当前位置:文档之家› 第10章 振动与波动(习题与答案)

第10章 振动与波动(习题与答案)

第10章  振动与波动(习题与答案)
第10章  振动与波动(习题与答案)

第10章 振动与波动

一. 基本要求

1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。

2. 掌握振幅、周期、频率、相位等概念的物理意义。

3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。

4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。

5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。

6. 理解机械波产生的条件。

7. 掌握描述简谐波的各物理量的物理意义及其相互关系。 8. 了解波的能量传播特征及能流、能流密度等概念。

9. 理解惠更斯原理和波的叠加原理。掌握波的相干条件。能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。

10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。

二. 内容提要

1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即

kx F -= 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为

x t

x 2

2

2d d ω-= 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即

)cos(?+ω=t A x

由它可导出物体的振动速度 )sin(?+ωω-=t A v 物体的振动加速度 )cos(?+ωω-=t A a 2

3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即

2

v ω+

=

20

20

x A 4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。周期与频率互为倒数,即

ν=

1T 或 T

1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、

频率的关系为 ω

π

=

2T 或 πν=ω2

6. 相位和初相 谐振动方程中(?+ωt )项称为相位,它决定着作谐振动的物体的状态。t=0时的相位称为初相,它由谐振动的初始条件决定,即

0x v ω-=

?tan

应该注意,由此式算得的?在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。

7. 旋转矢量法 作逆时针匀速率转动的矢量,其长度等于谐振动的振幅A ,其角速度等于谐振动的角频率ω,且t=0时,它与x 轴的夹角为谐振动的初相?,t=t 时刻它与x

轴的夹角为谐振动的相位?ω+t 。旋转矢量A

的末端在x 轴上的投影点的运动代表着质

点的谐振动。

8. 简谐振动的能量 作谐振动的系统具有动能和势能,其 动能 )(s i n ?+ωω==t A m m E k 22222121v 势能 )(c o s ?+ω==

t kA kx E p 22

22

121 机械能 2

2

1kA E E E p k =

+= 9. 两个具有同方向、同频率的简谐振动的合成 其结果仍为一同频率的简谐振动,合振动的振幅

)cos(12212

2212?-?++=A A A A A

初相 2

2112211?+??+?=

?cos cos sin sin tan A A A A

(1)当两个简谐振动的相差),,,( 210212±±=π=?-?k k 时,合振动振幅最大,为21A A +,合振动的初相为1?或2?。

(2)当两个简谐振动的相差),,,( )( 2101212±±=π+=?-?k k 时,合振动的振幅最小,为21A A -,合振动的初相与振幅大的相同。

10. 机械波产生的条件 机械波的产生必须同时具备两个条件:第一,要有作机械振动的物体——波源;第二,要有能够传播机械波的载体——弹性媒质。

11. 波长λ 在同一波线上振动状态完全相同的两相邻质点间的距离(一个完整波的长度),它是波的空间周期性的反映。

12. 周期与频率 波前进一个波长的距离所需的时间,它反映了波的时间周期性。周期的倒数称为频率,波源的振动频率也就是波的频率。

13. 波速u 单位时间里振动状态(或波形)在媒质中传播的距离,它与波源的振动速度是两个不同的概念。

波速u 、波长λ、周期T (频率ν)之间的关系为 uT =λ

14. 平面简谐波的波动方程 如果平面波沿x 轴正向传播,则其波动方程为

]

)(2 cos[ ])(2 cos[ ]

)([ cos 000?+λ

-π=?+λ-νπ=?+-ω=x

T t A x

t A u x

t A y

若波沿x 轴的负向传播,则其波动方程为

]

)(2 cos[ ])(2 cos[ ]

)([ cos 000?+λ

+π=?+λ+νπ=?++ω=x

T t A x

t A u x

t A y

其中0?为坐标原点的初相。

15. 波的能量 波动中的动能和势能之和,其特点是同体积元中的动能和势能相等: (1)在平衡位置处,动能最大,势能也最大; (2)在最大位移处,动能最小(为零),势能也最小(为零);

(3)当媒质质元从最大位移处回到平衡位置的过程中:它从相邻的一段媒质质元获得能量,其能量逐渐增加。

(4) 当媒质质元从平衡位置运动到最大位移处的过程中:它把自己的能量传给相邻的一段质元,其能量逐渐减小。

16. 波的干涉 满足相干条件(同频率、同振动方向且相位差恒定)的两列波的叠加,其规律是:

(1)若两列波的相位差),,,( 210221

212±±=π=λ-π-?-?=??k k r r 则合成振动的振幅有极大值:21A A A +=,为干涉加强(相长干涉)。

(2)若两列波的相位差),,,( )( 2101221

212±±=π+=λ

-?-?=??k k r r

合成振动的振幅有极小值:21A A A -=,为干涉减弱,当A 1=A 2时,相消干涉。 17. 驻波 无波形和能量传播的波称为驻波,它由两列同振幅的相干波在同一直线上沿相反方向传播时叠加而成,是波的干涉中的一个特例。其振幅随x 作周期变化,因而为分段的独立振动,有恒定的波腹和波节出现。

习 题

10-1 两倔强系数分别为k 1和k 2的轻弹簧串联在一起,下面接着质量为m 的物体,构成一个竖挂的弹簧谐振子,则该系统的振动周期为

(A )2

1212)

(2k k k k m T +=π (B )212k k m T +=π

(C )2121)(2k k k k m T +=π

(D) 2

122k k m

T +=π [ ]

10-2 一倔强系数为k 的轻弹簧截成三份,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示。则振动系统的频率为

(A)

m k

π21 (B) m

k

621π

(C)

m k 321π (D) m

k

321

π

[ ] 10-4 已知两个简谐振动如图所示。x 1的位相比x 2的位相

(A) 落后

(B) 超前

(C) 落后π (D)超前π

[ ]

10-5 一质点作简谐振动,周期为T ,当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为:

(A )

4T (B )12T

(C )6T (D )8

T

[ ]

10-7 一简谐振动曲线如图所示,则振动周期是: (A )2.62 s (B )2.40 s

(C )2.20 s (D )2.00 s [ ]

k

t

10-8 一弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为

T 1和T 2。将它们拿到月球上去,相应的周期分别为'1T 和'2T ,则有:

(A )'1T > T 1 且'2T > T 2 (B) '1T < T 1 且'

2T < T 2

(C) '1T = T 1 且'2T = T 2 (D) '1T = T 1 且'2T > T 2 [ ]

10-13 一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示,若t = 0时,

(1)振子在负的最大位移处,则初位相为 ; (2) 振子在平衡位置向正方向运动,则初位相为 ; (3) 振子在位移为

2

A

处,且向负方向运动,则初位相为 。 10-14 已知两个简谐振动的振动曲线如图所示,x 1的位相比x 2的位相超前 。

10-18 一质点作简谐振动,其振动曲线如图所示。根据此图,它的周期T= ,用余弦函数描述时,初位相?= 。

10-19 两个同方向同频率的简谐振动,其振动表达式分别为:

)2

1

5cos(10621π+?=-t x (SI),)5sin(10222t x -?=-π(SI)。

它们的合振动的振幅为 ;初位相为 。

10-22 一简谐振动的振动曲线如图所示,求振动方程。

x

22-

x (cm )

t(s)

t(s)

10-25 一质点同时参与两个同方向的简谐振动,其振动方程分别为:

)314cos(10521π+?=-t x ,)6

1

4sin(10322π-?=-t x (SI )

画出两振动的旋转矢量图,并求合振动的振动方程。

10-26 两个同方向的简谐振动的振动方程分别为:)8

1

(2cos 10421+?=-t x π,

)4

1

(2cos 10322+?=-t x π(SI )求合振动方程。

10-32 一质点按如下规律沿x 轴作简谐振动)3

28cos(1.0π

π-=t x (SI),求此振动的周期、振幅、初相、速度最大值和加速度最大值。

10-33 如图所示,一质量为m 的滑块,两边分别与倔强系数为k 1和k 2的轻弹簧联接,两弹簧的另外两端分别固定在墙上,滑块m 可在光滑水平面上滑动,O 点为系统平衡位置,将滑块m 向左移动到x 0,自静止释放,并从释放时开始计时,取坐标如图示,则其振动方程为:

(A )]cos[

2

10t m

k k x x += (B )])

(cos[212

10π++=t k k m k k x x

(C )]cos[2

10π++=t m

k k x x (D )]cos[

2

10π++=t m

k k x x [ ] 10-34一弹簧振子,当把它水平放置时,它作谐振动。若把它竖直放置或放在光滑斜面上,试判断下面那种情况是正确的:

(A )竖直放置作谐振动,放在光滑斜面上不作谐振动。 (B )竖直放置不作谐振动,放在光滑斜面上作谐振动。 (C )两种情况都作谐振动。

(D )两种情况都不作谐振动。 [ ]

10-36 两个同方向的谐振动曲线如图所示,合振动的振幅为 ,合振动的振动方程为 。

x (cm )

t

10-37有两个相同的弹簧,其倔强系数均为k 。⑴把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为 ,⑵把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为 。

10-41 已知一平面简谐波的波动方程为)cos(bx at A y -=,(a 、b 为正值),则 (A )波的频率为a 。 (B )波的传播速度为a

b

。 (C )波长为

b

π

。 (D )波的周期为

a

π

2。 [ ] 10-42 一沿x 轴负方向传播的平面简谐波在t = 2s 时的波形曲线如图所示,则原点O 的振动方程为:

(A ))2

1

cos(50.0ππ+=t y (SI )

(B ))2

121cos(50.0ππ-=t y (SI )

(C ))2

1

21cos(50.0ππ+=t y (SI )

(D ))2

141cos(50.0ππ+=t y (SI )[ ]

10-43 一平面简谐波以速度u 沿x 轴正方向传播,在t t '=时波形曲线如图所示。则坐标原点O 的振动方程为:

(A )]2

)(cos[π

+'-=t t b

u a y

(B )]2)(2cos[ππ-'-=t t b u a y (C )]2)(cos[π

π

+'-=t t b u a y (D )]2

)(cos[π

π-'-=t t b u a y [ ]

y u=1m/s

0.5

y

10-48 一平面简谐波沿x 轴正向传播,t = 0时刻的波形如图所示,则P 处质点的振动方程为:

(A ))31

t 4cos(10.0y p π+π= (SI ) (B ))3

1t 4cos(10.0y p π-π= (SI )

(C ))31

t 2cos(10.0y p π+π= (SI ) (D ))6

1

t 2cos(10.0y p π+π= (SI ) [ ]

10-49 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是:

(A )动能为零,势能最大。 (B )动能为零,势能为零。

(C )动能最大,势能最大。 (D )动能最大,势能为零。 [ ] 10-50 一平面简谐波在弹性媒质中传播,从媒质质元在最大位移处回到平衡位置的过程中:

(A )它的势能转化为动能。 (B )它的动能转化为势能。

(C )它从相邻的一段媒质质元获得能量,其能量逐渐增加。

(D )它把自己的能量传给相邻的一段质元,其能量逐渐减小。 [ ]

10-52如图所示,S 1与S 2是两相干波的波源,它们的振动方向均垂直于图面,发出波长为λ的简谐波,P 点是两列波相遇区域中的一点,已知P S 1=2λ,λ=2.2P S 2,两列波在P 点发生相消干涉,若S 1的振动方程为)2

1

2cos(1ππ+=t A y ,则S 2的振动方程为:

(A ))2

1

2cos(2ππ-

=t A y (B ))2cos(2ππ-=t A y (C ))2

1

2cos(2ππ+

=t A y (D ))1.02cos(2ππ-=t A y [ ] 10-53 在驻波中,两个相邻波节间各质点的振动:

(A )振幅相同,位相相同。 (B )振幅不同,位相相同。

(C )振幅相同,位相不同。 (D )振幅不同,位相不同。[ ]

y

S P

10-56 沿着相反方向传播的两列相干波,其波动方程为:)(2cos 1λ

πx

vt A y -

=,和

)(2c o s 2λ

πx

vt A y +=。叠加后形成的驻波中,波节的位置坐标为:

(A )λk x ±= (B )λk x 2

1±= (C )2)12(λ+±

=k x (D )4

)12(λ

+±=k x 。 其中k = 0、1、2、3…… [ ]

10-57 一余弦横波以速度u 沿x 轴正方向传播,t 时刻波形曲线如图所示。试分别指出图中A 、B 、C 各质点在t 时刻的运动方向。

A ;

B ;

C 。

10-58 一声波在空气中的波长是0.25m ,波的传播速度为340 m/s ,当它进入另一介质时波长变成了0.37m ,它在该介质中传播的速度为 。

10-59 已知波源的振动周期为21000.4-?s ,波的传播速度为300 m/s 波沿x 轴正方向传播,则位于m 0.10x 1=和m 0.16x 2=的两个质点振动的位相差为 。

10-61 图为4

T

t =时一平面简谐波的波形曲线,则其波动方程为 。

10-62在简谐波的一条传播路径上,相距0.2m 两点的振动位相差为2

π

。又知振动周

期为0.4s ,则波长为 ,波速为 。

10-68 一弦上的驻波表达式为)90cos()cos(1.0t x y ππ= (SI ).形成该驻波的两个反向传播的行波的波长为 ,频率为 .

x(m)

10-74 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν,波速为u .设t =t '时刻的波形曲线如图所示。求:

(1) x = 0处质点振动方程; (2)该波的波动方程.

10-75一横波方程为)x ut (2cos

A y -λ

π

=,

式中A =0.01m ,m 2.0=λ, s /m 25u =,求t = 0.1s 时在x = 2m 处质点振动的位移、速度、加速度.

10-80 如图所示,S 1与S 2为两平面简谐波相干波源,S 2的位相比S 1的位相超前π4

1

波长m 00.8=λ,m 0.12r 1= ,m 0.14r 2=,S 1在P 点引起的振动振幅为0.30 m ,S 2在P 点引起的振动振幅为0.20m ,求P 点的合振幅。

10-84一平面简谐波沿Ox 轴正方向传播,波动方程为)(2cos λ

νπx

t A y -

=,而另一

平面简谐波沿Ox 轴负方向传播,波动方程为)(2cos 2λ

νπx

t A y +=。

求:(1)4

λ

=x 处介质质点的合振动方程;

(2)4

λ

=

x 处介质质点的速度表达式。

10-85 如图所示,三个同频率,振动方向相同(垂直纸面)的简谐波,在传播过程中在O 点相遇;若三个简谐波各自单独在S 1 、S 2 和S 3 的振动方程分别为:)21

cos(1πω+=t A y ,t A y ωcos 2=和)2

1cos(23πω-=t A y .且S 2 O = 4λ,

S 1O = S 3 O =5λ,(λ为波长)。求:O 点的合振动方程。(设传播过程中各波振幅不变)。

y

P

S 2

S 1 S 2 S 3

10-86 一平面简谐波沿x 轴正方向传播u=100m /s , t = 0时刻的波形曲线如图所示。

波长λ= ; 振幅A= ; 频率ν= ;

10-89 一简谐波沿x 轴负方向传播,波的表达式为)2cos(02.0x t y ππ+= (SI).则 1x -=m 处P 点的振动方程为 。

10-90 如图,一平面简谐波沿Ox 轴传播,波动方程])(2cos[?λ

νπ+-=x

t A y ,求:

(1) P 处质点的振动方程:

(2) 该质点的速度表达式与加速度表达式。

10-95一列平面简谐波在媒质中以波速u=5m/s 沿x 轴正向传播,原点O 处质元的振动曲线如图所示,

⑴画出x=25m 处质元的振动曲线 ⑵画出t=3s 时的波形曲线。

10-97一波沿绳子传播,其波的表达式为)2100cos(05.0x t y ππ-=(SI) (1)求此波的振幅,波速,频率和波长。

(2)求绳子上各质点的最大振动速度和最大振动加速度。 (3)求x 1=0.2m 处和x 2=0.7m 处二质点振动的位相差

10-98一平面简谐波沿x 轴正向传播,t=0时刻的波形图如图所示,则P 处质点的振动在t=0时刻的旋转矢量图是[ ]

(m )

y(cm)

y(cm)

O ′ y y y

A ω O ′ O ′

(A ) (B ) (C ) (D )

第10章自测题

一、 选择题:

3. 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为: (A)

2kA (B)

2

2

1kA (C) 241kA (D) 0 [ ]

5. 图中所画的是两个简谐振动的振动曲线,若这两个简谐振动可叠加,则合成的余

弦振动的初相位为:

(A )π23

(B)π

(C)π2

1

(D) 0

[ ]

6. 当质点以频率ν作简谐振动时,它的动能的变化频率为

(A )ν (B ) 2ν (C ) 4ν (D )

ν2

1

[ ] 9.(本题3分)

在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )

(B )2λ (C )4

3λ (D )λ [ ] 二、填空题

12.(本题3分)

所示为一平面简谐波在t = 2s 时刻的波形图,波的振幅为0.2m ,周期为4s 。则图中P 处质点的振动方程为 。

13.(本题3分)

两个弹簧谐振子的周期都是0.4s ,设开始时第一个振子从平衡位置向负方向运动,经过0.5s 后,第二个振子才从正方向的端点开始运动,则这两振动周相差为 。 16.(本题3分)

已知平面简谐波的波动方程为)cos(Cx Bt A y -=,式中A 、B 、C 为正常数,则此的波长是 ;波速是 ;在传播方向上相距为d 的两点的振动位相差是 。

2A A

y

三、计算题

20.(本题5分)

质量为2kg 的质点,按方程[])(t sin .x 6520π-=(SI )沿着x 轴振动。求: (1)t =0时,作用于质点的力的大小;

(2)作用于质点的力的最大值和此时质点的位置。

23.(本题10分)

如图所示,一平面简谐波在t =0时刻的波形图,求 (1) 该波的波动表达式; (2)P 处质点的振动方程。

第10章 振动和波动答案

10-1 (C) 10-2 (B) 10-4 (B) 10-5 (C) 10-7 (B) 10-8 (D) 10-13 π , 2π-

,3

π 10-14 43π 10-18 3.43 s ; 32π- 10-19 2

104-? m ,

2π 10-22 )3

2125cos(1.0π

π+=t x (SI) 10-25 )3

4cos(1022

π

+

?=-t x (SI) 10-26 )12.1t 2cos(1048.6x 2

+π?=- (SI)

10-32

41

s ;0.1m ;3

2π-;0.8π;6.4π 2

10-33 (C ) 10-34 (C )

-0.04

10-36 (A 2-A 1) ;)2

cos(12πω+

-=t A A x 10-37 k

m

22π

; k m 22π

10-41 (D) 10-42 (C) 10-43 (D) 10-48 (A) 10-49 (C) 10-50 (C) 10-52 (D) 10-53 (B) 10-56 (D) 10-57 向下, 向上 ,向上 10-58 503 m/s 10-59 π 10-61 ])330

(165cos[10.0ππ--=x

t y (SI) 10-62 0.8 m , 2.0 m/s 10-68 2 m , 45 Hz 10-74 ]2

)'(2cos[π

πν+

-=t t A y , ]2

)'(2c o s [π

πν+--=u

x t t A y (SI)

10-75 -0.01 m,0 ,3

1017.6? m/s 2 10-80 0.463 m 10-81 31000.2-?

m

10-84 )2

2cos(π

πν+

=t A y , )22cos(2π

πνπν+

=t A v

10-85 )4

cos(2πω-=t A y 10-86 0.8 m 0.2 m 125 Hz

10-90 (1) 振动方程 ])(2cos[?λ

νπ++

=L

t A y p (SI)

(2) ]2[sin 2?++

-=)λ

L

π(νt πνA p v (SI) (3) ])(2cos[422?λ

νπνπ++

-=L

t A a p (SI)

10-97 (1) A=0.05m ,u=50m/s ,ν=50Hz ,λ=1m

(2)v m =5πm/s ,a m =500π2

m/s 2

(3) π

10-98 (A )

振动理论课后答案

1-1一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt; 由物体的受力分析,N = 0(极限状态) 物体不跳离平台的条件为:; 既有, , 由题意可知Hz,得到,mm。 1-2有一作简谐振动的物体,它通过距离平衡位置为cm及cm 时的速度分别为20 cm/s及cm/s,求其振动周期、振幅和最大速度。解: 设该简谐振动的方程为;二式平方和为 将数据代入上式: ; 联立求解得 A=10.69cm;1/s;T=s 当时,取最大,即:

得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。 1-3 一个机器内某零件的振动规律为 ,x的单位是cm,1/s 。这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: 振幅A=0.583 最大速度 最大加速度 1-4某仪器的振动规律为。此振动是否为简谐振动?试用x- t坐标画出运动图。 解:因为ω1=ωω2=3ω,ω1≠ω2.又因为T1=2π/ω T2=2π/3ω,所以,合成运动为周期为T=2π/3ω的非简谐运动。两个不同频率的简谐振动合成不是简谐振动,当频率比为有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。

1-5已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式,并写出其实部与虚部。 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5t+) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:实部:cos(5t+ arctan) 虚部:sin(5t+ arctan) 1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x (t)可表示为 , 由式得

振动与波动习题与答案

第10章振动与波动 一.基本要求 1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。 2. 掌握振幅、周期、频率、相位等概念的物理意义。 3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。 4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。 5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。 6. 理解机械波产生的条件。 7. 掌握描述简谐波的各物理量的物理意义及其相互关系。 8. 了解波的能量传播特征及能流、能流密度等概念。 9. 理解惠更斯原理和波的叠加原理。掌握波的相干条件。能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。 10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。 二. 内容提要 1. 简谐振动的动力学特征作谐振动的物体所受到的力为线性回复力,即 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为 2. 简谐振动的运动学特征作谐振动的物体的位置坐标x与时间t成余弦(或正弦)函数关系,即 由它可导出物体的振动速度) =t A v - ω + ω sin(? 物体的振动加速度) =t A a2 cos(? - + ω ω 3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件

确定,即 4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。周期与频率互为倒数,即 ν = 1T 或 T 1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ω π=2T 或 πν=ω2 6. 相位和初相 谐振动方程中(?+ωt )项称为相位,它决定着作谐振动的物体的状态。t=0时的相位称为初相,它由谐振动的初始条件决定,即 应该注意,由此式算得的?在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。 7. 旋转矢量法 作逆时针匀速率转动的矢量,其长度等于谐振动的振幅A ,其角速度等于谐振动的角频率ω,且t=0时,它与x 轴的夹角为谐振动的初相?,t=t 时刻它与x 轴的夹角为谐振动的相位?ω+t 。旋转矢量A ?的末端在x 轴上的投影点 的运动代表着质点的谐振动。 8. 简谐振动的能量 作谐振动的系统具有动能和势能,其 动能 )(sin ?+ωω==t A m m E k 22222 12 1v 势能 )(cos ?+ω==t kA kx E p 2222 12 1 机械能 22 1 kA E E E p k =+= 9. 两个具有同方向、同频率的简谐振动的合成 其结果仍为一同频率的简谐振动,合振动的振幅 初相 2 2112211?+??+?= ?cos cos sin sin tan A A A A (1)当两个简谐振动的相差),,,( Λ210212±±=π=?-?k k 时,合振动振幅最大,为 21A A +,合振动的初相为1?或2?。

机械振动习题及答案

机械振动 一、选择题 1. 下列4种运动(忽略阻力)中哪一种是简谐运动 ( C ) ()A 小球在地面上作完全弹性的上下运动 ()B 细线悬挂一小球在竖直平面上做大角度的来回摆动 ()C 浮在水里的一均匀矩形木块,把它部分按入水中,然后松开,使木块上下浮动 ()D 浮在水里的一均匀球形木块,把它部分按入水中,然后松开,使木块上下浮动 解析:A 小球不是做往复运动,故A 不是简谐振动。B 做大角度的来回摆动显然错误。D 由于球形是非线性形体,故D 错误。 2.如图1所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动。若从松手时开始计时,则该弹簧振子的初相位应为 图 一 ( D ) ()0A ()2 πB

()2 π-C ()πD 解析: 3.一质量为m 的物体挂在劲度系数为k 的轻质弹簧下面,其振动周期为T 。若将此轻质弹簧分割成3等份,将一质量为2m 的物体挂在分割后的一根弹簧上,则此弹簧振子的周期为 ( B ) ()63T A ()36T B ()T C 2 ()T D 6 解析:有题可知:分割后的弹簧的劲度系数变为k 3,且分割后的物体质量变为m 2。故由公式k m T π2=,可得此弹簧振子的周期为3 6T 4.两相同的轻质弹簧各系一物体(质量分别为21,m m )做简谐运动(振 幅分别为21,A A ),问下列哪一种情况两振动周期不同 ( B ) ()21m m A =,21A A =,一个在光滑水平面上振动,另一个在竖直方向上 振动 ()B 212m m =,212A A =,两个都在光滑的水平面上作水平振动 ()C 21m m =,212A A =,两个都在光滑的水平面上作水平振动 ()D 21m m =,21A A =,一个在地球上作竖直振动,另一个在月球上作 竖直振动

高等教育出版社_金尚年_马永利编著的理论力学课后习题答案

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案 第一章 1.2 afG — sin0) ;殳上运动的质点的微 afl - COS0) 分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关. 解: 设s为质点沿摆线运动时的路程,取0=0时,s=0 H ( x = a(0-sine) * ly = —a(l — COS0) ds - J (dx)2 + (dy)2 二 J((i9 — COS0 亠de)2+(sirL9 de)2 = 2asin| 2a sin舟dO = 4 a (L co马 写出约束在铅直平面内的光滑摆线

ee A s=2acos^59 + 2asin?9 = acos| 9^ + 2a sin? 9 x轴的夹角,取逆时针为正,tan (p即切线斜率设(P为质点所在摆线位置处切线方向 与 dy cos 0 -1 tan

振动与波动习题与答案

振动与波动习题与答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

第10章 振动与波动 一. 基本要求 1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。 2. 掌握振幅、周期、频率、相位等概念的物理意义。 3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。 4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。 5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。 6. 理解机械波产生的条件。 7. 掌握描述简谐波的各物理量的物理意义及其相互关系。 8. 了解波的能量传播特征及能流、能流密度等概念。 9. 理解惠更斯原理和波的叠加原理。掌握波的相干条件。能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。 10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。 二. 内容提要 1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即 由它可导出物体的振动速度 )sin(?+ωω-=t A v 物体的振动加速度 )cos(?+ωω-=t A a 2 3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即 4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。周期与频率互为倒数,即 ν= 1T 或 T 1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ω π = 2T 或 πν=ω2 6. 相位和初相 谐振动方程中(?+ωt )项称为相位,它决定着作谐振动的物体的状态。t=0时的相位称为初相,它由谐振动的初始条件决定,即 应该注意,由此式算得的?在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。

15机械振动习题解答

第十五章 机械振动 一 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的?( ) A. 物体在运动正方向的端点时,速度和加速度都达到最大值; B. 物体位于平衡位置且向负方向运动时,速度和加速度都为零; C. 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; D. 物体处负方向的端点时,速度最大,加速度为零。 解:根据简谐振动的速度和加速度公式分析。 答案选C 。 2.下列四种运动(忽略阻力)中哪一种不是简谐振动?( ) A. 小球在地面上作完全弹性的上下跳动; B. 竖直悬挂的弹簧振子的运动; C. 放在光滑斜面上弹簧振子的运动; D. 浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动。 解:A 中小球没有受到回复力的作用。 答案选A 。 3. 一个轻质弹簧竖直悬挂,当一物体系于弹簧的下端时,弹簧伸长了l 而平衡。则此系统作简谐振动时振动的角频率为( ) A. l g B. l g C. g l D. g l 解 由kl =mg 可得k =mg /l ,系统作简谐振动时振动的固有角频率为l g m k ==ω。 故本题答案为B 。 4. 一质点作简谐振动(用余弦函数表达),若将振动速度处于正最大值的某时刻取作t =0,则振动初相?为( ) A. 2π- B. 0 C. 2π D. π 解 由 ) cos(?ω+=t A x 可得振动速度为 ) sin(d d ?ωω+-==t A t x v 。速度正最大时有0) cos(=+?ωt ,1) sin(-=+?ωt ,若t =0,则 2 π-=?。 故本题答案为A 。 5. 如图所示,质量为m 的物体,由劲度系数为k 1和k 2的两个轻弹簧连接,在光滑导轨上作微小振动,其振动频率为 ( )

振动理论课后答案

精心整理 1-1???一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt????; ???????? 既有 , ,得到,mm 有一作简谐振动的物体,它通过距离平衡位置为cm 解: 设该简谐振动的方程为; ; A=10.69cm;1/s;T=s 当时,取最大,即: 得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。

1-3?一个机器内某零件的振动规律为,x的单位是cm,1/s?。 这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: ????????振幅A=0.583 ??????最大速度??? 已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式, 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:?实部:cos(5t+?arctan) ????????????????????????????????????虚部:sin(5t+?arctan)

1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x?(t)可表示为 ?, 由式得??????????????????????????????????????????????????????????n=1,2,3…… 1-7 , ,???? ?????; ?????P(t)平均值为0

6.机械振动习题及答案

一、 选择题 1、一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动按余弦函数描述,则其初相为 [ D ] (A ) 6π (B) 56π (C) 56π- (D) 6π- (E) 23 π- 2、已知一质点沿y 轴作简谐振动,如图所示。其振动方程为3cos()4 y A t π ω=+,与之对应的振动曲线为 [ B ] 3、一质点作简谐振动,振幅为A ,周期为T ,则质点从平衡位置运动到离最大 振幅 2A 处需最短时间为 [ B ] (A );4T (B) ;6T (C) ;8 T (D) .12T 4、如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为m 4的物体,最后将此弹簧截断为两个弹簧后并联悬挂质量为m 的物体, 此三个系统振动周期之比为 (A);2 1 : 2:1 (B) ;2:21:1 [ C ] (C) ;21:2:1 (D) .4 1 :2:1

5、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取坐标原点。若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为 (A);1s (B) ;32s (C) ;34 s (D) .2s [ B ] 6、一长度为l ,劲度系数为k 的均匀轻弹簧分割成长度分别为21,l l 的两部分, 且21nl l =,则相应的劲度系数1k ,2k 为 [ C ] (A );)1(,121k n k k n n k +=+= (B );11,121k n k k n n k +=+= (C) ;)1(,121k n k k n n k +=+= (D) .1 1 ,121k n k k n n k +=+= 7、对一个作简谐振动的物体,下面哪种说法是正确的 [ C ] (A ) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B ) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C ) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D ) 物体处于负方向的端点时,速度最大,加速度为零。 8、 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为 A 2 1 ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]

(完整版)机械振动和机械波练习题【含答案】

机械振动和机械波练习题 一、选择题 1.关于简谐运动的下列说法中,正确的是[ ] A.位移减小时,加速度减小,速度增大 B.位移方向总跟加速度方向相反,跟速度方向相同 C.物体的运动方向指向平衡位置时,速度方向跟位移方向相反;背向平衡位置时,速度方向跟位移方向相同 D.水平弹簧振子朝左运动时,加速度方向跟速度方向相同,朝右运动时,加速度方向跟速度方向相反 2.弹簧振子做简谐运动时,从振子经过某一位置A开始计时,则[ ] A.当振子再次与零时刻的速度相同时,经过的时间一定是半周期 B.当振子再次经过A时,经过的时间一定是半周期 C.当振子的加速度再次与零时刻的加速度相同时,一定又到达位置A D.一定还有另一个位置跟位置A有相同的位移 3.如图1所示,两木块A和B叠放在光滑水平面上,质量分别为m和M,A与B之间的最大静摩擦力为f,B与劲度系数为k的轻质弹簧连接构成弹簧振子。为使A和B在振动过程中不发生相对滑动,则[ ] 4.若单摆的摆长不变,摆球的质量增为原来的4倍,摆球经过平衡位置时的速度减少为原来的二分之一,则单摆的振动跟原来相比 [ ] A.频率不变,机械能不变B.频率不变,机械能改变 C.频率改变,机械能改变D.频率改变,机械能不变 5.一质点做简谐运动的振动图象如图2所示,质点在哪两段时间内的速度与加速度方向相同[ ] A.0~0.3s和0.3~0.6s B.0.6~0.9s和0.9~1.2s C.0~0.3s和0.9~1.2s D.0.3~0.6s和0.9~1.2s

6.如图3所示,为一弹簧振子在水平面做简谐运动的位移一时间图象。则此振动系统[ ] A.在t1和t3时刻具有相同的动能和动量 B.在t3和t4时刻振子具有相同的势能和动量 C.在t1和t4时刻振子具有相同的加速度 D.在t2和t5时刻振子所受回复力大小之比为2∶1 7.摆A振动60次的同时,单摆B振动30次,它们周期分别为T1和T2,频率分别为f1和f2,则T1∶T2和f1∶f2分别等于[ ] A.2∶1,2∶1B.2∶1,1∶2 C.1∶2,2∶1 D.1∶1,1∶2 8.一个直径为d的空心金属球壳内充满水后,用一根长为L的轻质细线悬挂起来形成一个单摆,如图4所示。若在摆动过程中,球壳内的水从底端的小孔缓慢泄漏,则此摆的周期[ ] B.肯定改变,因为单摆的摆长发生了变化 C.T1先逐渐增大,后又减小,最后又变为T1 D.T1先逐渐减小,后又增大,最后又变为T1 9.如图5所示,AB为半径R=2m的一段光滑圆糟,A、B两点在同一水平高度上,且AB弧长20cm。将一小球由A点释放,则它运动到B点所用时间为[ ]

机械振动课后习题和答案第三章习题和答案

如图所示扭转系统。设12122;t t I I k k == 1.写出系统的刚度矩阵和质量矩阵; 2.写出系统的频率方程并求出固有频率和振型,画出振型图。 解:1)以静平衡位置为原点,设12,I I 的转角12,θθ为广义坐标,画出12,I I 隔离体,根据牛顿第二定律得到运动微分方程: 111121222221()0()0t t t I k k I k θθθθθθθ?++-=?? +-=??,即:1112122222122()0 t t t t t I k k k I k k θθθθθθ?++-=??-+=?? 所以:[][]12 21 2220,0t t t t t k k k I M K k k I +-?? ??==????-???? 系统运动微分方程可写为:[][]11220M K θθθθ?????? +=????????? ? ………… (a) 或者采用能量法:系统的动能和势能分别为 θθ= +22112211 22T E I I θθθθθθθ=+-=++-222211212121221121111 ()()2222t t t t t t U k k k k k k

求偏导也可以得到[][],M K 由于12122;t t I I k k ==,所以[][]212021,0111t M I K k -???? ==????-???? 2)设系统固有振动的解为: 1122cos u t u θωθ???? =????????,代入(a )可得: [][]12 2()0u K M u ω?? -=???? ………… (b) 得到频率方程:22 12 1 2 1 12 22()0t t t t k I k k k I ωωω--= =-- 即:224 222 121() 240t t I k I k ωωω=-+= 解得:2 1 1,22 2 (22t k I ω±= = 所以:1ω= 2ω =………… (c) 将(c )代入(b )可得: 1 121 2 121112 2(22)22 20(22t t t t t t k k I k I u u k k k I I ?? ±--?? ????=????????--?? ??

大学物理复习题答案(振动与波动)

大学物理1复习题答案 一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内) 1.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和 T 2。将它们拿到月球上去,相应的周期分别为'T 1和'T 2。则有 ( B ) A .'T T >11且 'T T >22 B .'T T =11且 'T T >22 C .'T T <11且 'T T <22 D .'T T =11且 'T T =22 2.一物体作简谐振动,振动方程为cos 4x A t ?? =+ ?? ? πω,在4 T t = (T 为周期)时刻,物体的加速度为 ( B ) A. 2ω 2ω C. 2ω 2ω 3.一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A -,且向x 轴的正方向 运动,代表此简谐振动的旋转矢量图为 ( D ) A A A A A A C) A x x A A x A B C D 4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为 )cos(1αω+=t A x .当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二 个质点正在最大正位移处.则第二个质点的振动方程为 ( B ) A. )π21cos( 2++=αωt A x B. )π21 cos(2-+=αωt A x . C. )π2 3 cos( 2-+=αωt A x D. )cos(2π++=αωt A x .

5.波源作简谐运动,其运动方程为t y π240cos 10 0.43 -?=,式中y 的单位为m ,t 的单 位为s ,它所形成的波形以s m /30的速度沿一直线传播,则该波的波长为 ( A ) A .m 25.0 B .m 60.0 C .m 50.0 D .m 32.0 6.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。则此简谐振动的振动方程为: ( B ) A .cos x t ππ??=+ ???2 2233 B .cos x t ππ??=+ ??? 42233 C .cos x t ππ??=- ???22233 D .cos x t ππ??=- ??? 42233 二. 填空题(每空2分) 1. 简谐运动方程为)4 20cos(1.0π π+ =t y (t 以s 计,y 以m 计) ,则其振幅为 0.1 m,周期为 0.1 s ;当t=2s 时位移的大小为205.0m. 2.一简谐振动的旋转矢量图如图所示,振幅矢量长2cm ,则该简谐振动 的初相为4 0π ?=,振动方程为_)4 cos(2π π+ =t y 。 3. 平面简谐波的波动方程为()x t y ππ24cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s ,则该波的振幅A= 0.08 ,波长=λ 1 ,离波源0.80m 及0.30m 两处的相位差=?? -Л 。 4. 一简谐振动曲线如图所示,则由图可确定在t = 2s 时刻质点的位移为___0 ___,速度为:πω3=A . t

机械振动习题及答案

第一章 概述 1.一简谐振动,振幅为0、20cm,周期为0、15s,求最大速度与加速度。 解: max max max 1*2***2***8.37/x w x f x A cm s T ππ==== .. 2222max max max 1*(2**)*(2**)*350.56/x w x f x A cm s T ππ==== 2.一加速度计指示结构谐振在80HZ 时具有最大加速度50g,求振动的振幅。(g=10m/s2) 解:.. 22max max max *(2**)*x w x f x π== ..22max max /(2**)(50*10)/(2*3.14*80) 1.98x x f mm π=== 3.一简谐振动,频率为10Hz,最大速度为4、57m/s,求谐振动的振幅、周期、最大加速度。 解: .max max /(2**) 4.57/(2*3.14*10)72.77x x f mm π=== 110.110T s f = == .. 2max max max *2***2*3.14*10*4.57287.00/x w x f x m s π==== 4、 机械振动按激励输入类型分为哪几类?按自由度分为哪几类? 答:按激励输入类型分为自由振动、强迫振动、自激振动 按自由度分为单自由度系统、多自由度系统、连续系统振动

5、 什么就是线性振动?什么就是非 线性振动?其中哪种振动满足叠加原理? 答:描述系统的方程为线性微分方程的为线性振动系统,如00I mga θθ+= 描述系统的方程为非线性微分方程的为非线性振动系统0sin 0I mga θθ+= 线性系统满足线性叠加原理 6、 请画出同一方向的两个运动:1()2sin(4)x t t π=,2()4sin(4)x t t π=合成的的振动波形 7、请画出互相垂直的两个运动:1()2sin(4)x t t π=,2()2sin(4)x t t π=合成的结果。 如果就是1()2sin(4/2)x t t ππ=+,2()2sin(4)x t t π=

振动理论及应用期末复习题题

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角:L y /=? 系统动能: m 1动能:2112 1 y m T = m 2动能:2222222 22222)3 1(21))(31(21)31(2121y m L y L m L m J T ====? ω m 3动能:2322 32333)2 1(21))(21(2121y m R y R m J T ===ω 系统势能: 221)2 1 (21)21(y k y g m gy m V ++-= 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =++-++= +2212321)2 1 (2121)2131(21 上式求导,得系统的微分方程为: E y m m m k y '=+++) 2 1 31(4321 固有频率和周期为: ) 2 131(43210m m m k ++= ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2212 1 x m T =

振动理论习题答案汇总

《振动力学》——习题 第二章 单自由度系统的自由振动 2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。试求2W 下降的最大距离和两物体碰撞后的运动规律。 解: 2 22221v g W h W = ,gh v 22= 动量守恒: 122 122v g W W v g W +=,gh W W W v 221212+= 平衡位置: 11kx W =,k W x 1 1= 1221kx W W =+,k W W x 2 112+= 故: k W x x x 2 1120= -= ()2 121W W kg g W W k n +=+= ω 故: t v t x t x t x x n n n n n n ωωωωωωsin cos sin cos 12 000+ -=+-= x x 0 x 1 x 12 平衡位置

2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2a θ=h α 2F =mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ 其中 1 2c o s s i n ≈≈θ αα h l ga p h a mg ml n 2 22 22304121==?+θθ g h a l ga h l p T n 3π23π2π22 2= == 2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。试求 其摆动的固有频率。

振动和波动习题

振动习题 一、选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ ] (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43 π,则t=0时,质点的位置 在: [ ] (A) 过1 x A 2 =处,向负方向运动; (B) 过1x A 2 =处,向正方向运动; (C) 过1x A 2 =-处,向负方向运动;(D) 过1x A 2 =-处,向正方向运 动。 3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且 向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ ] (C) (3) 题 4. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相 位和坐标分别

为: [ ] 2153 (A),or ;A;(B),;A;332663223(C),or ;A; (D),;A 4433ππ± ±π±± ±π±ππ±±π±±±π± 5. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3 x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运 动的最短时间间隔为 [ ] (A) s 8 1; (B) s 6 1; (C) s 4 1; (D) s 2 1 6. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后 合成的余弦振动的初相为 [ ] x t O x 1 x 2 (A) π2 3; (B) π; (C) π2 1 ; (D) 0 一、 填空题 1. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: , , 2. 一质点作简谐振动,周期为T ,质点由平衡位置到二分之一最大位移处所需要的时间为 ;由最大位移到二分之一最大位移处所

机械振动 课后习题和答案 第二章 习题和答案

精选范本 2.1 弹簧下悬挂一物体,弹簧静伸长为δ。设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。 解:设物体质量为m ,弹簧刚度为k ,则: mg k δ= ,即:n ω== 取系统静平衡位置为原点0x =,系统运动方程为: δ ?+=? =??=?&&&00 020mx kx x x (参考教材P14) 解得:δω=()2cos n x t t

精选范本 2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。 解:由题可知:弹簧的静伸长0.850.650.2()m =-=V 所以:7(/)n rad s ω= == 取系统的平衡位置为原点,得到: 系统的运动微分方程为:20n x x ω+=& & 其中,初始条件:(0)0.2 (0)0x x =-??=?& (参考教材P14) 所以系统的响应为:()0.2cos ()n x t t m ω=- 弹簧力为:()()cos ()k n mg F kx t x t t N ω== =-V 因此:振幅为0.2m 、周期为2()7 s π 、弹簧力最大值为1N 。

精选范本 2.3 重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。 解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有: 2 121()2T E m m x =+& 212 U kx = 由()0T d E U +=可知:12()0m m x kx ++=&& 即:12/()n k m m ω=+ 系统的初始条件为:?=??=-?+?&202012 2m g x k m x gh m m (能量守恒得:2 21201()2 m gh m m x = +&) 因此系统的响应为:01()cos sin n n x t A t A t ωω=+ 其中:ω?==??==-?+? &200 2112 2n m g A x k x m g ghk A k m m

振动理论练习题

振动理论练习题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

第1章练习题 题已知一弹簧质量系统的振动规律为x(t)=?t+?t (cm), 式中,?=10? (1/s)。 (1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。 题如题图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。 题图题图 题一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。 题如题图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。 题图题图 题如题图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角?,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。 题利用等效质量与刚度的概念求解题图示系统的固有频率。AB杆为刚性,本身质量不计。 题图题图 题两缸发动机的曲轴臂及飞轮如题图所示,曲轴相当于在半径r处有偏心质量m e,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r,求平衡配重所需质量。

题 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由减少到。求此系统的相对阻尼系数?。 题 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。 (1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%(3)衰减振动的周期是多少与不安装缓冲器时的振动周期作比较。 题 如题图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。 题图 题图 题 求题图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。 题 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。 题 弹簧质量系统30o 光滑斜面降落,如题图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少 题图 题图 题 无阻尼单自由度质量弹簧m-k 系统,受题图所示力的作用, 记x s =F 0/k ,m k n /2 =ω, 求证,在t < t 0 内,有 )sin (1 )(0 t t t x t x n n n s ωωω-= 在t > t 0内, 有 )(cos ]sin )([sin 1)(000 t t t t t t x t x n n n n s -+--=ωωωω。 题 如题图,为车辆行驶通过曲线路面模型,设道路曲面方程为:)2cos 1(x l a y s π -=,求: 1)车辆通过曲线路面时的振动;2)车辆通过曲线路面后的振动。 题图 题图

振动理论练习题.doc

第1章练习题 题1.1 已知一弹簧质量系统的振动规律为x(t)=1.0sinωt+0.6cosωt (cm), 式中,ω=10π (1/s)。(1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。 题1.2 如题1.2图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。 题1.2图题1.3图 题1.3 一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题1.3图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。 题1.4 如题1.4图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。 题1.4图题1.5图 题1.5 如题1.5图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角α,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。 题1.6 利用等效质量与刚度的概念求解题1.6图示系统的固有频率。AB杆为刚性,本身质量不计。 题1.6图题1.7图

题1.7 两缸发动机的曲轴臂及飞轮如题1.7图所示,曲轴相当于在半径r 处有偏心质量m e ,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r ,求平衡配重所需质量。 题1.8 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由0.268mm 减少到0.14mm 。求此系统的相对阻尼系数ζ。 题1.9 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。 (1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =1.8N ·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%?(3)衰减振动的周期是多少?与不安装缓冲器时的振动周期作比较。 题1.10 如题1.10图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。 题1.10图 题1.11图 题1.11 求题1.11图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。 题1.12 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。 题1.13 弹簧质量系统30o 光滑斜面降落,如题1.13图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少? 题1.13图 题1.14图 题1.14 无阻尼单自由度质量弹簧m-k 系统,受题1.14图所示力的作用, 记x s =F 0/k ,m k n /2 =ω, 求证,在t < t 0 内,有 )sin (1 )(0 t t t x t x n n n s ωωω-= 在t > t 0内, 有 )(cos ]sin )([sin 1 )(000 t t t t t t x t x n n n n s -+--=ωωωω。

大学物理振动波动例题习题

精品 振动波动 一、例题 (一)振动 1.证明单摆是简谐振动,给出振动周期及圆频率。 2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。当t = 0时, 位移为6cm ,且向x 轴正方向运动。 求: (1) 振动表达式; (2) t = 0.5s 时,质点的位置、速度和加速度; (3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。 3. 已知两同方向,同频率的简谐振动的方程分别为: x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+ 求:(1)合振动的初相及振幅. (2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +? 3 ), 则当? 3为多少时 x 1 + x 3 的振幅最大?又? 3为多少时 x 2 + x 3的振幅最小? (二)波动 1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动, 求:(1)波动方程 (2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。 2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。已知原点的振动曲线如图所示。求:(1)原点的振动表达式; (2)波动表达式; (3)同一时刻相距m 1的两点之间的位相差。 3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。 S 1距P 点3个波长,S 2距P 点21/4个波长。求:两波在P 点引起的合振动振幅。

相关主题
文本预览
相关文档 最新文档