当前位置:文档之家› 高斯光束介绍

高斯光束介绍

高斯光束介绍
高斯光束介绍

高斯光束介绍

通常情形,激光谐振腔发出的基模辐射场,其横截面的振幅分布遵守高斯函数,故称高斯光束。

我们常常会收到客户关于光斑大小的查询,其实问的就是光斑的束腰直径或束腰半径。束腰,是指高斯光绝对平行传输的地方。半径,是指在高斯光的横截面考察,以最大振幅处为原点,振幅下降到原点处的0.36788倍,也就是1/e倍的地方,由于高斯光关于原点对称,所以1/e的地方形成一个圆,该圆的半径,就是光斑在此横截面的半径;如果取束腰处的横截面来考察,此时的半径,即是束腰半径。沿着光斑前进,各处的半径的包络线是一个双曲面,该双曲面有渐近线。高斯光束的传输特性,是在远处沿传播方向成特定角度扩散,该角度即是光束的远场发散角,也就是一对渐近线的夹角,它与波长成正比,与其束腰半径成反比,计算式是:2*波长/(3.1415926*束腰半径),故而,束腰半径越小,光斑发散越快;束腰半径越大,光斑发散越慢。光斑描述如下图:

我们用感光片可以看到,在近距离时,准直器发出的光在一定范围内近似成平行光,距离稍远,光斑逐渐发散,亮点变弱变大;可是从光纤出来的光,很快就发散;这是因为,准直器的光斑直径大约有400微米,而光纤的光斑直径不到10微米。同时,对于准直器最大工作距离的定义,往往可理解为该准直器输出光斑的共焦参数,该参数与光斑束腰半径平方成正比,与波长成反比,计算式是:3.1415926*束腰半径*束腰半径/波长。所以要做成长工作距离(意味着在更长的传输距离里高斯光束仍近似成平行光)的准直器,必然要把光斑做大,透镜相应要加长加粗。

我们对于准直系统的计算,理论根据就是高斯光束的传输特性计算式。对于线度远大于输入光斑的透镜来讲,该输入光可视为点光源,其远场发散角就是该点光源的“边沿线”夹角;于是我们可根据透镜的具体参数,简单的用几何光学的方法计算该准直系统的光斑大小和最大工作距离。

而从高斯函数,我们可以计算当通光孔径多大时,光能的损失是多少。并不是通光区直径等于或略大于光斑直径时,光能就可以完全通过,事实上,此时的损耗高达0.6dB。简单的估计,是让通光直径是光斑的2倍或以上

(完整)高斯简介

目录 1.高斯数学 (2) 2.高斯的特色 (3) 2.1我们最专业 (3) 2.2我们最适合 (4) 2.3我们最有趣 (6) 2.4我们最易懂 (8) 2.5我们最便捷 (8) 3.高斯的课程 (8)

高斯数学 高斯数学是国内领先的创新思维数学课程,由人大附中(中国人民大学附属中学)、仁华学校教研室(人大附中创办的培养尖端学生的基地)、北大数学系组成的教研团队研发而成,历经十五年课堂实践,数百万中小学生学习体验,已成为数学尖子生的必修课。

高斯的特色 我们最专业 我们有最专业的教研团队,为孩子的数学学习保驾护航。团队中: 7位高考状元 50%曾被保送北大清华等一流名校 60%获得高中省级以上竞赛一等奖 70%都是北京大学、清华大学毕业生 80%在中学阶段有省级竞赛获奖经历 100%有竞赛获奖经历+985/211名校背景 我们有最权威的数学教材,让您的孩子享受北京最优质的教学资源。 历经15年历史沉淀,2008年由华东师范大学出版社公开出版,8年来3次改版,华杯赛唯一官方指定教材。

高斯数学将小学阶段6个年级,258讲知识,按7条主线绘制成7棵知识树,每棵知识树的树叶代表一讲内容,每讲知识有条理的上下贯穿,前后顺序展示知识衔接关系,非常清晰。 我们最适合 孩子在上数学课时,跟不上或者“吃不饱”都是课程不适合的问题,为了满足不同水平学生的需求,我们研发了三套不同的课程体系:

进步可视化体系 每堂课都有进门考、当堂练、课后作业,通过微信第一时间将学生情况反馈给家长,学习进步有迹可循,家长也心中有数。

我们最有趣 传统的数学学习十分枯燥,学生提不起兴趣来。高斯数学在课件中加入了丰富的内容: 趣味视频 生动教学,翻转课堂,主动思考 漫画引入 活跃课堂,让教师轻松成为段子王

伟人简介:数学家高斯

高斯 卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss)(1777年4月 30日—1855年2月 23日),生于布伦 瑞克,卒于哥廷根,德国著名数学家、 物理学家、天文学家、大地测量学家。 幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在哥廷根大学学习,1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。 高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 生平事迹 少年时期 高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁、工头、商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。 高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。但是根据更为精细的数学史书记载,高斯所解的并不止1加到100那么简单,而是81297+81495+......+100899(公差198,项数100)的一个等差数列。 当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。

GaussView基础教程

GaussView教程【1】——界面介绍 Gview就是一个专门设计于高斯配套使用得软件,其主要用途有两个:构建高斯得输入文件;以图得形式显示高斯计算得结果。除了可以自己构建输入文件外,Gview 还可读入Chem3D,HyperChem与晶体数据等诸多格式得文件。从而使其可以于诸多图形软件连用,大大拓宽了使用范围。 开启GaussView会瞧到一大一小两个窗口,后面灰色背景得窗口为选择窗口,在里面选择要输入得分子或基团;前面紫色得窗口为绘图窗口,使用鼠标绘制想要绘制得图形。

菜单栏 ?【File】主要功能就是建立,打开,保存与打印当前得文件 ?【Edit】完成对分子得剪贴、拷贝、删除、抓图等 ?【View】与显示分子相关得都在这个菜单下,如显示氢原子、键、元素符号、坐标等 ?【Calculate】直接向Gaussian提交计算 ?【Results】接收并显示Gaussian计算后得结果 ?【Windows】控制窗体,如关闭、恢复等 ?【Help】帮助 快速工具栏 【左面第一个】选择元素与价键,单击打开会瞧到一个元素周期表,通过它可以选择需要绘制得元素以及价态。

【左面第二个】环工具,作用与上一个差不多,只就是这里提供得都就是环状化合物残基;

【左面第三个】提供常用得R基团模板,其中包括乙基、丙基、异丙基、异丁基等

【左面第四个】氨基酸残基,使用它可以迅速绘制氨基酸 【左面第五个】用户自定义基团,您可以将常用得基团存放到此处 这条快速编辑栏中从左到右依次就是【键调整】|【键角调整】|【二面角调整】|【查询已有结构】|【增加化学键】|【删除化学键】|【翻转原子】|【单个选择】|【框选】|【去除选择】|【全选】 这里面得所有选项都可以通过在绘图窗口点击右键得到。 3、常用工具栏 这两条条工具栏就是最常用得,几乎所有软件都有得新建打开等工具GaussView教程【2】——构建分子

高斯光束的mb仿真

题目:根据高斯光束数学模型,模拟仿真高斯光束在谐振腔中某一位置处的归一化强度分布并给出其二维、三维强度分布仿真图;用Matlab读取实际激光光斑照片中所记录的强度数据(读取照片中光斑的一个直径所记录的强度数据即可,Matlab读取照片数据命令为imread),用该数据画出图片中激光光斑的强度二维分布图,与之前数学模型仿真图对比。(如同时考虑高斯光束光斑有效截面半径和等相位面特点,仿真高斯光束光强、光斑有效截面半径以及等相位面同时随传播距离z的变化并给出整体仿真图可酌情加分。) 原始光斑如图1所示,用imread命令读入matlab后直接用imshow命令读取即可, 图1 CCD采集的高斯光束强度分布 读入的数据是一个224 X 244的矩阵,矩阵中的数值代表光强分布。用读入的数据取中间一行(122行)画出强度分布如图2所示。 图2 实验测量高斯曲线 用理论上的高斯曲线公式画出理论高斯曲线如图3所示。 图3 理论高斯曲线 M文件如下: A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); A1=A(:,122); x1=1:1:224; x2=-100:1:100; a2=exp(-x2.^2/10); figure

imshow(A); axis off title('\fontsize{12}CCD采集的高斯光束光强分布'); figure plot(x2,a2,'linewidth',1,'color','b'); axis([-40 40 0 1.2]) title('\fontsize{12}实验测量高斯曲线') figure plot(x1,A1,'linewidth',1,'color','r') title('\fontsize{12}理论高斯曲线') axis([50 200 0 180]) 画三维强度分布。取图片矩阵的中间层,用mesh命令画出三维图如图4所示。 图4 三维强度分布 由于读入的图片有一行白边,需要手动去除掉,否则三维图会有一边整体竖起来,影响观察。最终的M文件如下。 A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); [high, width, color] = size(A); x=1:width; y=1:high-1; mesh(x', y', double(A(2:224,:,1))); grid on

高斯软件-基础教程

GaussView界面教程【1】——界面介绍 Gview是一个专门设计于高斯配套使用的软件,其主要用途有两个:构建高斯的输入文件;以图的形式显示高斯计算的结果。除了可以自己构建输入文件外,Gview还可读入Chem3D,HyperChem和晶体数据等诸多格式的文件。从而使其可以于诸多图形软件连用,大大拓宽了使用范围。 GAGGAGAGGAFFFFAFAF

开启GaussView会看到一大一小两个窗口,后面灰色背景的窗口为选择窗口,在里面选择要输入的分子或基团;前面紫色的窗口为绘图窗口,使用鼠标绘制想要绘制的图形。 GAGGAGAGGAFFFFAFAF

菜单栏 【File】主要功能是建立,打开,保存和打印当前的文件 【Edit】完成对分子的剪贴、拷贝、删除、抓图等 【View 】与显示分子相关的都在这个菜单下,如显示氢原子、键、元素符号、坐标等 【Calculate】直接向Gaussian提交计算 【Results 】接收并显示Gaussian计算后的结果 【Windows】控制窗体,如关闭、恢复等 【Help】帮助 快速工具栏 GAGGAGAGGAFFFFAFAF

【左面第一个】选择元素与价键,单击打开会看到一个元素周期表,通过它可以选择需要绘制的元素以及价态。 GAGGAGAGGAFFFFAFAF

【左面第二个】环工具,作用与上一个差不多,只是这里提供的都是环状化合物残基; GAGGAGAGGAFFFFAFAF

【左面第三个】提供常用的R基团模板,其中包括乙基、丙基、异丙基、异丁基等 GAGGAGAGGAFFFFAFAF

高斯光束的透镜变换实验 免费哦

实验三 高斯光束的透镜变换实验 一 实验目的 1.熟悉高斯光束特性。 2.掌握高斯光束经过透镜后的光斑变化。 3.理解高斯光束传输过程. 二 实验原理 众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。 在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式: ()2 22()[] 2()00,() r z kr i R z A A r z e e z ωψωω---=? (6) 式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1e 的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为: 2 00()1z z Z ωω?? =+ ??? (7) 000()Z z R z Z Z z ?? =+ ??? (8) 1 z tg Z ψ-= (9) 其中,2 00Z πωλ =,称为瑞利长度或共焦参数(也有用f 表示)。 (A )、高斯光束在z const =的面内,场振幅以高斯函数22() r z e ω-的形式从中心向外平滑的减小, 因而光斑半径()z ω随坐标z 按双曲线:

22 00 ()1z z Z ωω-= (10) 规律而向外扩展,如图四所示 高斯光束以及相关参数的定义 图四 (B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程: 2 2() r z const R z += (11) 因而,可以认为高斯光束的等相面为球面。 (C )、瑞利长度的物理意义为:当0z Z =时,00()2Z ωω=。在实际应用中通常取0z Z =±范围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认为是平行的。所以,瑞利长度越长,就意味着高斯光束的准直范围越大,反之亦然。 (D )、高斯光束远场发散角0θ的一般定义为当z →∞时,高斯光束振幅减小到中心最大值1e 处与z 轴的交角。即表示为: 00 () lim z z z ωθλ πω→∞ == (12) 高斯光束可以用复参数q 表示,定义2111i q R πω =-,由前面的定义,可以得到0q z iZ =+,因而(6)式可以改写为

MATLAB 高斯光束传播轨迹的模拟

B1:高斯光束传播轨迹的模拟 设计任务: 作图表示高斯光束的传播轨迹 (1)基模高斯光束在自由空间的传播轨迹; (2)基模高斯光束经单透镜变换前后的传播轨迹; (3)基模高斯光束经调焦望远镜变换前后的传播轨迹。 function varargout = B1(varargin) % B1 M-file for B1.fig % B1, by itself, creates a new B1 or raises the existing % singleton*. % % H = B1 returns the handle to a new B1 or the handle to % the existing singleton*. % % B1('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in B1.M with the given input arguments. % % B1('Property','Value',...) creates a new B1 or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before B1_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to B1_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDA TA, GUIHANDLES % Copyright 2002-2003 The MathWorks, Inc. % Edit the above text to modify the response to help B1 % Last Modified by GUIDE v2.5 21-Oct-2010 17:52:32 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @B1_OpeningFcn, ... 'gui_OutputFcn', @B1_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []);

高斯光束的特性实验

实验二 高斯光束的测量 一 实验目的 1.熟悉基模光束特性。 2.掌握高斯光速强度分布的测量方法。 3.测量高斯光速的远场发散角。 二 实验原理 众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。 在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式: ()2 2 2 () [ ] 2() 00 ,() r z kr i R z A A r z e e z ωψωω---= ? (6) 式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为: ()z ωω= (7) 000 ()Z z R z Z Z z ?? =+ ??? (8) 1 z tg Z ψ-= (9) 其中,2 00Z πωλ = ,称为瑞利长度或共焦参数(也有用f 表示)。 (A )、高斯光束在z const =的面内,场振幅以高斯函数2 2 () r z e ω-的形式从中心向外平滑的减小, 因而光斑半径()z ω随坐标z 按双曲线:

2 20 ()1z z Z ωω - = (10) 规律而向外扩展,如图四所示 高斯光束以及相关参数的定义 图四 (B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程: 2 2() r z const R z += (11) 因而,可以认为高斯光束的等相面为球面。 (C )、瑞利长度的物理意义为:当0z Z = 时,00()Z ω= 。在实际应用中通常取0z Z =±范 围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认为是平行的。所以,瑞利长度越长,就意味着高斯光束的准直范围越大,反之亦然。 (D )、高斯光束远场发散角0θ的一般定义为当z →∞时,高斯光束振幅减小到中心最大值1e 处与z 轴的交角。即表示为: 00 ()lim z z z ωθλπω→∞ == (12) 三、实验仪器 He-Ne 激光器, 光电二极管, CCD , CCD 光阑,偏振片,电脑 四 实验内容: (一)发散角测量 关键是如何保证接收器能在垂直光束的传播方向上扫描,这是测量光束横截面尺寸和发散角的必要条件。

高斯软件基础教程

界面教程【1】——界面介绍 是一个专门设计于高斯配套使用的软件,其主要用途有两个:构建高斯的输入文件;以图的形式显示高斯计算的结果。除了可以自己构建输入文件外,还可读入3D,和晶体数据等诸多格式的文件。从而使其可以于诸多图形软件连用,大大拓宽了使用范围。 开启会看到一大一小两个窗口,后面灰色背景的窗口为选择窗口,在里面选择要输入的分子或基团;前面紫色的窗口为绘图窗口,使用鼠标绘制想要绘制的图形。 菜单栏 ?【】主要功能是建立,打开,保存和打印当前的文件 ?【】完成对分子的剪贴、拷贝、删除、抓图等

?【】与显示分子相关的都在这个菜单下,如显示氢原子、键、元素符号、坐标等 ?【】直接向提交计算 ?【】接收并显示计算后的结果 ?【】控制窗体,如关闭、恢复等 ?【】帮助 快速工具栏 【左面第一个】选择元素与价键,单击打开会看到一个元素周期表,通过它可以选择需要绘制的元素以及价态。 【左面第二个】环工具,作用与上一个差不多,只是这里提供的都是环状化合物残基;

【左面第三个】提供常用的R基团模板,其中包括乙基、丙基、异丙基、异丁基等

【左面第四个】氨基酸残基,使用它可以迅速绘制氨基酸 【左面第五个】用户自定义基团,您可以将常用的基团存放到此处 这条快速编辑栏中从左到右依次是【键调整】|【键角调整】|【二面角调整】|【查询已有结构】|【增加化学键】|【删除化学键】|【翻转原子】|【单个选择】|【框选】|【去除选择】|【全选】 这里面的所有选项都可以通过在绘图窗口点击右键得到。 3、常用工具栏 这两条条工具栏是最常用的,几乎所有软件都有的新建打开等工具

高斯简介概率论与数理统计

物理学家、数学家卡尔·弗里德里希·高斯 高斯[1](Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是最重要的数学家,有数学王子的美誉,并被誉为历史上伟大的数学家之一,和阿基米德、牛顿、欧拉并列,同享盛名。 高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于哥廷根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。 高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 1792年,15岁的高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadra tic Reciprocity)、“质数分布定理”(prime numer theor

em)、及“算术几何平均”(arithmetic-geometric mean)。 1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。5年以后,高斯又证明了形如" Fermat素数"边数的正多边形可以由尺规作出。 1855年2月23日清晨,高斯于睡梦中去世。 生平 高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。 高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。 哥廷根大学当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的

高斯(核)函数简介

高斯(核)函数简介 1函数的基本概念 所谓径向基函数(Radial Basis Function简称RBF),就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数,可记作k(||x-xc||),其作用往往是局部的,即当x远离xc时函数取值很小。最常用的径向基函数是高斯核函数,形式为k(||x-xc||)=exp{-||x-xc||^2/(2*σ)^2)}其中xc为核函数中心,σ为函数的宽度参数,控制了函数的径向作用范围。 高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是: (1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向. (2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真. (3)高斯函数的付立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号. (4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷. (5)由于高斯函数的可分离性,大高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长. 2函数的表达式和图形 在这里编辑公式很麻烦,所以这里就略去了。可以参看相关的书籍,仅给出matlab绘图的

高斯光束

高斯光束的瞬时辐射照度示意图 纳米激光器产生的激光

场强(蓝色)和辐射照度(黑色)在坐标轴上的分布情况 共焦腔基模高斯光束腰斑半径 数学形式

高斯光束作为电磁波,其电场的振幅为: 这里 为场点距离光轴中心的径向距离 为光轴上光波最狭窄位置束腰的位置坐标 为虚数单位(即) 为波数(以弧度每米为单位) , 为电磁场振幅降到轴向的1/e、强度降到轴向的1/e2的点的半径 为激光的束腰宽度 为光波波前的曲率半径 为轴对称光波的Gouy相位,对高斯光束的相位也有影响 对应的辐射照度时域平均值为 这里为光波束腰处的辐射照度。常数为光波传播介质的波阻抗(Wave impedance)在真空中,。 对于在自由空间传播的高斯光束,其腰斑(spot size)位置的半径在光轴方向总大于一个最小值,这个最小值被称为束腰。波长为的光波的腰斑位置在轴上的分布为

这里将定义为束腰的位置。 与束腰轴向距离等于瑞利距离处的束宽为 曲率半径 是光束波前的曲率半径,它是轴向距离的函数 光束偏移 当,参数趋近于一条直线。这条直线与中央光轴的夹角被称为光束的“偏移”,它等于 在原理束腰的位置,光束弯散的总角度为

由于这一性质,聚焦于一个小点的高斯激光在远离这个点的传播过程中迅速散开。为了保持激光的准直,激光束必须具有较大的直径。束宽和光束偏移的这一关系是由于衍射的缘故。非高斯光束同样会表现这一效应,但是高斯光束是一种特殊情况,其束宽和偏移的乘积是可能达到的最小值。 由于高斯光束模型使用了近轴近似,当波前与光传播方向倾斜程度大于30度之后,这种模型将不再适用。通过上述偏移的表达式,这意味着高斯光束模型进队束腰大于的光束适用。 激光束的质量可以用束参数乘积(beam parameter product (BPP))来衡量。对于高斯光束,BBP的数值就是光束的偏移量与束腰的乘积。实际光束的BPP通过计算光束的最小直径和远场偏移量的乘积来获得。在波长一定的情况下,实际光束的BPP数值与理想激光束的BPP数值的比值被称为“M2”。高斯光束的M2值为1,而所有的是激光束的M2值均大于1,并且质量越好的激光的M2值越接近1。 Gouy相位 光束的纵向相位延迟,或称Gouy相位为 当光束通过焦点时,除了正常情况的相移,Gouy相移为。 复数形式的光束参数 光束参数的复数为 为了计算方便,常常使用它的倒数 光束参数的复数形式在高斯光束传播的分析中有着重要地位,特别是分析它在光谐振腔中谐振过程时。利用复数光束参数,具有一个横向维度的高斯光束电磁场与下式成比例 在二维的情况里,可以讲散光的光束表达为乘积的形式

高斯平滑简介

摘要在图像预处理中,对图像进行平滑,去除噪声,恢复原始图像是一个重要内容。本文设计了一个平滑尺度和模板大小均可以改变的高斯滤波器,用它对多幅加入各种噪声后的图像进行平滑,经过对各个结果图像的对比可知高斯滤波对服从正态分布的噪声去除效果比较好,并且相比各个不同参数,在平滑尺度为2,模板大小为7时效果最佳。 关键词图像预处理;平滑处理;平滑尺度;模板大小;高斯滤波 1 引言 一幅原始图像在获取和传输过程中会受到各种噪声的干扰,使图像质量下降,对分析图像不利。反映到图像画面上,主要有两种典型的噪声。一种是幅值基本相同,但出现的位置随机的椒盐噪声,另一种则每一点都存在,但幅值随机分布的随机噪声。为了抑制噪声、改善图像质量,要对图像进行平滑处理。图像平滑处理的方法多种多样,有邻域平均、中值滤波,高斯滤波、灰度最小方差的均值滤波等。这里主要就是分析高斯滤波器的平滑效果。以下即为本课题研究的主要内容及要求: 第一,打开显示对应图像; 第二,编写给图像加噪声的程序; 第三,程序中实现不同平滑尺度、不同模板大小的高斯模板设计,并将设计结果显示出来; 第四,以Lena图像为例,进行加噪声,分析平滑的实验效果。 2 高斯平滑滤波器的原理 高斯滤波器是根据高斯函数的形状来选择权值的线性平滑滤波器。高斯平滑滤波器对去 除服从正态分布的噪声是很有效果的。一维零均值高斯函数为。其中,高斯分布参数决定了高斯滤波器的宽度。对图像来说,常用二维零均值离散高斯函数作平滑滤波器,函数表达式如下: 式(1) 高斯函数具有5个重要性质: (1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的。一般来说一幅图像的边缘方向是不知道的。因此,在滤波之前是无法确定一个方向比另一个方向上要更多的平滑的。旋转对称性意味着高斯滤波器在后续的图像处理中不会偏向任一方向。 (2)高斯函数是单值函数。这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点的权值是随着该点与中心点距离单调递减的。这一性质是很重要的,因为边缘是一种图像局部特征。如果平滑运算对离算子中心很远的像素点仍然有很大的作用,则平滑运算会使图像失真。 (3)高斯函数的傅立叶变换频谱是单瓣的。这一性质是高斯函数傅立叶变换等于高斯函数本身这一事实的直接推论。图像常被不希望的高频信号所污染,而所希望的图像特征,既含有低频分量,又含有高频分量。高斯函数傅立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需要的信号。 (4)高斯滤波器的宽度(决定着平滑程度)是由参数σ表证的,而且σ和平滑程度的关系是非常简单的。σ越大,高斯滤波器的频带就越宽,平滑程度就越好。通过调节平滑程度参

高斯光束定义

高斯光束介绍 通常情形,激光谐振腔发出的基模辐射场,其横截面的振幅分布遵守高斯函数,故称高斯光束。 我们常常会收到客户关于光斑大小的查询,其实问的就是光斑的束腰直径或束腰半径。束腰,是指高斯光绝对平行传输的地方。半径,是指在高斯光的横截面考察,以最大振幅处为原点,振幅下降到原点处的0.36788倍,也就是1/e倍的地方,由于高斯光关于原点对称,所以1/e的地方形成一个圆,该圆的半径,就是光斑在此横截面的半径;如果取束腰处的横截面来考察,此时的半径,即是束腰半径。沿着光斑前进,各处的半径的包络线是一个双曲面,该双曲面有渐近线。高斯光束的传输特性,是在远处沿传播方向成特定角度扩散,该角度即是光束的远场发散角,也就是一对渐近线的夹角,它与波长成正比,与其束腰半径成反比,计算式是:2*波长/(3.1415926*束腰半径),故而,束腰半径越小,光斑发散越快;束腰半径越大,光斑发散越慢。光斑描述如下图: 我们用感光片可以看到,在近距离时,准直器发出的光在一定范围内近似成平行光,距离稍远,光斑逐渐发散,亮点变弱变大;可是从光纤出来的光,很快就发散;这是因为,准直器的光斑直径大约有400微米,而光纤的光斑直径不到10微米。同时,对于准直器最大工作距离的定义,往往可理解为该准直器输出光斑的共焦参数,该参数与光斑束腰半径平方成正比,与波长成反比,计算式是:3.1415926*束腰半径*束腰半径/波长。所以要做成长工作距

离(意味着在更长的传输距离里高斯光束仍近似成平行光)的准直器,必然要把光斑做大,透镜相应要加长加粗。 我们对于准直系统的计算,理论根据就是高斯光束的传输特性计算式。对于线度远大于输入光斑的透镜来讲,该输入光可视为点光源,其远场发散角就是该点光源的“边沿线”夹角;于是我们可根据透镜的具体参数,简单的用几何光学的方法计算该准直系统的光斑大小和最大工作距离。 而从高斯函数,我们可以计算当通光孔径多大时,光能的损失是多少。并不是通光区直径等于或略大于光斑直径时,光能就可以完全通过,事实上,此时的损耗高达0.6dB。简单的估计,是让通光直径是光斑的2倍或以上。

高斯软件基础教程

GaussView 界面教程【1】 界面介绍 Gview 是一个专门设计于高斯配套使用的软件, 其主要用途有两个:构建高斯的输入文 件;以图的形式显示高斯计算的结果。 除了可以自己构建输入文件外,Gview 还可读入 Chem3DHyperChen O 晶体数据等诸多格式的文件。从而使其可以于诸多图形软件连用, 大大拓宽了使用范围。 开启GaussView 会看到一大一小两个窗口,后面灰色背景的窗口为选择窗口,在里面 选择要输入的分子或基团;前面紫色的窗口为绘图窗口,使用鼠标绘制想要绘制的图 形。 菜单栏 【File 】主要功能是建立,打开,保存和打印当前的文件 【Edit 】完成对分子的剪贴、拷贝、删除、抓图等 【View 】与显示分子相关的都在这个菜单下,如显示氢原子、键、元 坐 标等 【Calculate 】直接向 Gaussian 提交计算 【Results 】接收并显示 Gaussian 计算后的结果 【Windows i 控制窗体,如关闭、恢复等 【 Help 】帮助 快速工具栏 【左面第一个】 选择元素与价键 ,单击打开会看到一个元素周期表,通过它可以选择 需要绘制的元素以及价态。 【左面第二个】 环工具 ,作用与上一个差不多,只是这里提供的都是环状化合物残基; 【左面第三个】提供常用的R 基团模板,其中包括乙基、丙基、异丙基、异丁基等 【左面第四个】 氨基酸残基 ,使用它可以迅速绘制氨基酸 【左面第五个】用户 自定义基团 ,您可以将常用的基团存放到此处 这条快速编辑栏中从左到右依次是【键调整】 |【键角调整】 | 【二面角调整】 |【查询 已有结构】 | 【增加化学键】 | 【删除化学键】 |【翻转原子】 | 【单个选择】 |【框选】 | 【去除选择】 | 【全选】 这里面的所有选项都可以通过在绘图窗口点击右键得到 3、常用工具栏 这两条条工具栏是最常用的,几乎所有软件都有的新建打开等工具 a 号

高斯 简介及评价

高斯 高斯是德国著名数学家、物理学家、天文学家、大地测量学家。他有数学王子的美誉,并被誉为历史上最伟大的数学家之一,和阿基米德、牛顿、欧拉同享盛名。 高斯(Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。 高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。高斯3岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。当高斯9岁时候,高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050。但是据更为精细的数学史书记载,高斯所解的并不止1加到100那么简单,而是81297+81495+......+100899(公差198,项数100)的一个等差数列。 高斯的老师发现了高斯在数学上异乎寻常的天赋,于是从高斯14岁起,便资助其学习与生活。高斯在18岁时转入哥廷根大学学习,在他19岁时,成功地用尺规构造出了规则的17角形。 高斯在1801年发表的《算术研究》是数学史上为数不多的经典著作之一,它开辟了数论研究的全新时代。在这本书中,高斯不仅把19世纪以前数论中的一系列孤立的结果予以系统的整理,给出了标准记号的和完整的体系,而且详细地阐述了他自己的成果,其中主要是同余理论、剩余理论以及型的理论。同余概念最早是由L.欧拉提出的,高斯则首次引进了同余的记号并系统而又深入地阐述了同余式的理论,包括定义相同模的同余式运算、多项式同余式的基本定理的证明、对幂以及多项式的同余式的处理。19世纪20年代,他再次发展同余式理论,着重研究了可应用于高次同余式的互反律,继二次剩余之后,得出了三次和双二次剩余理论。此后,为了使这一理论更趋简单,他将复数引入数论,从而开创了复整数理论。高斯系统化并扩展了型的理论。他给出型的等价定义和一系列关于型的等价定理,研究了型的复合(乘积)以及关于二次和三次型的处理。1830年,高斯对型和型类所给出的几何表示,标志着数的几何理论发展的开端。在《算术

高斯投影算例与软件介绍

高斯投影算例与软件介绍 通过前面的讲解可知,基于参考椭球面上的元素如大地经纬度(L、B)、大地线长(S)、大地方位角(A)要归算至参考椭球面上,需要进行高斯正算(由L、B→X、Y)、高斯反算(X、Y→L、B用作检验)、子午线收敛角γ(用于由大地方位角A计算坐标方位角α)、距离改化(由大地线长S计算高斯平面上投影曲线弦长)、方向改正、换带计算等。这些计算可以辅助查表的方式进行手工计算,但较麻烦,尤其在计算机技术高度发达的今天,使用软件进行计算可以大大简化计算量。 高斯投影计算中的方向改化、距离改化通常是作为概算的一部分,融入了平差计算中。而高斯正算、高斯反算和换带计算是作为测量软件的一个功能模块,可以单独调出进行计算。可以进行这些计算的软件有南方平差易2003、科傻测量控制网通用处理软件包、NASEW2003智能图文网平差、工程测量数据处理系统ESDPS等,本节就分别以南方平差易2005和ESDPS4.0为例,简要阐述相关的高斯计算功能。 9.5.1 使用南方平差易2005进行高斯投影计算 前面已经讲过,南方平差易软件简单易用、功能强大、计算严谨,此处结合本章的高斯计算讲一下该软件的“大地正反算”功能模块。 打开南方平差易2005,执行“工具”菜单中的“大地正反算F5”选项,调出大地正反算模块。如图9-11、9-12所示。 图9-11 调用大地正反算模块 图9-12 大地正反算界面 (1)高斯正算 如图9-12所示,在计算方案中选择“正算”选项,投影带下拉列表框中根据要得到的高斯坐标的投影类型选择合适的投影带;在“已知数据”选项卡中,按行依次输入相关数据:点号、纬度B和经度L,这里经纬度按照“dd.mmss”的格式输入;若需要使转换后的y坐

高斯介绍

十九世纪伟大的数学家 ——高斯 学院:数学与信息科学学院科目:数学史 姓名:罗虎才 学号:2008111443

一、简介 (1777年4月30日—1855卡尔·弗列德里奇·高斯(Johann Carl Friedrich Gauss) 年2月23日),是德国18世纪末到19世纪中叶的伟大数学家、天文学家和物理学家,被誉为历史上最有才华的数学家之一。 高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。人们把他和阿基米德、牛顿并列,同享盛名,并尊称他为“数学王子” 二、生平 德国数学家克莱因曾说过,如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个使人肃然起敬的顶峰便是高斯——那样一个在广大丰富的区域充满了生命的新元素。 高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。父亲格尔恰尔德·迪德里赫对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。 在成长过程中,幼年的高斯主要得力于母亲和舅舅:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁

高斯软件基础教程

高斯软件基础教程 Revised by BLUE on the afternoon of December 12,2020.

GaussView界面教程【1】——界面介绍 Gview是一个专门设计于高斯配套使用的软件,其主要用途有两个:构建高斯的输入文件;以图的形式显示高斯计算的结果。除了可以自己构建输入文件外,Gview还可读入Chem3D,HyperChem和晶体数据等诸多格式的文件。从而使其可以于诸多图形软件连用,大大拓宽了使用范围。 开启GaussView会看到一大一小两个窗口,后面灰色背景的窗口为选择窗口,在里面选择要输入的分子或基团;前面紫色的窗口为绘图窗口,使用鼠标绘制想要绘制的图形。 菜单栏 【File】主要功能是建立,打开,保存和打印当前的文件 【Edit】完成对分子的剪贴、拷贝、删除、抓图等 【View】与显示分子相关的都在这个菜单下,如显示氢原子、键、元素符号、坐标等 【Calculate】直接向Gaussian提交计算 【Results】接收并显示Gaussian计算后的结果 【Windows】控制窗体,如关闭、恢复等 【Help】帮助 快速工具栏 【左面第一个】选择元素与价键,单击打开会看到一个元素周期表,通过它可以选择需要绘制的元素以及价态。 【左面第二个】环工具,作用与上一个差不多,只是这里提供的都是环状化合物残基; 【左面第三个】提供常用的R基团模板,其中包括乙基、丙基、异丙基、异丁基等 【左面第四个】氨基酸残基,使用它可以迅速绘制氨基酸 【左面第五个】用户自定义基团,您可以将常用的基团存放到此处 这条快速编辑栏中从左到右依次是【键调整】|【键角调整】|【二面角调整】|【查询已有结构】|【增加化学键】|【删除化学键】|【翻转原子】|【单个选择】|【框选】|【去除选择】|【全选】 这里面的所有选项都可以通过在绘图窗口点击右键得到。 3、常用工具栏

相关主题
文本预览
相关文档 最新文档