当前位置:文档之家› P和B对高强度Ti-IF钢再结晶织构和力学性能的影响

P和B对高强度Ti-IF钢再结晶织构和力学性能的影响

P和B对高强度Ti-IF钢再结晶织构和力学性能的影响
P和B对高强度Ti-IF钢再结晶织构和力学性能的影响

耐热钢性能和耐腐蚀指标

耐热钢性能和耐腐蚀指标 在高温下具有较高的强度和良好的化学稳定性的合金钢。它包括抗氧化钢(或称高温不起皮钢)和热强钢两类。抗氧化钢一般要求较好的化学稳定性,但承受的载荷较低。热强钢则要求较高的高温强度和相应的抗氧化性。耐热钢常用于制造锅炉、汽轮机、动力、机械、工业炉和航空、石油化工等工业部门中在高温下工作的零部件。这些部件除要求高温强度和抗高温氧化腐蚀外,根据用途不同还要求有足够的韧性、良好的可加工性和焊接性,以及一定的组织稳定性。此外,还发展出一些新的低铬镍抗氧化钢种。 耐热钢基本信息 简介: 耐热钢(heat-resisting steels) 在高温条件下,具有抗氧化性和足够的高温强度以及良好的耐热性能的钢称作耐热钢。 类别: 耐热钢按其性能可分为抗氧化钢和热强钢两类。抗氧化钢又简称不起皮钢。热强钢是指在高温下具有良好的抗氧化性能并具有较高的高温强度的钢。 耐热钢按其正火组织可分为奥氏体耐热钢、马氏体耐热钢、铁素体耐热钢及珠光体耐热钢等。

用途 耐热钢常用于制造锅炉、汽轮机、动力机械、工业炉和航空、石油化工等工业部门中在高温下工作的零部件。这些部件除要求高温强度和抗高温氧化腐蚀外,根据用途不同还要求有足够的韧性、良好的可加工性和焊接性,以及一定的组织稳定性。 中国自1952年开始生产耐热钢。以后研制出一些新型的低合金热强钢,从而使珠光体热强钢的工作温度提高到600~620℃;此外,还发展出一些新的低铬镍抗氧化钢种。耐热钢和不锈耐酸 在使用范围上互有交叉,一些不锈钢兼具耐热钢特性,既可用作为不锈耐酸钢,也可作为耐热钢使用。合金元素的作用铬、铝、硅这些铁素体形成的元素,在高温下能促使金属表面生成致密的 氧化膜,防止继续氧化,是提高钢的抗氧化性和抗高温气体腐的主要元素。但铝和硅含量过高会使室温塑性和热塑性严重恶化。铬能显著提高低合金钢的再结晶温度,含量为2%时,强化效果最好。 镍、锰可以形成和稳定奥氏体。镍能提高奥氏体钢的高温强度和改善抗渗碳性。锰虽然可以代镍形成奥氏体,但损害了耐热钢的抗氧化性。钒、钛、铌是强碳化物形成元素,能形成细小弥散的碳化物,提高钢的高温强度。钛、铌与碳结合还可防止奥氏体钢在高温下或焊后产生晶间腐蚀。碳、氮可扩大和稳定奥氏体,从而提高耐热钢的高温强度。钢中含铬、锰较多时,可显著提高氮的溶解度,并可利用氮合金化以代替价格较贵的镍。硼、稀均为耐热钢中的微量元素。硼溶入固溶体中使晶体点阵发生畸变,晶界上的硼又能阻止元素扩散和晶

钢绞线力学性能表.

1、钢绞线镀锌力学性能表

钢绞线中镀锌钢丝力学性能表 钢绞线中镀锌钢丝锌层性能表

2、无粘结钢绞线UNBONDED STRAND WIRE 注: (1) 力学性能应符合 PC钢绞线标准要求 (2) 根据不同用途,经双方协议,供应其它强度和直径的预应钢绞线。 Note:(1) Mechanical performance should conform to the specification of PCstranded wire (2) According to different uses,we can supply PC stranded wire with the other tensile strength and diameter through negotiation by both parties. 1x7

(2) 根据不同用途,经双方协议,供应其它强度和直径的预应力钢材。 Note: (1) *indicating Yielding Load takes 85% of the breaking load of the whole strand wire (2) As agreed by both Parties, supply prestressing steel of other strength and dimension upon its purpose. 3、预应力混凝土用钢绞线TYRE BEAD WIRE GB/T5224-2003 ASTMA416/A416M-2002 BS5896-1980 适用于由圆形断面钢丝捻成的做预应力混凝土结构、岩土锚固等用途的钢绞线 Steel strand twisted by round steel wire used for prestressed concrete structure,rock or earth enchorage edc. 1×7结构钢绞线尺寸及允许偏差表

钢的力学性能

冷轧学习资料(轧机车间) 钢的力学性能 1拉力试验 按标准制备的拉力试样,安装在拉力试验机的夹头内,对试样缓慢施加单轴向拉伸应力,直至试样被拉断为止的试验称作拉力试验。 1.1强度 金属材料在外力作用下,抵抗变形和断裂的能力叫强度。强度指标包括:比例极限、弹性极限、屈服强度、抗拉强度等。 1.2比例极限 对金属施加拉力,金属存在着力与变形成直线比例的阶段,而这个阶段的最大极限负荷Pp除以试样的原横截面积即为比例极限,用σ P表示。 1.3弹性极限 金属受外力作用发生了变形,外力去掉后,能完全恢复原来的形状,这种变形称为弹性变形。金属能保持弹性变形的最大应力称为弹性极限,用σe表示。 1.4抗拉强度 试样拉伸时,在拉断前所承受的最大负荷除以原横截面积所得的应力,称作抗拉强度,用σb表示。当材料所受的外应力大于其抗拉强度时,将会发生断裂。因此σb越高,则表示它能承受愈大的外应力而不致于断裂。 国外标准的结构钢常按抗拉强度来分类,如SS400,其中400即表示σb的最小值为400MPa 超高强度钢是指σb≥1373 Mpa的钢。 1.5屈强比 屈强比即屈服强度与抗拉强度之比值(σS/σb)。屈服比值越高,则该材料的强度愈高,屈强比值愈低则塑性愈佳,冲压成形性愈好。如深冲钢板的屈强比值为≤0.65。 弹簧钢一般均在弹性极限范围内服役,受载荷时不允许产生塑性变形,因此要求弹簧钢经淬火、回火后具有尽可能高的弹性极限和屈强比值(σS/σb≥0.90)此外疲劳寿命与抗拉强度及表面质量往往有很大关连。 1.6塑性 金属材料在受力破坏前可以经受永久变形的性能称为塑性。塑性指标通常伸长率和断面收缩率表示。伸长率与断面收缩率越高,则塑性越好。 8、冲击韧性 用一定尺寸和形状的金属试样,在规定类型的冲击试验上受冲击负荷折断时,试样刻槽处单位横截面上所消耗的冲击功,称为冲击韧性以αk表示。 目前常用的10×10×55mm,带2 mm深的V形缺口夏氏冲击试样,标准上直接采用冲击功(J焦耳值)AK,而不是采用αK值。因为单位面积上的冲击功并无实际意义。 冲击功对于检查金属材料在不同温度下的脆性转化最为敏感,而实际服役条件下的灾难性破断事故,往往与材料的冲击功及服役温度有关。因此在有关标准中常常规定某一温度时的冲击功值为多少、还规定FATT(断口面积转化温度)要低于某一温度的技术条件。所谓FATT,即一组在不同温度下的冲击试样冲断后,对冲击断口进行评定,当脆性断裂占总面积的50%时所对应的温度。由于钢板厚度的影响,对厚度≤10mm的钢板,可取得3/4小尺寸冲击试样(7.5×10×55mm)或1/2小尺寸冲击试样(5×10×55mm)。但是一定要注意,同规格及同一温

钢绞线检验

预应力混凝土用钢绞线检验操作规程 1 总则 1.0.1 预应力混凝土用钢绞线检验依据标准为《预应力混凝土用钢绞线》(GB/T5224—2003)。为统一山东地区预应力混凝土用钢绞线的检测方法,保证检测精度,制定本规程。 1.0.2 本规程规定了预应力混凝土用钢绞线的分类、技术要求、试验方法等。本规程适用于由冷拉光圆钢丝及刻痕钢丝捻制的用于预应力混凝土结构的钢绞线(以下简称钢绞丝)。 2 术语、符号 2.1 术语 2.1.1 标准型钢绞线 由冷拉光圆钢丝捻制成的钢绞线。 2.1.2 刻痕钢绞线 由刻痕钢丝捻制成的钢绞线。 2.1.3 模拔型钢绞线 捻制后再经冷拔成的钢绞线。 2.1.4 公称直径 钢绞线外接圆直径的名义尺寸。 2.1.5 稳定化处理 为减少应用时的应力松弛,钢绞线在一定张力下进行的短时热处理。 2.2 符号 D——钢绞线直径; n S——钢绞线参考截面积; n R m ——钢绞线抗拉强度; F m ——整根钢绞线的最大力; F p0.2 ——规定非比例延伸力; A gt ——最大力总伸长率; ΔF a——应力范围(两倍应力幅)的等效负荷值; D ——偏斜拉伸系数。 3 分类和标记 3.1 分类与代号 钢绞线按结构分为5类。其代号为: 用两根钢丝捻制的钢绞线1×2 用三根钢丝捻制的钢绞线1×3 用三根刻痕钢丝捻制的钢绞线1×3Ⅰ 用七根钢丝捻制的标准型钢绞线1×7 用七根钢丝捻制又经模拔的钢绞线(1×7)C

3.2 标记 3.2.1 标记内容包含下列内容: 预应力钢绞线,结构代号,公称直径,强度级别,标准号 3.2.2 标记示例 公称直径为15.20mm,强度级别为1860MPa的七根钢丝捻制的标准型钢绞线其标记为:预应力钢绞线1×7-15.20-1860-GB/T5224—2003 4 检验规则 4.1 检查和验收 产品的检查由供方技术监督部门按表4.3.1的规定进行,需方可按本标准进行检查验收。 4.2 组批规则 钢绞线应成批验收,每批钢绞线由同一牌号、同一规格、同一生产工艺捻制的钢绞线组成。每批质量不大于60吨。 4.3 检验项目及取样数量 4.3.1 钢绞线的检验项目及取样数量应符合下表4.3.1的规定。 表4.3.1 供方出厂常规检验项目及取样数量 4.3.2 设备有重大变化及新产品生产、停产后复产时进行检验。 4.4 复验与判定规则 当4.3.1中规定的某一项检验结果不符合本规程规定时,则该盘卷不得交货。并从同一批未经试验的钢绞线盘卷中取双倍数量的试样进行该不合格项目的复验,复验结果即使有一个试样不合格,则整批钢绞线不得交货,或进行逐盘检验合格后交货。供方有权对复验不合格产品进行重新组批提交验收。 5 尺寸、外形、重量及允许偏差 5.1 预应力钢绞线的截面形状如附录A中图1、图2、图3所示。

SUS304不锈钢高温力学性能的物理模拟

304 不锈钢高温力学性能的物理模拟 关小霞田建军杨健 指导教师:杨庆祥胡宏彦博士 燕山大学材料科学与工程学院 摘要:采用Gleeble-3500热模拟试验机对304 不锈钢的高温力学性能进行了物理模拟。对模拟结果中应力-应变曲线进行分析,并结合断口附近组织形貌的观察,得出结论:金属的极限应力随温度升高呈下降趋势;在δ-Fe向γ-Fe转变的某一温度,金属塑性急剧下降;对断口附近金相组织及SEM分析,推测晶界处可能存在着元素偏聚或析出相现象。 关键词:304不锈钢;力学性能;物理模拟 1.前言: 双辊铸轧不锈钢薄带技术是目前冶金及材料领域的前沿技术之一[1],是直接用钢水制成2-5mm厚薄带的工艺过程。该技术可以大大简化薄带钢的生产流程,降低生产成本,并形成低偏析、超细化的凝固组织,从而使带材具有良好的性能,被公认为钢铁工业的革命性技术[2、3]。但是,不锈钢经铸轧后,薄带表面会形成宏观的裂纹,从而降低不锈钢薄带的力学性能,影响其质量[4-6]。 国内外在双辊铸轧不锈钢薄带技术上已经开展了一些研究工作。文献[7]对比了铸轧铁素体和奥氏体不锈钢薄带;文献[8、9]对铸轧304不锈钢薄带过程中高温铁素体的溶解动力学进行了研究;文献[10]对不锈钢薄带铸轧过程中凝固热参数和组织进行了研究;文献[11-14]对不锈钢薄带铸轧过程中的流场和温度场进行了数值模拟;文献[15]对铸轧304不锈钢薄带的力学性能进行了研究。文献[16]对304不锈钢在加热过程中的高温铁素体形核与长大和夹杂物在固-液界面的聚集进行了原位观察;文献[17]对薄带铸轧溶池液面进行了物理模拟;文献[18]对铸轧不锈钢薄带过程的凝固组织、流场、温度场及热应力场进行了数值模拟。但是,缺少对铸轧不锈钢薄带表面与内部裂纹的生成机理、演变规律以及预防措施方面的研究。 在高温性能物理模拟方面,国内外也有不少研究。文献[19]应用THERMECMASTOR-Z热加工模拟机对奥氏体不锈钢的高温热变形进行了模拟试验;文献[20]利用Gleeble-1500试验机对铸态奥氏体不锈钢在1000-1200℃温度区间进行了热压缩试验;文献[21]从位错理论角度出发,对高钼不锈钢热加工特征与综合流变应力模型进行了研究。但是,对铸轧不锈钢薄带高温力学性能的物理模拟方面的研究却极少。

钢管力学性能

钢管力学性能 力学性能 钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。 ①抗拉强度(σb) 试样在拉伸过程中,在拉断时所承受的最大力(Fb),出以试样原横截面积(So)所得的应力(σ),称为抗拉强度(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为: 式中:Fb--试样拉断时所承受的最大力,N(牛顿); So--试样原始横截面积,mm2。 ②屈服点(σs) 具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为N/mm2(MPa)。 上屈服点(σsu):试样发生屈服而力首次下降前的最大应力;下屈服点(σsl):当不计初始瞬时效应时,屈服阶段中的最小应力。 屈服点的计算公式为: 式中:Fs--试样拉伸过程中屈服力(恒定),N(牛顿)So--试样原始横截面积,mm2。 ③断后伸长率(σ) 在拉伸试验中,试样拉断后其标距所增加的长度与原标距长度的百分比,称为伸长率。以σ表示,单位为%。计算公式为: 式中:L1--试样拉断后的标距长度,mm; L0--试样原始标距长度,mm。 ④断面收缩率(ψ) 在拉伸试验中,试样拉断后其缩径处横截面积的最大缩减量与原始横截面积的百分比,称为断面收缩率。以ψ表示,单位为%。计算公式如下: 式中:S0--试样原始横截面积,mm2; S1--试样拉断后缩径处的最少横截面积,mm2。 ⑤硬度指标 金属材料抵抗硬的物体压陷表面的能力,称为硬度。根据试验方法和适用范围不同,硬度又可分为布氏硬度、洛氏硬度、维氏硬度、肖氏硬度、显微硬度和高温硬度等。对于管材一般常用的有布氏、洛氏、维氏硬度三种。 A、布氏硬度(HB) 用一定直径的钢球或硬质合金球,以规定的试验力(F)压入式样表面,经规定保持时间后卸除试验力,测量试样表面的压痕直径(L)。布氏硬度值是以试验力除以压痕球形表面积所得的商。以HBS(钢球)表示,单位为N/mm2(MPa)。 其计算公式为: 式中:F--压入金属试样表面的试验力,N; D--试验用钢球直径,mm; d--压痕平均直径,mm。 测定布氏硬度较准确可靠,但一般HBS只适用于450N/mm2(MPa)以下的金属材料,对于较硬的钢或较薄的板材不适用。在钢管标准中,布氏硬度用途最广,往往以压痕直径d来表示该材料的硬度,既直观,又方便。 举例:120HBS10/1000130:表示用直径10mm钢球在1000Kgf(9.807KN)试验力作用下,保持3 0s(秒)测得的布氏硬度值为120N/ mm2(MPa)。

(新)耐热钢及高温合金_

耐热钢及高温合金 耐热钢及高温合金 各种动力机械,加热电站中的锅炉和蒸汽轮机、航空和舰艇用的燃汽轮机以及原子反应堆工程等结构中的许多结构件是在高温状态下工作的。工作温度的升高,一方面影响钢的化学稳定性;另一方面降低钢的强度。为此,要求钢在高温下应具有 (1)抗蠕变、抗热松弛和热疲劳性能及抗氧化能力 (2)在一定介质中耐腐蚀的能力以及足够的韧性 (3)具有良好的加工性能及焊接检 (4)按照不同用途有合理的组织稳定性。 耐热钢是指在高温下工作并具有一定强度和抗氧化耐腐蚀能力的钢种,耐热钢包括热稳定钢和热强钢。热稳定钢是指在高温下抗氧化或执高温介质腐蚀而不破坏的钢种,如炉底板、炉栅等。它们工作时的主要失效形式是高温氧化。而单位面积上承受的载荷并不大。热强钢是指在高温下有一定抗氧化能力并具有足够强度而不产生大量变

形或 断裂的钢种,如高温螺栓、涡轮叶片等。它们工作时要求承受较大的载荷,失效的主要原因是高温下强度不够。 1 钢的热稳定性和热稳定钢 一、钢的抗氧化性能及其提高途径 工件与高温空气、蒸汽或燃气相接肽表面要发生高温氧化或腐蚀破坏。因此,要求工件必须具备较好的热稳定性。 除了加入合金元素方法外,目前还采用渗金属的方法,如渗Cr、渗Al或渗Si,以提高钢的抗氧化性能。 二、热稳定钢 热稳定钢(又称抗氧化钢广泛用于工业锅炉中的构件,如炉底板、马弗罐、辐射管等这种用途的热稳定钢有铁素体F型热稳定钢和奥氏体A型热稳定钢两类。 F型热稳定钢是在F不锈钢的基础上进行抗氧化合金化而形成的钢种、具有单相F基体,表面容易获得连续的保护性氧化膜。根据使用

温度,可分为Cr13型钢、Cr18型钢和Cr25型钢等。F型热稳定钢和F不锈钢一样,因为没有相变,所以晶粒较粗大,韧性较低,但抗氧化性很强。 A型热稳定钢是在A型不锈钢的基础上进一步经Si、Al抗氧化合金化而形成的钢种。A型热稳定钢比F型热稳定钢具有更好的工艺性能和热强性。但这类钢因消耗大量的Cr、Ni资源,故从50年代起研究了Fe-Al-Mn系和Cr-Mn-N系热稳定钢,并已取得了一定进展。 2 金属的热强性 一、高温下金属材料力学性能特点 在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性。热强性系指耐热钢在高温和载荷共同作用下抵抗塑性变形和破坏的能力。由此可见在评定高温条件下材料的力学性能时,必须用热强性来评定。热强性包括材料高温条件下的瞬时性能和长时性能。 瞬时性能是指在高温条件下进行常现力学性能试验所测得的性能指标。如高温拉伸、高温冲击和高温硬度等。其特点是高温、短时加载,一般说来瞬时性能P是钢热强性的一个侧面,所测得的性能指标一般

耐热钢性能与材质

材料名称:耐热钢铸件 牌号:ZG35Cr26Ni12 标准:GB 8492-87 ●特性及适用范围: 最高使用温度为1100℃,高温强度高,抗氧化性能好,在规格范围内调整其成分,可使组织内含有一些铁素体,也可为单相奥氏体。能广泛地用于许多类型的炉子构件,但不宜用于温度急剧变化的地方 ●化学成份: 碳C :0.20~0.50 硅Si:≤2.00 锰Mn:≤2.00 硫S :≤0.04 磷P :≤0.04 铬Cr:24.0~28.0 镍Ni:11.00~14.00 ●力学性能: 抗拉强度σb (MPa):≥490 条件屈服强度σ0.2 (MPa):≥235 伸长率δ(%):≥8 ●热处理规范及金相组织: 热处理规范:铸件不经热处理,若有需要,由供需双方协定。 ●交货状态: 铸态 材料名称:耐热钢铸件 牌号:ZG40Cr25Ni20 标准:GB 8492-87 ●特性及适用范围: 最高使用温度为1150℃,具有较高的蠕变和持久强度,抗高温气体腐蚀能力强,常用于作炉辊、辐射管、钢坯滑板、热处理炉炉辊、管支架、制轻转化管、乙烯裂介管以及需要较高蠕变强度的零件。 ●化学成份: 碳C :0.35~0.45 硅Si:≤1.50 锰Mn:≤1.75 硫S :≤0.04 磷P :≤0.04 铬Cr:23.0~27.0 镍Ni:19.00~22.00 钼Mo:≤0.50 ●力学性能: 抗拉强度σb (MPa):≥440

条件屈服强度σ0.2 (MPa):≥235 伸长率δ(%):≥8 ●热处理规范及金相组织: 热处理规范:铸件不经热处理,若有需要,由供需双方协定。 ●交货状态: 铸态 SUS314对应国标0Cr25Ni20Si2 特性: SUS314属于奥氏体型耐热耐腐蚀性不锈钢材料,具有所有奥氏体不锈钢的性能,另外还具有耐高温抗氧化性强,所以又称为耐热钢的代表,因为含有2%的硅元素,所以为高级工程(化工设备、酸高温环境下使用)的首选不锈钢材料。应用:热处理工业、水泥制造等行业不可或缺的金属材料。 SUS314不锈钢 SUS314属于奥氏体不锈钢,化学成分是: C Max:0.25%; Mn Max:2.00%; P Max:0.045%; S Max:0.030%; Si:Max:1.50-3.00%; Cr:23.00-26.00%; Ni:19.00-22.00%。

无缝钢管的力学性能计算公式

无缝钢管的力学性能计算公式 钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。 ①抗拉强度(σb)试样在拉伸过程中,在拉断时所承受的最大力(Fb), 出以试样原横截面积(So)所得的应力(σ),称为抗拉强度(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为:式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。 ②②屈服点(σs)具有屈服现象的金属材料,试样在拉伸过程中力不 增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为N/mm2(MPa)。 上屈服点(σsu):试样发生屈服而力首次下降前的最大应力;下屈服点(σsl):当不计初始瞬时效应时,屈服阶段中的最小应力。 屈服点的计算公式为:式中:Fs--试样拉伸过程中屈服力(恒定),N(牛顿)So--试样原始横截面积,mm2。 ③③断后伸长率(σ)在拉伸试验中,试样拉断后其标距所增加的长 度与原标距长度的百分比,称为伸长率。以σ表示,单位为%。计算公式为:式中:L1--试样拉断后的标距长度,mm;L0--试样原始标距长度,mm。

④④断面收缩率(ψ)在拉伸试验中,试样拉断后其缩径处横截面积 的最大缩减量与原始横截面积的百分比,称为断面收缩率。以ψ表示,单位为%。计算公式如下:式中:S0--试样原始横截面积,mm2; S1--试样拉断后缩径处的最少横截面积,mm2。 ⑤⑤硬度指标金属材料抵抗硬的物体压陷表面的能力,称为硬度。 根据试验方法和适用范围不同,硬度又可分为布氏硬度、洛氏硬度、维氏硬度、肖氏硬度、显微硬度和高温硬度等。对于管材一般常用的有布氏、洛氏、维氏硬度三种。A、布氏硬度(HB)用一定直径的钢球或硬质合金球,以规定的试验力(F)压入式样表面,经规定保持时间后卸除试验力,测量试样表面的压痕直径(L)。布氏硬度值是以试验力除以压痕球形表面积所得的商。以HBS(钢球)表示,单位为N/mm2(MPa)。其计算公式为:式中:F--压入金属试样表面的试验力,N;D--试验用钢球直径,mm;d--压痕平均直径,mm。测定布氏硬度较准确可靠,但一般HBS只适用于 450N/mm2(MPa)以下的金属材料,对于较硬的钢或较薄的板材不适用。在钢管标准中,布氏硬度用途最广,往往以压痕直径d来表示该材料的硬度,既直观,又方便。举例:120HBS10/1000130:表示用直径10mm钢球在1000Kgf(9.807KN)试验力作用下,保持30s(秒)测得的布氏硬度值为120N/ mm2(MPa)。无缝钢管

钢绞线公称直径

钢绞线公称直径、公称截面面积及理论重量 2011-08-29 14:41来源:我的钢铁网试用手机平台资讯监督 钢绞线(STRAND WIRE) 1.概述 (1)定义:用配制好的钢丝在机器上按规定一次多根捻制成绞线称钢绞线。 (2)种类和用途:钢绞线根据配制的钢丝不同及用途不同可分为:镀锌钢绞线,预应力混凝土用钢绞线,铝包钢绞线。 ①镀锌钢绞线:镀锌钢绞线主要用于吊架、悬挂、通讯电缆、架空电力线以及固定物件、拴系等。a、根据镀锌钢绞线的断面结构可分为三种:1×3、1×7、1×19,如图6—7-4所示;b、根据镀锌钢绞线公称抗拉强度的不同,镀锌钢绞线可以分为1175、1270、1370、1470和1570(N/mm2),共5级。c、根据镀锌钢绞线内钢丝锌层厚度的不同,镀锌钢绞线可以分为a(特厚)级、B(厚)级、C(薄)级。 镀锌绞线的断面结构:

②预应力混凝土用钢绞线:预应力钢绞线是由圆形断面钢丝捻成的做预应力混凝土结构、岩土锚固等用途的钢绞线。a、根据预应力钢绞线的捻制结构分为1×2、1×3、1×7三种,如图所示。b、根据应力松弛性能分为Ⅰ级(普通松弛级),Ⅱ级(低松弛级)。 预应力钢绞线的捻制结构: Dk——钢绞线直径,mm;d0——中心钢丝直径,mm; d——外层钢丝直径,mm;A——1×3结构钢绞线测量尺寸,mm。1×2结构钢绞线: ②预应力混凝土用钢绞线: 1×7结构钢绞线: ③铝包钢绞线:铝包钢绞线主要用于架空电力线路的地线和导线及电气化线路承力索。根据结构可分为四种:1×3,1×7,1×19,1×37(见

图)。 铝包钢绞线结构: 2.规格及外观质量 (1)捻制镀锌钢绞线的钢丝表面应镀一层均匀、连续的锌,不得有斑疤、裂缝和缺镀等缺陷。镀锌钢绞线内各钢丝应紧密绞合,不应有交错、断裂和折弯等。钢绞线直径和捻距应均匀,切断后不松散。 (2)预应力钢绞线表面不得带有润滑剂、油渍等降低钢绞线与混凝土粘结力的物质。钢绞线表面允许有轻微的浮锈,但不得锈蚀成肉眼可见的麻坑。 (3)铝包钢绞线表面应光滑,不允许有露钢现象。绞合应均匀紧密,不应有缺丝、断丝、松股、破皮等现象,切断后应不松散。 3.化学成分检验 (1)钢绞线的化学成分一般不作规定。由于用作生产钢丝的各种规格、牌号的盘条已检验化学成份,并符合国家标准。 (2)镀锌钢绞线的单丝规定有锌层重量。如GB1200?88和YB/T5004?93对直径1.00mm的镀锌单丝规定,见表: 镀锌单位的锌经重量 钢丝直径(mm) :1.00

耐热钢铸件 耐热钢

耐热钢铸件耐热钢 耐热钢铸件工业使用耐热钢总论 耐热钢是指在高温下工作的钢材。耐热钢铸件的发展与电站、锅炉、燃气轮机、内燃机、航空发动机等各工业部门的技术进步密切相关。由于各类机器、装置使用的温度和所承受的应力不同,以及所处环境各异,因此所采用的钢材种类也各不相同。这里所谈的温度是个相对的概念。最早在锅炉和加热炉中使用的材料是低碳钢,使用的温度一般在200℃左右,压力仅为0.8MPa。直到现在使用的锅炉用低碳钢,如20g,使用温度也不超过450℃,工作压力不超过6MPa。随着各类动力装置的使用温度不断提高,工作压力迅速增加,现代耐热钢的使用温度已高达700℃,使用的环境也变得更加复杂与苛刻。现在,耐热钢铸件的使用温度范围为200~1300℃,工作压力为几兆帕到几十兆帕,工作环境从单纯的氧化气氛,发展到硫化气氛、混合气氛以及熔盐和液金属等更复杂的环境。 为了适应各种工作条件不断发展的要求,耐热钢铸件也在不断地发展。从最早期的低碳钢、低合金钢,到成分复杂的、多元合金化的高合金耐热钢。 现按珠光体型低合金热强钢、马氏体型热强钢、阀门钢、铁素体型耐热钢、奥氏体型耐热钢、等分别介绍如下。 1)珠光体型低合金热强钢 该种钢的代表:12Cr1MoV此种钢组织稳定性较好,当温度高达580℃时仍具有良好的热强性。 2)马氏体型热强钢 该种钢的代表:Cr12型马氏体热强钢,有优良的综合力学性能、较好的热强性、耐蚀性及振动衰减性,广泛用于制造汽轮机叶片而形成独特的叶片钢系列,并广泛用作气缸密封环、高温螺栓、转子和锅炉过热器、在热器管、燃气轮机涡轮盘、叶片、压缩机及航空发动机压气机叶片、轮盘、水轮机叶片及宇航导弹部件等。Cr12型耐热钢的开发与应用已有60多年历史,至少已有300余种牌号。但其成分的差别不大,都是以Cr12钢为基础在添加钨、钼、钒、镍、铌、硼、氮、钛、钴等元素含量上做些变化。 3)阀门钢 阀门钢是耐热钢的一个重要分支,该种钢的代表:21Cr-9Mn-4Ni-N钢(21-4N),与21Cr-12NiN、 14Cr-14Ni2W-Mox相比,性能优越较经济,在汽油机排气阀门上迅速得到广泛应用。在21-4N钢基础上添加硫改善切削性能形成了21-4NS。添加铌、钼、钨和钒,提高了高温强度、疲劳强度和耐磨性,开发了 21-4WNbN,X60CrMnMoVNbN2110钢。 4)铁素体型耐热钢 在室温和使用温度条件下这类钢的组织为铁素体。这类钢铬含量高于12%,不含镍,只含有少量的硅、钛、钼、铍等元素。 5)奥氏体型耐热钢 该种钢的代表:18Cr-8Ni、25Cr-20Ni及Cr-Mn-N、Fe-Mn-Al等钢。这类钢在高温下具有较高的热强性,及优异的抗氧化性。一般制作用于600℃以上承受较高应力的部件,其抗氧化性温度可达850~1250℃。这类钢基本上是和不锈钢同时发展起来的,有些钢同时就是优异的奥氏体型不锈钢。 我国在奥氏体型钢方面,除仿制和生产了大量国外耐热钢牌号外,多年来还开发了Cr-Mn-N、Cr-Mn-Ni-N、Cr-Ni-N及Fe-Al-Mn和Cr-Mn-Al-Si系耐热钢。Cr18Mn12Si2N、Cr20Mn9Ni2Si2N及 3Cr24Ni7SiNRe列入国家标准推广应用。 铸造耐热钢在耐热钢领域中占有相当大的比重。20世纪70~80年代以来,由于石油化学工业的飞速发展,在大型合成氨及乙烯装置中采用了大量的高合金耐热铸钢,其使用温度可达1150℃,开发了一系列 Fe-Cr-Ni基耐热钢及耐热合金。如4Cr25Ni35Co15W、4Cr25Ni35WNb、5Cr28Ni48W5等。一些发达国家早在20世纪30年代就制定了耐热铸钢标准。1987年,我国建立了第一个耐热铸钢国家标准。 6)沉淀硬化型耐热钢

钢绞线理论重量

1.概述 (1)定义:用配制好的钢丝在机器上按规定一次多根捻制成绞线称钢绞线。 (2)种类和用途:钢绞线根据配制的钢丝不同及用途不同可分为:镀锌钢绞线,预应力混凝土用钢绞线,铝包钢绞线。 ①镀锌钢绞线:镀锌钢绞线主要用于吊架、悬挂、通讯电缆、架空电力线以及固定物件、拴系等。a、根据镀锌钢绞线的断面结构可分为三种:1×3、1×7、1×19,如图6—7-4所示;b、根据镀锌钢绞线公称抗拉强度的不同,镀锌钢绞线可以分为1175、1270、1370、1470和1570(N/mm2),共5级。c、根据镀锌钢绞线内钢丝锌层厚度的不同,镀锌钢绞线可以分为a(特厚)级、B(厚)级、C(薄)级。 镀锌绞线的断面结构: ②预应力混凝土用钢绞线:预应力钢绞线是由圆形断面钢丝捻成的做预应力混凝土结构、岩土锚固等用途的钢绞线。a、根据预应力钢绞线的捻制结构分为1×2、1×3、1×7三种,如图所示。b、根据应力松弛性能分为Ⅰ级(普通松弛级),Ⅱ级(低松弛级)。 预应力钢绞线的捻制结构:

Dk——钢绞线直径,mm;d0——中心钢丝直径,mm; d——外层钢丝直径,mm;A——1×3结构钢绞线测量尺寸,mm。1×2结构钢绞线: ②预应力混凝土用钢绞线: 1×7结构钢绞线: ③铝包钢绞线:铝包钢绞线主要用于架空电力线路的地线和导线及电气化线路承力索。根据结构可分为四种:1×3,1×7,1×19,1×37(见图)。 铝包钢绞线结构:

2.规格及外观质量 (1)捻制镀锌钢绞线的钢丝表面应镀一层均匀、连续的锌,不得有斑疤、裂缝和缺镀等缺陷。镀锌钢绞线内各钢丝应紧密绞合,不应有交错、断裂和折弯等。钢绞线直径和捻距应均匀,切断后不松散。 (2)预应力钢绞线表面不得带有润滑剂、油渍等降低钢绞线与混凝土粘结力的物质。钢绞线表面允许有轻微的浮锈,但不得锈蚀成肉眼可见的麻坑。 (3)铝包钢绞线表面应光滑,不允许有露钢现象。绞合应均匀紧密,不应有缺丝、断丝、松股、破皮等现象,切断后应不松散。 3.化学成分检验 (1)钢绞线的化学成分一般不作规定。由于用作生产钢丝的各种规格、牌号的盘条已检验化学成份,并符合国家标准。 (2)镀锌钢绞线的单丝规定有锌层重量。如GB1200?88和YB/T500 4?93对直径1.00mm的镀锌单丝规定,见表: 镀锌单位的锌经重量 钢丝直径(mm) :1.00 锌层重量≥(g/mm2) :A:160 B:110 C:80

耐热钢

5.1.4.2 耐热钢 耐热钢是指在高温下有良好的化学稳定性和较高强度,能较好适应高温条件的特殊合金钢。主要用于制造工业加热炉、内燃机、石油及化工机械与设备等高温条件工作的零件。 (1)耐热性的概念 钢的耐热性包括热化学稳定性和高温强度两方面的涵义。 热化学稳定性是指钢在高温下抵抗各类介质的化学腐蚀的能力,其中最基本且最重要的是抗氧化性。热化学稳定性主要由钢的化学成分决定。在钢中加人Cr、Al和Si对提高抗氧化能力有显著的效果,因为Cr、Al和Si在高温氧化时能与氧形成一层完整致密具有保护性的Cr2O3,A12O3或SiO2氧化膜。其中Cr 是首选的合金元素,当钢中WCr≈15%时,钢的抗氧化温度可达900℃;WCr ≈20%~25%时,钢的抗氧化温度可达1100℃。稀土(少量的钇、铈等)元素也能提高耐热钢的抗高温氧化的能力。这主要是由于稀土氧化物除了能改善氧化膜的抗氧化性能外,还能改善氧化膜与金属表面的结合力。在钢的表面渗铝、渗硅或铬铝、铬硅共渗都有显著的抗氧化能力。 高温强度是指钢在高温下抵抗塑性变形和断裂的能力。常用蠕变极限和持久强度这两个力学性能指标来考核。通过在钢中加入Cr、Ni、W、Mo等元素形成固溶体,强化基体,提高再结晶温度,增加基体组织稳定性;加入V、Ti、Nb、Al等元素,形成硬度高、热稳定性好的碳化物,阻止蠕变的发展,起弥散强化的作用;微量B与稀土(RE)元素,强化晶界等措施可提高钢的高温强度。 (2)常用耐热钢 按使用特性不同,耐热钢分为以抗氧化性为主要使用特性的抗氧化钢和以高温强度为主要使用特性的热强钢。 ①抗氧化钢抗氧化钢大多数是在碳质量分数较低的高Cr钢、高CrNi钢或高Cr—Mn 钢基础上添加适量Si或Al配制而成的,主要有铁素体型和奥氏体型两类。铁素体型抗氧化钢,如1Crl3SiAl,其最高使用温度900℃,常用作喷嘴、退火炉罩等。奥氏体型抗氧化钢,如2Cr20Mn9Ni2Si2N和3Crl8Mnl2Si2N 钢具有良好的抗氧化性能(最高使用温度可达1000℃、抗硫腐蚀和抗渗碳能力,还具有良好的铸造性能,所以常用于制造铸件,还可进行剪切、冷热冲压和焊接。

不锈钢和耐热钢

、不锈钢: 按成分可分为Cr系(400系列)、Cr—Ni系(300系列)、Cr- Mn —Ni (200 系列)及析出硬化系(600系列)。 200系列一铬-镍-锰奥氏体不锈钢 300系列一铬-镍奥氏体不锈钢301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。302 —耐腐蚀性同304,由于含碳相对要高因而强度更好。303—通过添加少量的硫、磷使其较304更易切削加工。304 —即18/8不锈钢。GB牌号为 0Cr18Ni9。 309—较之304有更好的耐温性。316—继304之后,第二个得到 最广泛应用的钢种,主要用于食品工业、制药行业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。型号321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类似304。 400系列一铁素体和马氏体不锈钢。408—耐热性好,弱抗腐蚀性,11% 的Cr,8%的Ni。409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。410—马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。416 —添加了硫改善了材料的加工性能。420—“刃具级”马氏体钢,类似布氏高 铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。430—铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和抗腐蚀性要差。 440—高强度刃具钢,含碳稍高,经过适当的热处理后可以获得较高屈 服强度,硬度可以达到58HRC,属于最硬的不锈钢之列。最常见的应用例子就是“剃须刀片”。常用型号有三种:440A、440B、440C,另外还有440F (易加工型)。 500系列一耐热铬合金钢。 600系列一马氏体沉淀硬化不锈钢。不锈钢630—最常用的沉淀硬化不 锈钢型号,通常也叫17-4;17%Cr, 4%Ni。 “不锈钢” 一词不仅仅是单纯指一种不锈钢,而是表示一百多种工业不锈钢,所开发的每种不锈钢都在其特定的应用领域具有良好的性能。成功的关键首先是 要弄清用途,然后再确定正确的钢种。有关不锈钢的进一步详细情况可参见由NiDI编制的"不锈钢指南"软盘。幸而和建筑构造应用领域有关的钢种通常只有六种。它们都含有17?22%的铬,较好的钢种还含有镍。添加钼可进一步改善大气腐蚀性,特别是耐含氯化物大气的腐蚀。 二耐热钢: 耐热钢是指在高温下工作的钢材。耐热钢的发展与电站、锅炉、燃气轮机、内燃机、航空发动机等各工业部门的技术进步密切相关。由于各类机器、装置使 用的温度和所承受的应力不同,以及所处环境各异,因此所采用的钢材种类也各不相同。这里所谈的温度是个相对的概念。最早在锅炉和加热炉中使用的材料是低碳钢,使用的温度一般在200E左右,压力仅为0.8MPa。知道现在使用的锅炉用低碳钢,如20g,使用温度也不超过450C,工作压力不超过6MPa。随着各类动力装置的使用温度不断提高,工作压力迅速增加,现代耐热钢的使用温度已高达700C,使用的环境也变得更加复杂与苛刻。现在,耐热钢的使用温度范围为200?800°C,工作压力为几兆帕到几十兆

(完整版)珠光体耐热钢

1.2关于珠光体耐热钢的研究 珠光体耐热钢在化工、石油设备中主要用于炉管、热交换器和其它受热面管子、高压加氢设备中的各种管道和高温紧固件。 1.2.1珠光体耐热钢的特点 珠光体耐热钢除碳钢外,大多是含有铬、钼元素,少数的还含有钒元素,但含量都不大,所以当加热、冷却时都能发生a γ相的转变。经正火后,容易得到珠光体组织,因此,这类钢称为珠光体耐热钢。 作为石油化工热交换器和锅炉用钢,除了要求有较好的耐热性外,还要求有很好的焊接性能和冷加工性能,为此,这类钢应具有良好的塑性。因此,其化学成分中含碳量都很低,其中钢管的含碳量要求更低,一般在0.1~0.15%C之间;钢板为0.20~0.30%C之间,最多不能超过0.30%C。 这类钢作为耐热钢,其耐热性虽然比奥氏体钢低,但它有许多优点: 1) 这类钢合金元素少,价格比较便宜; 2) 冷、热加工性能和焊接性能较好,热膨胀系数低,导热性能强,从而可 避免焊接时引起局部过热和产生较大的应力; 3) 热处理工艺简单,一般为正火加回火,能改善机械性能,也能利用热处 理细化组织。 但这类钢耐热性较差,它的工作温度一般不超过550~580℃。 1.2.2珠光体耐热钢的组织稳定性 在高温、应力长期作用下,由于扩散过程加快,钢的组织将逐渐发生变化。由于组织的不稳定性将引起钢的性能的变化,特别是对钢的热强性、松弛稳定性等性能都会带来不利的影响。珠光体耐热钢在高温长期工作条件下常见的组织不稳定现象有: 1.2.2.1石墨化 钢在高温、应力长期作用下,由于珠光体内渗碳体分解为游离石墨的现象称为石墨化。低碳钢当温度于450℃以上,含0.5%Mo的钢在500℃左右长期工作时,都可能发生石墨化,此时,钢脆化,强度与塑性降低,可导致爆管等事故。对由于长期过热导致爆管的20钢分析发现,其石墨化已达三级。一般钢发生石墨化的时间约需几万小时。防止0.5%Mo钢石墨化的最有效方法是实行进一步的合金化。在钢中加入铬、钒、铌等强碳化物形成元素能有效地阻止石墨化。 1.2.2.2珠光体球化 低合金珠光体型耐热钢在高温和应力长期作用下,珠光体组织中片状渗碳体逐渐自发地趋向形成球状渗碳体,并慢慢聚集长大。该现象称为珠光体球化。文献[5]对碳化物的球化过程和机理进行了探讨。影响球化的主要因素是温度、时间和化学成分。 实践表明,低合金耐热钢中加入铬、钼、钨、钒、铌等合金元素能显著地减弱其球化过程。这些合金元素的单个加入或复合加入后都能起到良好的作用。其原因是,它们能减弱碳在α固溶体中的扩散,同时这些合金元素又能与碳形成稳定的碳化物。 1.2.2.4蠕变过程中析出相类型的转变 在高温和应力条件下长期作用下,由于珠光体中Fe3C的分解,固溶体内合金元素向碳化物过渡以及碳在α固溶体内扩散过程加速进行,会引起在蠕变过程中碳化物相析出类型发生变化,从而影响钢的热强性。 文献[7-13]对低合金铬钼钢和铬钼钒钢长期服役后的碳化物相进行了研究,

钢绞线公称直径公称截面面积及理论重量

钢绞线(STRAND WIRE) 1.概述 (1)定义:用配制好的钢丝在机器上按规定一次多根捻制成绞线称钢绞线。 (2)种类和用途:钢绞线根据配制的钢丝不同及用途不同可分为:镀锌钢绞线,预应力混凝土用钢绞线,绞线。 ①镀锌钢绞线:镀锌钢绞线主要用于吊架、悬挂、通讯电缆、架空电力线以及固定物件、拴系等。a、根据镀锌钢绞线的断面结构可分为三种:1×3、1×7、1×19,如图6—7-4所示;b、根据镀锌钢绞线公称抗拉强度的不同,镀锌钢绞线可以分为1175、1270、1370、1470和1570(N/mm2),共5级。c、根据镀锌钢绞线内钢丝锌层厚度的不同,镀锌钢绞线可以分为a (特厚)级、B(厚)级、C(薄)级。 镀锌绞线的断面结构: ②预应力混凝土用钢绞线:预应力钢绞线是由圆形断面钢丝捻成的做预应力混凝土结构、岩土锚固等用途的钢绞线。a、根据预应力钢绞线的捻制结构分为1×2、1×3、1×7三种,如图所示。b、根据应力松弛性能分为Ⅰ级(普通松弛级),Ⅱ级(低松弛级)。 预应力钢绞线的捻制结构:

Dk——钢绞线直径,mm;d0——中心钢丝直径,mm; d——外层钢丝直径,mm;A——1×3结构钢绞线测量尺寸,mm。 1×2结构钢绞线: ②预应力混凝土用钢绞线: 1×7结构钢绞线: ③铝包钢绞线:铝包钢绞线主要用于架空电力线路的地线和导线及电气化线路承力索。根据结构可分为四种:1×3,1×7,1×19,1×37(见图)。 铝包钢绞线结构: 2.规格及外观质量

(1)捻制镀锌钢绞线的钢丝表面应镀一层均匀、连续的锌,不得有斑疤、裂缝和缺镀等缺陷。镀锌钢绞线内各钢丝应紧密绞合,不应有交错、断裂和折弯等。钢绞线直径和捻距应均匀,切断后不松散。 (2)预应力钢绞线表面不得带有润滑剂、油渍等降低钢绞线与混凝土粘结力的物质。钢绞线表面允许有轻微的浮锈,但不得锈蚀成肉眼可见的麻坑。 (3)铝包钢绞线表面应光滑,不允许有露钢现象。绞合应均匀紧密,不应有缺丝、断丝、松股、破皮等现象,切断后应不松散。 3.化学成分检验 (1)钢绞线的化学成分一般不作规定。由于用作生产钢丝的各种规格、牌号的盘条已检验化学成份,并符合国家标准。 (2)镀锌钢绞线的单丝规定有锌层重量。如GB1200?88和YB/T5004? 93对直径1.00mm的镀锌单丝规定,见表: 镀锌单位的锌经重量 钢丝直径(mm) : 锌层重量≥(g/mm2) :A:160 B:110 C:80 试验方法按GB2973-91执行。 4.物理性能检验 (1)力学性能。

耐热钢的使用温度和特性

耐热钢的使用温度和特性[关闭] 各钢种最高使用温度及特性、用途举例 牌号(原牌号)最高使 用温 度℃ 特性及用途举例 ZG40Cr9Si2 800 高温强度低,抗氧化最高至800℃,长期工作的受载件的工作温度低于700℃,用户坩埚、炉门、底板等构件 ZG30Cr18Mn12Si2N 950 高温强度和抗疲劳性较好,用于炉罐、炉底板、料筐、传送带导轨、支承架吊架等炉用构件 ZG35Cr24Ni7SiN 1100 抗氧化性好,用于炉罐。通凤机叶片,热滑轨、炉底板、玻璃、水泥窑以及陶瓷窑构件 ZG20Cr26Ni5 (ZG3Cr26Ni5) 1050 承载情况下使用温度可达650℃,轻负荷时可达1050℃—870℃之间易析出σ相,可用于矿石焙烧炉,也可用于不需要高温强度的高硫环境下工作炉用构件 ZG30Cr20Ni10 (ZG3Cr20Ni10) 900 基本不形成σ相,可用于炼油厂加热炉、水泥干燥窑矿石焙烧炉和热处理炉构件 ZG35Cr26Ni12 1100 高温强度高,抗氧化性能好。在规格范围内调整其成分,可使组织内含有一些铁素体,也可为单相奥氏体。能广泛地用于多种炉子结构,但不宜用于温度急变的场合 ZG35Cr28Ni16 1150 高温强度高抗氧化性能。用途同ZG40Cr25Ni20 ZG40Cr25Ni20 (ZG4Cr25Ni20) 1150 具有较高地的蠕变和持久强度,抗高温气体腐蚀能力强,常用作炉矿,辐射管,钢坯滑板,热处理炉炉矿,管支架,制氢转化管,乙烯裂介管 ZG40Cr30Ni20 (ZG4Cr30Ni20) 1150 在高温含硫气体中耐腐蚀性好,用于气体分离装置、焙烧炉衬板 ZG35Ni24Cr18Si2 1100 用于加热炉传送带、螺杆、紧固件等高温承载件 ZG30Cr35Ni15 (ZG3Cr35Ni15) 1150 抗热疲劳性好,用于渗碳炉构件、热处理炉板、导轨、轮子、蒸馏器、辐射管、玻璃扎昆、搪瓷窑构件以及周期加热的紧固件 ZG45Ni35Cr26 1150 抗氧化及抗渗碳性好,高温强度高,用于乙烯裂介管、辐射管、弯管、接头、管支架、炉昆以及热处理用夹具等 ZG40Cr22Ni4N (ZG4Cr22Ni4N) ——用于1000℃以上炉用件ZG30Cr25Ni20 (ZG3Cr25Ni20) ——用于1000℃以上炉用件ZG20Cr20Mn9Ni2SiN (ZG20Cr20Mn9Ni2Si2N) ——用于连铸机吊架等 ZG08Cr18Ni12Mo2Ti (ZG0Cr18Ni12Mo2Ti) ——用于连铸机另件

相关主题
文本预览
相关文档 最新文档