行矩阵,又称行向量.只有一列的矩阵 ?????? ? ??=n b b b B 21 称为列矩阵,又称列向量. 定义2.2 如果)()(ij ij b B a A ==与是同型矩阵,并且它的对应元素相等 ,即

),,2,1;,,2,1(,n j m i b a ij ij === 那么就称矩阵A 与B 相等,记作B A =. 元素都是零的m 行n 列矩阵称为零矩阵,记作n m O ?,简记为O .不同型的零矩阵是 不同的. ??????? ??=100010001 n I 称为n 阶单位矩阵,简记作I .这个矩阵的特点是:从左上角到右下角的直线(叫做主对角线)上的元素都是1,其它元素都是0. §2.2 矩阵的运算 1. 矩阵的加法 定义2.3 设有两个n m ?矩阵)(),(ij ij b B a A ==,那么矩阵A 与B 的和记作A +B , 规定为 n m ij ij b a B A ?+=+)( 设矩阵)(),(ij ij a A a A -=-=记,A -称为矩阵A 的负矩阵.显然有 0)(=-+A A . 规定矩阵的减法为)(B A B A -+=-. 2. 数与矩阵相乘: 定义2.4 数λ与矩阵)(ij a A =的乘积记作A λ,规定为n m ij a A ?=)(λλ 数乘矩阵满足下列运算规律(设B A ,为同型矩阵,μλ,为数): )(i )()(A A μλλμ= )(ii A A A μλμλ+=+)( )(iii B A B A λλλ+=+)( 3. 矩阵与矩阵相乘: 定义 2.5 设)(ij a A =是一个s m ?矩阵,)(ij b B =是一个n s ?矩阵,那么规定矩阵

传递矩阵法在结构振动响应分析中的应用

传递矩阵法在结构振动响应分析中的应用 【摘要】传递矩阵法因其简便、快捷,已被广泛应用于机械、航空和航天等领域。本文以航空发动机低压转子临界转速分析为例,对传递矩阵法在结构振动响应分析中的应用方法和分析步骤进行了详细的介绍,并给出了某型发动机低压转子在不同支承刚度下的临界转速。 【关键词】传递矩阵;振动响应;临界转速;转子动力学 0 引言 经典传递矩阵法是20 世纪20 年代建立起来的用于研究弹性构件组成的一维线性系统振动问题的方法。经过多年的发展和完善,已经可以用于求解多圆盘轴的扭转振动问题、梁的弯曲振动模态、轴的横向振动问题、系统的静态响应和扭矩载荷响应问题、以及一维结构的振动特性分析和复合梁的振动特性等结构动力学问题。并且,由于传递矩阵法建模灵活、计算效率高等优点,已在包括光学、声学、电子学、机器人学、机械、兵器、航空、航天等诸多现代工程技术领域中得到了广泛应用[1]。 应用传递矩阵法进行分析的一般步骤为:1)结构离散化;2)建立系统传递矩阵;3)特征方程求解。 1 结构离散化 航空发动机低压转子结构简化模型见图1: 其主要组件为压气机、涡轮和低压轴。低压转子通过前、中、后3个支点与发动机转子系统相连[2]。 将该结构进行离散化处理[3-5],并将各支点简化为线弹性体后,得到图2所示模型。 离散化处理后,整个低压转子的质量将被转换为分布式质量节点。表1给出了离散化后各质量节点的质量分布情况。 2 建立系统传递矩阵 将连续结构进行离散化处理后,实体结构将被简化成等刚性无质量梁单元及分布质量点。 3 特征方程求解 以转子转速做为变量,在不同刚度参数下对特征值进行求解。在某一给定刚

刘三阳线性代数第二版第一章标准答案

刘三阳线性代数第二版第一章答案

————————————————————————————————作者:————————————————————————————————日期:

第一章矩阵及其应用习题解答 本章需要掌握的是: 1)矩阵的定义,以及矩阵的运算(加、减、数乘和乘法); 2)方阵的幂和多项式,以及矩阵转置的性质; 3)逆阵的定义,以及逆阵的4条性质; 4)分块矩阵的运算规则; 5)矩阵的三种初等变换及行阶梯矩阵和行最简矩阵; 6)三种初等矩阵,以及定理1.4(左乘行变,右乘列变)、1.5、1.6和1.7;7)求逆阵的方法:定义法和初等变换法。 1、设方阵A满足,求。 题型分析:此类题型考核的知识点是逆阵的定义,即。因此无论题中给出的有关矩阵A的多项式(如本题是)多么复杂,只 需要把该多项式配方成“(所求逆的表达式)*(配方后的因子)=E”即可,即本题是要配成(A-E)*(?)=E。 解: %配出2003A可提取的(A-E) %配出1998可提取的(A-E) %提取公因式(A-E) %将只有单位阵的那一项移至等式右端 %写成“AB=BA=E”的形式

%由逆阵定义可知 巩固练习:教材第38页第13题 2、设,求。其中k为正整数。 题型分析:此类题型考核的知识点是矩阵的乘法和幂运算。解题思路为依次计算 最多到,通常这时已经可以看出规律,依此规律解题即可。 解:,,因此推论,用数学归纳法证明如下: 1)当k=1时,成立; 2)假设当k=n-1时,上式成立,即,则有 当k=n时,也成立。 所以 巩固练习:教材第41页二、填空题(3) 3、设A=E-uu T ,E为n阶单位阵,u为n维非零列向量,u T 为u的转置,证明:1)A2=A的充要条件是u T u=1; 2)当u T u=1时,A是不可逆的。 题型分析:这道题综合了矩阵这一章的大部分知识点,是个综合题,对于刚学了第一章的同学们来说也是一道难题。解题思路首先要明确u为n为非零向量是指u是一个只有一行 或一列的矩阵,题中有即告诉我们u是一个n*1阶列矩阵即列向量。

利用传递矩阵法和Riccati传递矩阵法分析转子临界转速

利用传递矩阵法和Riccati 传递矩阵法分析转子临界转速 一、 所需求解转子参数 将转子简化为如下所示: 三个盘的参数为:1232 2212322 2 1 230.0160.050.0160.0120.0250.012P P P d d d I kg m I kg m I kg m I kg m I kg m I kg m ? =?=?=???=?=?=?? 另,阶梯轴的三段轴的截面惯性矩分别为: 414243 1.73.20.9J cm J cm J cm ?=? =??=? 三段轴的单位长度轴段的质量分别为:123 2.45/ 3.063/1.587/m kg m m kg m m kg m =?? =??=? 二、 试算转轴的传递矩阵 取试算转速1200/p rad s ω== ; 则,各轴段的传递矩阵分别为: 第1段 840.061.7102.45/l m J m m kg m -=??=???=?

1 1.0006e+000 6.0007e-00 2 5.2943e-007 1.0588e-008 3.7356e-002 1.0006e+000 1.7649e-005 5.2943e-007 6.3506e+00 3 1.2701e+002 1.0006e+000 6.0007e-002 2.1170e+005 6.3506e+003 3.7356e-002 H = 1.0006e+000 ??????? 第2段 840.153.2103.063/l m J m m kg m -=??=???=? 2 1.0145e+000 1.5044e-001 1.7595e-006 8.7927e-008 3.8782e-001 1.0145e+000 2.3506e-005 1.7595e-006 4.9669e+004 2.4821e+00 3 1.0145e+000 1.5044e-001 6.6353e+005 4.9669e+00 4 3.8782e-001 H = 1.0145e+000 ??????? 第3段 840.053.2103.063/l m J m m kg m -=??=???=? 3 1.0002e+000 5.0002e-002 1.9531e-007 3.2552e-009 1.4358e-002 1.0002e+000 7.8128e-006 1.9531e-007 5.5135e+003 9.1890e+001 1.0002e+000 5.0002e-002 2.2054e+005 5.5135e+003 1.4358e-002 H = 1.0002e+000 ??????? 第4段 840.033.2103.063/l m J m m kg m -=??=???=? 4 1.0000e+000 3.0000e-002 7.0313e-008 7.0313e-010 3.1013e-003 1.0000e+000 4.6875e-006 7.0313e-008 1.9848e+003 1.9848e+001 1.0000e+000 3.0000e-002 1.3232e+00 5 1.9848e+003 3.1013e-003 H = 1.0000e+000 ??????? 第5段 840.10.9101.587/l m J m m kg m -=??=???=?

#研究生矩阵论第1讲 线性空间

矩阵论 1、意义 随着科学技术的发展,古典的线性代数知识己不能满足现代科技的需要,矩阵的理论和方法业巳成为现代科技领域必不可少的工具.有人认为:“科学计算实质就是矩阵的计算”.这句话概括了矩阵理论和方法的重要性及其使用的广泛性.因此,学习和掌握矩阵的基本理论和方法,对于理、工科研究生来说是必不可少的数学工具.2、内容 《矩阵论》和工科《线性代数》课程在研究矩阵的内容上有较大的差异: 线性代数:研究行列式、矩阵的四则运算(加、减、乘、求逆 ) 以及第一类初等变换 (非正交的)、对角标准形 (含二次型) 以及n阶线性方程组的解等基本内容. 矩阵论:研究矩阵的几何理论(线性空间、线性算子、内积空间等)、第二和第三类初等变换(正交的)、分析运算(矩阵微积分和级数)、矩阵的范数和条件数、广义逆和分解、若尔当标准形以及几类特殊矩阵和特殊运算等,内容十分丰富. 3、方法 在研究的方法上,矩阵论和线性代数也有很大的不同: 线性代数:引入概念直观,着重计算. 矩阵论:着重从几何理论的角度引入矩阵的许多概念和运算,把矩阵看成是线性空间上线性算子的一种数量表示.深刻理解它们对将

来正确处理实际问题有很大的作用. 第1讲 线性空间 内容: 1.线性空间的概念; 2.基变换和坐标变换; 3.子空间和维数定理; 4.线性空间的同构 线性空间和线性变换是矩阵分析中经常用到的两个极其重要的概念,也是通常几何空间概念的推广和抽象,线性空间是某类客观事物从量的方面的一个抽象. §1 线性空间的概念 1. 群,环,域 代数学是用符号代替数(或其它)来研究数(或其它)的运算性质和规律的学科,简称代数. 代数运算:假定对于集A 中的任意元素a 和集B 中的任意元素b ,按某一法则和集C 中唯一确定的元素c 对应,则称这个对应为A 、B 的一个(二元)代数运算. 代数系统:指一个集A 满足某些代数运算的系统. 1.1群 定义1.1 设V 是一个非空集合,在集合V 的元素之间定义了一种代数运算,叫做加法,记为“+”.即,对V 中给定的一个法则,对于V 中任意元素βα,,在V 中都有惟一的一个元ν和他们对应,称ν为βα,的和,记为βαν+=.若在“+”下,满足下列四个条件,则称V 为一个群. 1)V 在“+”下是封闭的.即,若,,V ∈βα有 V ∈+βα; 2) V 在“+”下是可结合的.即,)()(γβαγβα++=++ ,V ∈γ;

改进传递矩阵法

JOURNAL OF SOUND AND VIBRATION Journal of Sound and Vibration 289(2006)294–333 A modi?ed transfer matrix method for the coupling lateral and torsional vibrations of symmetricrotor-bearing systems Sheng-Chung Hsieh a ,Juhn-Horng Chen b ,An-Chen Lee a,? a Department of Mechanical Engineering,National Chiao Tung University,1001Ta Hsueh Road, Hsinchu 30049,Taiwan,ROC b Department of Mechanical Engineering,Chung Hua University,Taiwan,ROC Received 27January 2004;received in revised form 9August 2004;accepted 8February 2005 Available online 28April 2005 Abstract This study develops a modi?ed transfer matrix method for analyzing the coupling lateral and torsional vibrations of the symmetricrotor-bearing system with an external torque.Euler’s angles are used to describe the orientations of the shaft element and disk.Additionally,to enhance accuracy,the symmetric rotating shaft is modeled by the Timoshenko beam and considered using a continuous-system concept rather than the conventional ‘‘lumped system’’concept.Moreover,the harmonic balance method is adopted in this approach to determine the steady-state responses comprising the synchronous and superharmonic whirls.According to our analysis,when the unbalance force and the torque with n ?frequency of the rotating speed excite the system simultaneously,the en t1T?and en à1T?whirls appear along with the synchronous whirl.Finally,several numerical examples are presented to demonstrate the applicability of this approach. r 2005Elsevier Ltd.All rights reserved. 1.Introduction Rotor dynamics plays an important role in many engineering ?elds,such as gas turbine,steam turbine,reciprocating and centrifugal compressors,the spindle of machine tools,and so on.Owing to the growing demands for high power,high speed,and light weight of the rotor-bearing https://www.doczj.com/doc/a19254863.html,/locate/jsvi 0022-460X/$-see front matter r 2005Elsevier Ltd.All rights reserved.doi:10.1016/j.jsv.2005.02.004 ?Corresponding author.Tel.:+88635728513;fax:88635725372. E-mail address:aclee@https://www.doczj.com/doc/a19254863.html,.tw (An-Chen Lee).

用传输矩阵法计算一维光子晶体的带隙特性研究

一维光子晶体带隙特性研究1103011013 黄蓓粉体一班 摘要:光子晶体是20世纪80年代末提出的新概念和新型人工微结构光学材料。光子晶体以光子禁带的存在为主要特征,其典型结构为一个折射率周期变化的物体。一维光子晶体是光子晶体最基本的构型,其折射率在一维空间方向上呈周期性分布。一维光子晶体结构简单、易于制备,同时具备二维、三维光子晶体的性质,极有可能成为全光通信领域中的关键材料,因此具有较高的理论价值和广泛的应用前景。 关键词:光子带隙特征矩阵规律 1 引言 光子晶体是一种折射率周期变化的人工微结构材料,其典型结构为一个折射率周期变化的三维物体,周期为光波长量级. 光子在光子晶体中传播存在光子带隙.,频率落在光子带隙的电磁波不能在光子晶体中传播,光子晶体的这种特性具有极大的理论价值和潜在的应用前景。在光子晶体中掺杂后,会在光子能隙中引入局域模式,这将给激光技术和非线性光学等带来全新的应用,如制作零阈值激光器、光滤波器、慢光缓存器、慢光传感器等。 理论研究发现,对于含有缺陷的一维光子晶体,在光子禁带(PBG:Photonic Band Gap)的带边和缺陷模对应的频率位置,

光的传输具有极低的群速度,Scalorta 等人发现在带边处,光脉冲传输速度可以降低到c/17(c 为真空中光速),大约为1.76×107m/s 。 光子晶体的理论计算已相对成熟 ,本文旨在应用现有的计算方 法,建立一维光子晶体模型并讨论一维光子晶体在不同结构参数和参数下的光学传输特性。 2方法与原理 2.1模型的建立 一维光子晶体由两种不同相对介电常量 (εa ,εb ) 、厚度( a , b) 的薄介质层交替排列构成的一维周期性结构 材料. 如图 1 所示 ,空间周期为 d = a + b ,一束频率 为 ω的光从左向右正入射到图中所示的一维周期 性结构材料中. 将光波在介质层中的行 进看作是正向行进电磁波 (下行波) 和反向行进电磁 波 (上行波) 的叠加. 介质交界面处的电磁场满足边 界条件. 每一介质层与光波的相互作用可由其矩阵完全决定. 介质层两边的场矢量 E Ⅰ , H Ⅰ , E H Ⅱ的模可用特征矩阵联系起来 : E E M H H I II I II ????=????????

第一讲 矩阵和行列式初步

第一讲 矩阵和行列式初步 【知识梳理】 一、 概念 1、矩形的数表叫做矩阵; 2、矩阵中的每个数叫做矩阵的元素; 3、方程组的系数矩阵;系数矩阵的两个行向量和两个列向量(七上书P74); 4、主对角元素为1、其余元素均为零的方矩阵叫做单位矩阵; 5、形如 叫做行列式,是表示一种特定算式的记号; a1b2-a2b1叫做行列 式的展开式,其计算结果叫做行列式的值;a1、a2、b1、b2叫做该行列式的元素; 6、D 通常叫做方程组的系数行列式;D 是方程组解的判别式; 7、二阶行列式、三阶行列式及其展开方法(对角线法则); 8、余子式(三阶行列式中划去某元素所在的行和列)和代数余子式(带符号的余子式); 9、行列式按行(列)的展开式数学上成为拉普拉斯展开式。 二、 考点 1、 相等矩阵、矩阵的加法、矩阵的乘法(A x B 要求A 的列数和B 的行数相等); 2、 矩阵的初等行变换:(1)互换矩阵的两行;(2)把某一行乘(除)以一个非零的数; (3)某一行乘(除)以一个数加到另一行; 3、 行列式的展开; 4、 矩阵的应用:会用矩阵表达块状数据的计算方法,能够用矩阵的变换求解线性方程 组; 5、 行列式的应用:用行列式求解线性方程组(二元一次方程组和三元一次方程组),或讨论方程组解的情况; 6、 用行列式计算已知坐标的三角形面积。 【典型例题】 例1、 矩阵的计算 (1) (2) (3) (4) a1 b1 c1 d1

(5) 例2、行列式的计算 (1) (2) 例3、按要求计算行列式D= (1)按第一行展开 (2)按第一列展开

例4、已知第一季度某小区1号楼和2号楼在1月份、2月份、3月份各幢楼的水、电、煤用量如下列各表所示: 表3(3月份) 如果每单位量的水费、电费、煤气费分别为1.03元、0.61元、1.05元,试解 决以下问题: (1)将各幢楼的水、电、煤气的各月用量分别用矩阵表示出来; (2)将各幢楼的水、电、煤气在第一季度的总用量用矩阵表示; (3)已知各幢楼的水、电、煤气在第二季度的总用量均减少10%,将各幢楼的水、 电、煤气在第二季度的总用量用矩阵表示; (4)求各幢楼的水、电、煤气在第一季度的总费用.

矩阵讲义

§1 矩阵及其运算 教学要求:理解矩阵的定义、掌握矩阵的基本律、掌握几类特殊矩阵(比如零矩阵,单位矩阵,对称矩阵和反对称矩阵 ) 的定义与性质、注意矩阵运算与通常数的运算异同。能熟练正确地进行矩阵的计算。 知识要点: 一、矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素 在矩阵中的位置。比如,或表示一个矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零, 则称为单位矩阵,记为,即:。如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵,例如,是一个阶下三角矩阵,而则 是一个阶上三角矩阵。今后我们用表示数域上的矩阵构成的集合,而用或者 表示数域上的阶方阵构成的集合。 二、矩阵的运算

1、矩阵的加法:如果是两个同型矩阵(即它们具有相同的行数和列数,比如说),则定义它们的和仍为与它们同型的矩阵(即),的元素为和对应元素的和,即:。 给定矩阵,我们定义其负矩阵为:。这样我们可以定义同型矩阵的减法为:。由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律: ( 1)交换律:; ( 2)结合律:; ( 3)存在零元:; ( 4)存在负元:。 2 、数与矩阵的乘法: 设为一个数,,则定义与的乘积仍为中的一个矩阵,中的元素就是用数乘中对应的元素的道德,即。由定义可知:。容易验证数与矩阵的乘法满足下列运算律: (1 ); (2 ); (3 ); (4 )。 3 、矩阵的乘法: 设为距阵,为距阵,则矩阵可以左乘矩阵(注意:距阵德列数等与矩阵

第1章矩阵与线性方程组

第1 章矩阵与线性方程组 矩阵是描述和求解线性方程组最基本和最有用的工具。本章涉及向量和矩阵的基本 概念,归纳了向量和矩阵的基本运算。 1.1 主要理论与方法 1.1.1 矩阵的基本运算 一、矩阵与向量 a11x1 + a12x2 + ¢ ¢ ¢+ a1n x n = b1 a21x1 + a22x2 + ¢ ¢ ¢+ a2n x n = b2 ... a m1x1 + a m2x2 + ¢ ¢ ¢+ a mn x n = b m 9> >>>=>>>>; (1.1) 它使用m个方程描述n个未知量之间的线性关系。这一线性方程组很容易用矩阵||向量 形式简记为 Ax = b (1.2) 式中 A =26664 a11 a12 ¢ ¢ ¢ a1n a21 a22 ¢ ¢ ¢ a2n ... ... ... a m1 a m2 ¢ ¢ ¢ a mn 37775 (1.3) 称为m £ n矩阵,是一个按照长方阵列排列的复数或实数集合;而 x =26664 x1 x2 ... x n 37775 ; b =26664 b1 b2 ... b m 37775 (1.4) 分别为n £1向量和m£1向量,是按照列方式排列的复数或实数集合,统称列向量。类似地,按照行方式排列的复数或实数集合称为行向量,例如 a = [a1; a2; ¢ ¢ ¢ ; a n] (1.5) 是1 £ n向量。 二、矩阵的基本运算 1. 共轭转置:若A = [a ij ]是一个m£ n矩阵,则A的转置记作A T,是一个n £m矩阵, 定义为[A T]ij = a ji;矩阵A的复数共轭A¤定义为[A¤]ij = a¤ji;复共轭转置记作A H,定义 为 A H =26664 a¤11 a¤21 ¢ ¢ ¢ a¤m1 a¤12 a¤22 ¢ ¢ ¢ a¤m2 ...

相关主题
文本预览
相关文档 最新文档