当前位置:文档之家› 中科院上海天文台65米射电望远镜配套工程

中科院上海天文台65米射电望远镜配套工程

大型光学望远镜

大型光学望远镜 凯克望远镜(Keck Ⅰ,Keck Ⅱ) 凯克望远镜是当前世界上已投入工作的口径最大的光学望远镜之一,Keck Ⅰ和Keck Ⅱ分别在1991年和1996年建成,它们配置完全一样,而且都放置在夏威夷的莫纳克亚,用于干涉观测。它的名字源于为它捐赠建造经费的企业家凯克(W.M.Keck)。 它们的口径都是10米,由36块六角镜面拼接组成,每块镜面口径均为1.8米,而厚度仅为10厘米,通过主动光学支撑系统,使镜面保持极高的精度。焦面设备有三个:近红外照相机、高分辨率CCD探测器和高色散光谱仪。 “凯克这样的大望远镜,可以让我们沿着时间的长河探寻宇宙的起源,甚至能让我们一直向回看,看到宇宙最初诞生的时刻。” 欧洲南方天文台甚大望远镜(VLT) 欧洲南方天文台自1986年开始研制由4台8米口径望远镜组成一台等效口径为16米的光学望远镜。这4台8米望远镜排列在一条直线上,它们均采用地平装置,主镜采用主动光学系统支撑,指向精度为1秒,跟踪精度为0.05秒,镜筒重量为100吨,叉臂重量不到120吨。这4台望远镜可以组成一个干涉阵,做两两干涉观测,也可以单独使用每一台望远镜。 大天区面积多目标光纤光谱望远镜(LAMOST) LAMOST是中国于2008年10月建成的一架有效通光口径为4米、焦距为20米、视场达20平方度的中星仪式的反射施密特望远镜。它把主动光学技术应用在反射施密特系统,在跟踪天体运动中作实时球差改正,实现大口径和大视场兼备的功能。LAMOST的球面主镜和反射镜均采用拼接技术,并且采用多目标光 6

纤的光谱技术,光纤数可达4 000根,而一般望远镜只有600根。LAMOST将极限星等推到20.5等,比SDSS计划(美国斯隆数字巡天计划)高2等左右。 该望远镜已于2010年4月17日被正式冠名为“郭守敬望远镜”。 6

变形观测与数据处理复习

《变形观测与数据处理》考试复习要点 题型:填空题(20分) 名词解释(10分) 简答(20分) 综合题(问答、计算、填表、绘图等)(50分) 关注课后思考题 第一章概述:变形监测意义与目的;监测周期、精度;监测点、基准点布设原则; 变形观测的定义 通过一定的观测方法和仪器测定构筑物或 工程建筑物各种变形量大小的工作。 变形观测的目的: 1、分析与评价建筑物的安全状态 2、验证设计数据 3、反馈设计施工质量 4、研究正常变形规律和预报变形的方法 ◆安全:其目的是监测建(构)筑物在施工 过程中和竣工后,投入使用中的安 全情况; ◆设计施工:验证地质勘察资料和设计数据 的可靠程度,以改进设计理论和施 工方法;

◆ 科研:研究变形的原因和规律,建立正确 的预报模型,准确的分析预报。 变形观测的意义 1、安全 2、验证与改进设计 3、科学研究 对于机械技术设备:为改进提供技术数据 对于滑坡:成因预报 对于矿山:开挖量加固方法 对于地壳运动: 监测周期:根据变形物的大小、速度而制定出的监测频次。 1)当埋设的沉降观测点稳固后,在建筑物主体开工前,进行第一次观测。 2)在建(构)筑物主体施工过程中,一般每盖1~2层观测一次。如中途停工时间较长,应在停工时和复工时进行观测。 3)当发生大量沉降或严重裂缝时,应立即或几天一次连续观测。 4)建筑物封顶或竣工后,一般每月观测一次,如果沉降速度减缓,可改为2~3个月观测一次,直至沉降稳定为止。 观测点(监测点/工作点)布设方案 一般原则: ? 反应整体变形(均匀布点); ? 变形量大的地段多布点; ? 工程重点地段多布点; ? 其它原因专门提出; ? 有利于观测 1.3.1 精度确定依据 具体工程建筑物的允许误差大小、变形 速度、变形观测的目的 一般而言:从安全角度:观测中误差应小于 允许变形量的1/10~1/20;典型精度±1mm 或相 对精度为10-6 从科学研究角度:应尽量提高精度 2、精度确立原则: 实用、经济、科学、实际 沉降观测的精度应根据建筑物的性质而定。 1)多层建筑物的沉降观测,可采用DS 3水准仪,用普通水准测量的方法进行,其水准路线的闭合差不应超过 (n 测站数)。 2)高层建筑物的沉降观测,则应采用DS 1精密水准仪,用二等水准测量的方法进行,其水准路线的闭合差不应超过: 沉降监测方法; 观测时先后视水准基点,接着依次前视各沉降观测点,最后再次后视该水准基点,两次后视读数之差不应超过±1mm 。 mm 0 .2n ±mm 0.1n ±

《国际最大规模的射电望远镜》阅读练习及答案

国际最大规模的射电望远镜 为了争取国际最大规模的射电望远镜合作计划来华,中国正在贵州省“筑巢引凤”,建设全球最大的射电望远镜。这是中国2007年批准立项的500米口径球面射电望远镜(FAST)项目,日前已经在贵州省开始基建,项目总投资6.27亿元,建设期5年半,预计2014年开光。FAST建成后,不仅将成为世界第一大单口径天文望远镜,并将在未来20年至30年内保持世界领先地位。 探测遥远的“地外文明” 这座巨大的望远镜外形与卫星天线相似,单口径500米,犹如一只巨大的“天眼”,将探测遥远、神秘的“地外文明”。千百年来人类大多是通过可见光波段观测宇宙。事实上,天体的辐射覆盖整个电磁波段,而可见光只是其中人类可以感知的一部分。该射电望远镜可以用来监听外太空的宇宙射电波,其中包括可能来自其他智能生命的“人工电波”;在电力充足的条件下,这只巨大的“天眼”还能发送电波信号,几万光年远的“外星朋友”将有可能收到来自中国的问候。 可寻找第一代诞生的天体 据FAST工程办公室研究人员介绍,项目建成后,它将使中国的天文观测能力延伸到宇宙边缘,可以观测暗物质和暗能量,寻找第一代天体。其能用一年时间发现数千颗脉冲星,研究极端状态下的物质结构与物理规律。而且无需依赖模型精确测定黑洞质量就可以有希望发现奇异星和夸克星物质;可以通过精确测定脉冲星到达时间来检测引力波;还可能发现高红移的巨脉泽星系,实现银河系外第一个甲醇超脉泽的观测突破。 用于太空天气预报 FAST还将把中国空间测控能力由地球同步轨道延伸至太阳系外缘,将深空通讯数据下行速率提高100倍。脉冲星到达时间测量精度由目前的120纳秒提高至30纳秒,成为国际上最精确的脉冲星计时阵,为自主导航这一前瞻性研究制作脉冲星钟。同时,可以进行高分辨率微波巡视,以1Hz的分辨率诊断识别微弱的空间讯号,作为被动战略雷达为国家安全服务。还可跟踪探测日冕物质抛射事件,服务于太空天气预报。 带动中国制造技术发展 FAST研究涉及了众多高科技领域,如天线制造、高精度定位与测量、高品质无线电接收机、传感器网络及智能信息处理、超宽带信息传输、海量数据存储与处理等。FAST关键技术成果可应用于诸多相关领域,如大尺度结构工程、公里范围高精度动态测量、大型工业机器人研制以及多波束雷达装置等。FAST的建设经验将对中国制造技术向信息化、极限化和绿色

大事记-中国天文学会-中国科学院

大事记 (1982-1992) 1982年5月 29 日 中国天文学会四届常务理事会二次会议同意中国天文学会下设“天文图书情报小组”,后改为“天文图书情报出版工作委员会”。 1982年6 月 我国第一座太阳塔在南京大学天文系建成并通过国家鉴定。后于1985年获国家科技进步二等奖。 1982年7月 中国科学院批准在青海德令哈建立亳米波天文观测站(属紫金山天文台),决定与美国ESSCO公司合作研制口径13.7米的毫米波射电望远镜。 1982年8月17日-26 日 中国天文学会派出5人代表团参加在希腊举行的国际天文学联合会第18届大会。会上正式宣布恢复中国天文学会在国际天文学联合会上的地位。 1982年8月28日 苏州青少年天文观测站建立。 1982年11月17日 陕西天文学会成立大会暨第一次会员代表大会在临潼召开。出席会议代表89人,交流学术论文19篇。 1983年4月1日 北京古观象台经修复,重新对外开放。 1983年6月 中国科学院日全食观测队赴巴布亚新几内亚观测 6月 11 日的日全食。 1983年6月27日 中国天文学会“天文学名词审定委员会”成立,张钰哲任主任。 1983年下半年 中国天文学会同意,并经中国科学院和国家科委批准由上海天文台主办的《天文学进展》于1983年下半年开始公开发行。 1983年9月-l984年10月 我国有13架经典仪器,2架多普勒接收机和1架人卫激光测距仪参加了全球性合作项目——国际地球自转联测(MERIT)。 1983年10月27日 国际天文学联合会秘书长R.WEST应中国天文学会邀请访华。 1983年11月21日-26日 国际太阳物理会议在昆明召开,国内代表60余人,外国专家40余人参加了会议。1984年5月21日-26日 中日天文会议“恒星活动和观测技术报告会”在北京召开。 1984年l0月1日-5日 中国天文学会派代表团参加在日本召开的国际天文学联合会第三次亚太地区天文会议。1984 年10月18日-20日 北京天文台密云米波综合孔径射电望远镜通过院级鉴定。后于1985年获得国家科学技术进步二等奖。

中国科学院大气物理研究所

中国科学院大气物理研究所 中国科学院大气物理研究所简介 大气物理研究所前身是1928年成立的原中央研究院气象研究所。现有职工325人,其中科技人员251人,有中国科学院院士7人,研究员46人,副研究员和高级工程师86人,中级科技人员108人。大气所是博士、硕士学位授予单位和博士后流动站建站单位。是中国科学院博士生重点培养基地,国家毕业生就业重点保证单位。现有在学博士生211人,硕士生105人,博士后18人。 大气物理研究所主要研究大气中各种运动和物理化学过程的基本规律及其与周围环境的相互作用,特别是研究在青藏高原、热带太平洋和我国复杂陆面作用下的东亚天气气候和环境的变化机理、预测理论及其探测方法,以建立东亚气候系统和季风环境系统的理论体系及遥感观测体系,发展新的探测和试验手段,为天气、气候和环境的监测、预测和控制提供理论和方法。四个优势创新研究领域是:气候系统动力学和预测理论研究、大气环境和人类生存环境变化动力学和预测理论研究、中层大气与遥感理论和技术研究、中小尺度天气系统与灾害研究。 大气物理研究所拥有的科研部门包括:大气科学和地球流体力学数值模拟国家重点实验室、大气边界层物理与大气化学国家重点实验室、中国科学院东亚区域气候-环境重点实验室、中层大气遥感与探测开放实验室、云降水物理与强风暴实验室、国际气候与环境科学中心、竺可桢--南森国际研究中心、灾害性气候研究与预测中心、中国生态系统研究络大气分中心、季风系统研究中心。另外还设有信息科学中心。 2005年,大气物理所知识创新工程全面推进阶段工作进展顺利,科研工作取得若干重要进展,气候数值模式、模拟及气候可预报性研究项目荣获2005年度国家自然科学二等奖;获得湖北省科技进步一等奖1项,中国人民解放军科学技术进步二等奖1项,中国气象局气象科技奖成果应用奖一等奖 1项,国家教育部科学技术进步二等奖1项。共发表科技论文469篇,其中ScI收录论文126篇,申报专利5项。队伍建设和人才培养工作成效显著,叶笃正荣获国家科学技术最高奖,并作为第一主持人荣获国家科学技术进步二等奖;吕达仁当选为中国科学院院士。一批科研和管理人员以及研究生获得了各类奖项,取得佳绩。制度化、民主化、科学化三化建设继续向前推进。 2005年,申请获得973项目北方干旱化与人类适应1项、973课题2项、863专题3项;获得国家自然科学基金各类项目29项,包括4个重点基金、面上基金23项,杰出A和杰出B各1项;获院方向性项目3项,课题1项。还获

世界最大单口径射电望远镜

世界最大单口径射电望远镜 我国在贵州省黔南建设的世界最大单口径球面射电望远镜的重要设备——反射面单元面板第一批1000个单元“就位”,这只被誉为中国“天眼”的超级望远镜单口径500米,接收面积相当于近30个足球场。 遥望百亿光年星际 射电望远镜,可不是肉眼观测的普通望远镜,它是当今世界上最顶尖级的太空望远镜。 射电,是比红外线频率更低的电磁波段。射电望远镜,跟收卫星信号的天线锅类似,通过锅的反射聚焦,把几平方米到几千平方米的信号聚拢到一点上。 “宇宙空间混杂各种辐射,遥远的信号像雷声中的蝉鸣,没有超级灵敏的‘耳朵’,根本就分辨不出来。”中国科学院国家天文台FAST工程首席科学家、总工程师南仁东说。 半个多世纪以来,所有射电望远镜收集的能量尚翻不动一页纸。 要想获得更远、更微弱的射电,“阅读”到宇宙深处的信息,就需要更大口径的射电望远镜。简言之,就是“锅”越大,星际穿越的距离就越远。 专家们指出,与德国波恩100米望远镜相比,FAST灵敏度提高约10倍。这意味着,远在百亿光年外的射电信号,FAST也有可能“捕捉”到。中国“天眼”“眼窝”深 打开卫星地图,贵州平塘县的地貌好似布满褶皱的大象皮肤。再提高分辨率,就能看到大大小小的“漏斗”——“天坑”群。其中有一个就是科学家寻觅十载为这个最大望远镜找的“家”。

天文学家在思考:如何利用天然的洼地作为支架,建造巨型射电望远镜。 1993年,包括中国在内的10国天文学家提出建造新一代射电“大望远镜”的倡议,旨在回溯原初宇宙,解答天文学中的众多难题。1995年底,射电“大望远镜”中国推进委员会,提出了利用贵州喀斯特洼地建造球反射面的“喀斯特工程”概念。 此后,科学家们在当地居民的帮助下,跋山涉水勘察选址。经过反复筛选,最终在平塘县克度镇找到了“大窝凼”——最适合硕大“天眼”的深深的“眼窝”。 被“天眼”吸引,新华社记者深入黔南“探营”FAST工程进展。 FAST项目馈源支撑系统总工程师孙才红告诉记者,选址“大窝凼”有三方面原因,一是地貌最接近FAST的造型,工程开挖量最小;二是这里的喀斯特地质可以保障雨水向地下渗透,不会在表面淤积而损坏和腐蚀望远镜;三是射电望远镜需要一处“静土”,“大窝凼”附近5千米半径之内没有一个乡镇,无线电环境理想。 FAST周围三座山峰呈三足鼎立之势,每座距离都在500米左右,中间的洼地犹如一个天然的锅架,刚好稳稳地盛下FAST这口‘大锅’。 “变形金锅”随天动 来到“大窝凼”,你会发现总面积达25万平方米的反射面看起来像一口超级“大锅”。总长度超过1.5千米的钢圈梁,将上万根钢索牢牢固定住。若想一览FAST工程全貌,必须爬上附近的山顶。而那里正在建设的观景台,正是今后游客观赏FAST的地方。 反射面单元面板将固定在上万根钢索上,安装完成后整个反射面其实是悬在

“射电望远镜”的工作原理

1997年朱迪·福斯特主演的科幻片《接触未来》给我们讲述了人类对外星生命的探索:聪慧的伊莉除了喜欢问一些有关星星的问题外,还不时地使用短波收音机,希望能听到来自宇宙的声音。她的父亲过世后,无助的伊莉开始全心投入科学,通过巨大的射电望远镜群,致力于接收外星讯号的研究。某天清晨,伊莉如往常般一人在沙漠中的基地聆听天外之音,一个强大而又清晰的讯息从天而降,她发现了外星生命……这一切已不是科幻,美国行星学会近日发表一项公告,呼吁因特网上的天文爱好者参与寻找地球外文明的科学实验。这个项目是美国加州大学伯克利分校(UC Berkeley,UCB)有关“搜寻地球以外智能”(Search Extraterres-trial Intelligent简称SETI)四个研究项目中的一项,其全称是“在家中搜寻地球以外的智能”,缩写为SETI@home。SETI@home简单地说是一项旨在利用连入因特网的成千上万台计算机的闲置能力“搜寻外星文明(SETI)”的巨大试验。每一个参加者可以用下载并运行SETI@home屏幕保护程序的方式以自己的计算机参与检测外星文明信号的活动。 SETI@home 的工作原理 SETI@home 的工作由数据收集——>数据传送——>数据分析及回收——>数据后处理——>信息发布组成的。 1.数据收集是通过波多黎哥国家天文和电离层中心建立在群山森林环抱中的、直径为305米(其面积相当于26个足球场大小)的巨型Arecibo射电望远镜进行的。Arecibo将每天观测到的大约35 GB的数据记录在海量数字磁带上,并通过卫星传回UCB。整个SETI@home项目的太空观测约需要1100盒数字磁带以记录39 TB(terabytes,1TB=1000GB)的数据。 2.SETI@home把从Arecibo收集到的数据,经过计算分析之后根据客户的需要和电脑的情况,划分为小的工作单元即数据块。工作单元通过因特网传送到全球成千上万个客户端以进行数据处理。 3.SETI@home传送数据结束后将自动切断连接,客户电脑便在SETI@home屏幕保护运行时开始对数据进行处理;SETI@home应用程序对工作单元中的数据完成快速傅立叶变换的计算,其中大约要进行1750亿次运算,当一个工作单元分析完毕,闪烁的小图标便会提示客户回送并下载新的数据。 4.所有客户端所获得的有价值的信号都将送回到SETI@home。绝大多数客户端软件所找到的信号都是来自于地球的无线电频率干扰(RFI),SETI@home使用一大批算法和已知电信频率干扰资源的大数据库(SERENDIP IV 数据库)的数据来对比,从而排除所有可能的RFI。对于极少数(可能只有<0.0001%)未被排除的信号,则将通过下一次观测太空中同一部位进行检测,如果该信号被再次确认,SETI@home 将要求给定望远镜使用时间,并再次观测这一最令人感兴趣的信号! 假如一个上述信号被观测到多次,并确认它不是RFI和测试信号,SETI@home将要求其他的天文研究组织使用不同的射电望远镜、接收器、电脑等再进行探测和辨识、确认。 5.一旦信号被确认,SETI@home 将按照国际天文学联合会(International Astronomical Union,IAU)的电报发表公告,这是天文学界取得重大发现时公之于众的一种标准方式。而用其屏幕保护程序找到该信号的人(人们),并将和SETI@home队伍中的其他成员一起被赋予“合作发现者”的称号。 Join Now!马上参加SETI@home! 你要参与这一项目,首先可到SETI@home设在UCB的英文主页:https://www.doczj.com/doc/a28171519.html,下载SETI@home 软件包,其Windows 版大小为704 KB,运行环境要求至少32MB内存和800×600显示分辨

边坡变形监测方案实施及数据处理分析

边坡变形监测方案实施及数据处理分析 【摘要】边坡工程施工过程中,由于填挖面大,引起周边环境变形的可能性就高,需要对边坡进行有效的变形监测,针对变化及时采取一些方法处理,以保证设施的安全。这种项目就需要正确地采用一个合理的监测方案,对数据处理、分析。本文结合已完成项目的实例,对边坡进行水平位移和沉降监测,采用监测方法为精密二等水准、极坐标法,并对其进行分析。 【关键词】变形监测;基准网;变形点;边角网;极坐标法;闭合水准路线 1 工程概况 某变电站东南侧边坡于2011年发生滑坡,后采用42根抗滑桩进行加固处理。根据施工单位的反映,抗滑桩施工2012年3月施工完毕后至2012年5月初,抗滑桩发生位移,附近水泥地面发现裂缝,呈放大趋势。为了准确了解抗滑桩变形情况,要求对桩顶水平及垂直位移进行变形监测。 2 监测方案的实施 2.1 基准控制点和监测点的布设 2.1.1 基准网的建立 选择通视良好、无扰动、稳固可靠、远离形变护坡高度3倍即45m外比较稳定的地方埋设四个工作基点,其中三个工作基点A1、A2、A3采用有强制归心装置的观测墩,照准标志采用强制对中装置的觇牌。A2、A3为观测墩,地面高度约1.2m,埋深至基岩位置,A4为主要检核点,埋设在加固坎上,地质较为稳定。 A3、D12、SZ1为沉降基准点,D12在是4×4m的高压电塔加固水泥墩上,建成已超过一年,SZ1在另一电塔水泥墩上,墩台3.5×3.5m,建成时间超过三年,非常稳固。 2.1.2 变形点的建立 变形点应布置在边坡变形较大并能严格控制变形的边坡边沿位置。在边坡顶上布置27个变形监测点,编号分别为东侧为1-27。用膨胀螺栓垂直植入护坡混凝土中,螺栓孔深不小于100mm,露出地面30-80mm,用红色油漆在螺栓上做标记,并将螺栓顶部磨半圆。 基准点与各点位埋设完毕等候5天后,水泥凝固稳定后方可开始进行观测。 2.2 监测精度及频率要求

射电望远镜 radio telescope

射电望远镜radio telescope With the massive facility officially beginning to operate on Sunday, leading scientists told China Daily that foreign scientists will be welcome to use China's gigantic Five-hundred-meter Aperture Spherical Telescope, known as FAST. 中国的500米口径球面射电望远镜于周日(9月25日)正式开始启用,负责该项目的科学家们表示,欢迎外国科学家们使用该望远镜。 It is a single-aperture telescope the size of 30 soccer fields, located in Guizhou province in southwestern China. 这是一个单口径望远镜,拥有30个足球场大的接收面积,位于中国贵州省。 这两天的新闻报道中多次出现FAST这个词,不过要注意的是,这里的FAST是个缩略词,指的是Five-hundred-meter Aperture Spherical Telescope,即“500米口径球面射电望远镜”。 光学望远镜(optical telescope)和射电望远镜(radio telescope)都是观测宇宙天体 的重要工具。二者的区别在于:光学望远镜是用于收集可见光的一种望远镜,并且经由聚焦光线,可以直接放大影像、进行目视观测或者摄影(create a magnified image for direct view or to make a photograph)等;射电望远镜接收的是肉眼看不到的射电波(radio waves),跟接收卫星信号的天线锅类似,通过锅的反射聚焦,把几平方米到几千平方米 的信号聚拢到一点上。因此,FAST的工作不是“看”,而是“听”,依靠500米口径的“大耳朵”来“收听”太空深处物体发出的无线电波。 FAST落成之后便成为世界上最大的射电望远镜,比位居第二的望远镜直径多出200米(surpassing the second-largest by 200 meters in diameter)。其综合观测能力提高了约10倍,将在未来10到20年保持世界领先地位。在FAST之前,世界上最大的单口径射电望远镜是位于波多黎各的阿雷西博天文台(Arecibo Observatory),直径为305米,后扩建为350米。

变形监测及数据处理方案

目录 摘要.............................................................................................................................................. I Abtract.............................................................................................................................................. I I 1 工程概况 (1) 2 监测目的 (2) 3 编制依据 (3) 4 控制点和监测点的布设 (4) 4.1 变形监测基准网的建立 (4) 4.2 监测点的建立 (4) 4.3 监测级别及频率 (5) 5 监测方法及精度论证 (6) 5.1水平位移观测方法 (6) 5.2沉降观测方法 (8) 5.3基坑周围建筑物的倾斜观测 (9) 6 成果提交 (10) 7 人员安排及施工现场注意事项 (11) 8 报警制度 (13) 9 参考文献 (13) 附录1 基准点布设示意图 (15) 附录2 水准观测线路设示意图 (16) 附录3 水平位移和沉降观测监测报表 (17) 附录4 巡视监测报表样表 (18) 附录5 二等水准测量观测记录手薄 (19) 附录6 水平位移记录表 (20)

1 工程概况 黄金广场6#楼基坑支护工程位于合肥市金寨路和黄山路交口西南角,基坑开挖深度为12.4m~13.3m,为临时性工程,为一级基坑,重要性系数1.1,基坑使用期为六个月。 由于多栋建筑物与基坑侧壁距离较近,均在基坑影响范围内。按照国家现行有关规范强制性条文,“开挖深度大于或等于5m或开挖深度小于5m但现场地质情况和周围环境较复杂的基坑工程以及其他需要监测的基坑工程应实施基坑工程监测。”为了及时和准确地掌握基坑在使用期间的变形情况以及基坑相邻建筑物主体结构的沉降变化,需对基坑进行水平位移(或沉降)变形监测,并对相邻建筑物进行沉降监测。为此,编制以下检测方案。

关于中国科学院的基本情况和今后工作任务的报告

标题: 关于中国科学院的基本情况和今后工作任务的报告 责任者 作者: 郭沫若 播发日期: 1954-01-28 出处 选自《新华月报》1954年第4号 文献资料 文献文件 选自《新华月报》1954年第4号 中华人民共和国成立以来,中国的科学研究工作,在中央人民政府的领导下,经过全体科学工作者的努力,已经为科学研究有计划地服务于国家建设,为我国科学事业的进一步发展创造了一定的条件。对于中国科学院来说,今天也已经有可能从现有基础上出发,根据国家地过渡时期的总路线和总任务的要求,提出今后工作的方针和任务。 中国科学院的大部分研究所是在原来中央研究院和北平研究院等科学机构的基础上建立起来的。1952年以前,科学院主要进行了团结科学家和调整机构的工作,使过去机构重叠、人力分散和思想混乱的情况,得到了改善。1952年接受了东北人民政府工业部所移交的东北科学研究所及其大连分所,并会同从上海、北京迁往东北的其他研究机构,组成东北分院,加强了科学院技术科学方面的力量。随着革命事业在各个方面的胜利,特别是在各种社会改革运动和抗美援朝的胜利,随着工农业生产的恢复和发展,我国的科学事业同样也起了根本的变化。过去被反动的国民党政权当作装饰品的科学研究机构,已经转变为人民事业的一部分了。绝大科学家都已经参加了“镇反”、“三反”、抗美援朝和思想改造学习运动,并热烈响应学习苏联先进科学的号召,部分科学家曾经参加“土改”、“五反”等社会改革运动,同时还参加了对自然资源调查、随军入藏和反对细菌战等工作,因而大大地提高了他们的政治觉悟。在科学研究工作本身,也完成了一些有价值的科学研究题目。 1953年9月底的统计,科学院共有36个科学研究机构(25个研究所,4个独立的研究室,4个研究所的筹备处和天文台、仪器馆、菌种保藏委员会),其中15个在北京,13个在华东,8个在东北。全院共有1725个专业的科学研究人员,其中副研究员以上的高级研究人员347人。4年中,在科学研究方面主要有下面一些成绩:(1)在国家自然条件调查与资源勘察方面:配合地质部进行了大规模的地质调查与勘探工作,扩大了某些矿区,提高了矿藏的估计储量,如内蒙、大冶的铁矿,东北、西北的煤矿,甘肃的有色金属矿等都有新的发现;与气象局合作改进了短期天气预报、提高了准确度,并开始中期天气预报,对国防、农田水利起了相当大的作用,又会同农、林等部门进行了植物、土壤与鱼类的调查。(二)在配合工农业生产方面:球墨铸铁的试制成功,在机械工业上提供了成本低、性能好的新的金属材料,人造橡胶的合成已有结果,现在继续研究改进其品质;甲苯的提炼与试制的成功,有利于解决国防工业重要原料生产的问题;纸浆及各种特效药物的试制等,对有关的工业生产都有一定的作用;除草防蚜的办法,已在华北主要植棉区推广;大豆根瘤菌的分离与选择,鱼病的防治,对提高农业与水产产量方面都有所贡献。(三)在自然科学基本理论研究方面:物理学的研究上,在原子核物理方面及其他方面进行了一些工作;数学的研究上,修订出版了堆垒数论;化学的研究上,解决了橘霉素结构的立体化学问题;生物学的研究上,关于家蚕混精杂交实验的结果给米丘林遗传学说提供了新的论证。(四)社会科学

变形观测与数据处理论文

变形观测与数据处理论文 题目:土木工程变形监测研究现状 学院: 专业:测绘工程 班级: 姓名: 学号: 指导教师: 完成日期:2012/12/27 摘要 变形监测是工程施工、安全运行的保证,通过监测进行设计验证,可以达到优化设计的效果,同时也为工程变形预测预报提供依据。根据我国目前已有监测方法,分析了桥梁、大坝、高层建筑物、地下建筑物、滑坡体等变形监测的研究现状,并对今后有待于进一步开展的工作做了展望。

关键词土木工程变形监测现状 1问题的提出 变形监测的对象时多种多样的,变形体的范围大到整个地球,小到一个工程建筑物的块体。也就是说一切关系到人们生活的实物对象都可以成为变形监测的对象,而同一类型的对象,其产生变形的原因不同,则变形分布及其规律也不相同。所以,在变形监测实施之前,必须弄清楚产生变形的原因,才能布设检测控制网,观测得到可靠的变形数据和正确的变形分析结果。本文将对国内近几年来工程监测的方法及其相关问题作综合性的阐述。 2基坑工程变形测量 我国城市化进程正在方兴未艾,基本建设规模庞大。由于城市用地价格昂贵,为提高土地的空间利用率,同时也是为了满足高层建筑抗震和抗风等结构要求,地下室由一层发展到多层,相应的基坑开挖深度也从地表以下5-6m增大到12-13m。例如,北京中国国家大剧院基坑最深处在35m。当前,中国的深基坑工程在数量、开挖深度、平面尺寸以及使用领域等方面都得到高速的发展。 在深基坑开挖过程中,基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变,应力状态的改变引起围护结构承受荷载并导致围护结构和土体的变形,当变形中任一量值超过容许范围时,将造成基坑的失稳破坏或对周围环境造成不利影响。深基坑开挖工程往往在建筑密集的市中心,施工场地四周有建筑物和地下管线,基坑开挖所引起的土体变形将在一定程度上改变这些建筑

国内研究所排名

国内研究所排名.txt两个人吵架,先说对不起的人,并不是认输了,并不是原谅了。他只是比对方更珍惜这份感情。0201 理论经济学 37 87802 黑龙江省社会科学院 64 0202 应用经济学 69 87802 黑龙江省社会科学院 62 0302 政治学 35 87902 上海国际问题研究所 67 87802 黑龙江省社会科学院 64 0303 社会学 31 87802 黑龙江省社会科学院 64 0403 体育学 27 84601 国家体育总局体育科学研究所 71 0504 艺术学 39 84201 中国艺术研究院 77 84202 中国电影艺术研究中心 65 0601 历史学 39 87802 黑龙江省社会科学院 64 0701 数学 62 80002 中国科学院数学与系统科学研究院 94 0702 物理学 57 80008 中国科学院物理研究所 95 82801 中国原子能科学研究院 70 0703 化学 51 80032 中国科学院化学研究所 96 0704 天文学 11 80025 中国科学院国家天文台 80 80022 中国科学院上海天文台 78 0705 地理学 26 80076 中国科学院寒区旱区环境与工程研究所 86 0706 大气科学 8 80058 中国科学院大气物理研究所 84 85101 中国气象科学研究院 71 0707 海洋科学 12 85301 国家海洋局第一海洋研究所 74 85303 国家海洋局第三海洋研究所 68 0710 生物学 64 80100 中国科学院上海生命科学研究院 81 80103 中国科学院动物研究所 77 0712 科学技术史 10 80029 中国科学院自然科学史研究所 77 0801 力学 42 80007 中国科学院力学研究所 88 0802 机械工程 73 80139 中国科学院长春光学精密机械与物理研究所 70 83303 煤炭科学研究总院(上海分院) 64 83801 铁道部科学研究院 63 0803 光学工程 28 80139 中国科学院长春光学精密机械与物理研究所 85 80142 中国科学院西安光学精密机械研究所 85 0804 仪器科学与技术 27 82932 中国航空研究院(304 研究所) 68 0805 材料科学与工程 72 80144 中国科学院金属研究所 92 82913 中国航空研究院(621 研究所) 75 83801 铁道部科学研究院 64 0808 电气工程 26 80148 中国科学院电工研究所 78 83801 铁道部科学研究院 64 0810 信息与通信工程 42 83000 中国电子科技集团公司电子科学研究院 78 0812 计算机科学与技术 71 83801 铁道部科学研究院 63 0815 水利工程 20 82306 南京水利科学研究院 72 0816 测绘科学与技术 11 86001 中国测绘科学研究院 72 0817 化学工程与技术 41 83310 煤炭科学研究总院(北京煤化所) 64 0818 地质资源与地质工程 20 83306 煤炭科学研究总院(西安分院) 67 0819 矿业工程 15 83311 煤炭科学研究总院(北京开采所) 71 83304 煤炭科学研究总院(抚顺分院) 67

中国科学院大气物理研究所

中国科学院大气物理研究所 2006年博士生入学试题 《大气化学》(满分100) 一、解释下列各对名词(每组2分,共计40分) 1)干沉降和湿沉降2)光学等效直径和空气动力学等效直径3)气溶胶及 PM 10、PM 2.5 4)热化学平衡和光化学平衡5)原生粒子和次生粒子6)元素 和同位素7)细粒子和硫酸盐8)反应物和前体物9)自由基和链式反应10)化学反应速率常数和平衡常数11)雾和光化学烟雾12)粒子数浓度和质量浓度13)pH 值和酸雨14)光化学反应和量子效率15)温室气体和温室效应16)人工降雨和凝结核17)爱根核和云18)酸雨和酸沉降19)大气寿命和半衰期20)均相化学反应和非均相化学反应 二、简答题(每题10分,共计20分) 1.写出《京都议定书》明确要求发达国家减少排放的6种(类)人造物质名称和 分子式,并从它们大气化学降解速率和过成的角度说明必须减少向大气排放这些物质的原因。(10分) 2.N 2 O是一种重要的温室气体,主要从土壤排放到大气,消耗于平流层。当前国 际上测量土壤N 2 O排放普遍使用的方法是用一定体积的箱子罩在一定面积的土壤 上,通过测量箱内N 2 O浓度随时间的变化率,从而计算其界面交换通量(单位时 间单位面积的质量)。设在两地分别测量土壤N 2 O的排放,采样箱参数和测定值如下表,请问A、B哪个排放通量大?(提示:使用理想气体状态方程,0 ℃=273.5 K ) (10分) (t0浓度是指开始罩箱时的N2O浓度;t1是指开始罩箱后的t1时刻N2O浓度) 三、述题(40分,每题20分) 1.目前城市大气中两种最重要的O 3前体物是VOC和NOx(NO+NO 2 ),下图显示的是 第1页共2页

中科院各大研究所

中国科学院数学与系统科学研究院 *中国科学院数学研究所 *中国科学院应用数学研究所 *中国科学院系统科学研究所 *中国科学院计算数学与科学工程计算研究所 中国科学院物理研究所 中国科学院理论物理研究所 中国科学院高能物理研究所 中国科学院力学研究所 中国科学院声学研究所 中国科学院理化技术研究所 中国科学院化学研究所 中国科学院生态环境研究中心 中国科学院过程工程研究所 中国科学院地理科学与资源研究所 中国科学院国家天文台 *中国科学院云南天文台 *中国科学院乌鲁木齐天文工作站 *中国科学院长春人造卫星观测站 *中国科学院南京天文光学技术研究所 中国科学院遥感应用研究所 中国科学院地质与地球物理研究所 中国科学院古脊椎动物与古人类研究所 中国科学院大气物理研究所 中国科学院植物研究所 中国科学院动物研究所 中国科学院心理研究所 中国科学院微生物研究所 中国科学院生物物理研究所 中国科学院遗传与发育生物学研究所 *中国科学院遗传与发育生物学研究所农业资源研究中心(原中国科学院石家庄农业资源研究所) 中国科学院计算技术研究所 中国科学院软件研究所 中国科学院半导体研究所 中国科学院微电子研究所 中国科学院电子学研究所 中国科学院自动化研究所 中国科学院电工研究所 中国科学院工程热物理研究所 中国科学院空间科学与应用研究中心 中国科学院自然科学史研究所 中国科学院科技政策与管理科学研究所

中国科学院光电研究院 北京基因组研究所 中国科学院青藏高原研究所 国家纳米科学中心 院直属事业单位(京外) 中国科学院山西煤炭化学研究所 中国科学院沈阳分院 中国科学院大连化学物理研究所 中国科学院金属研究所 中国科学院沈阳应用生态研究所 中国科学院沈阳自动化研究所 中国科学院海洋研究所 青岛生物能源与过程研究所(筹) 烟台海岸带可持续发展研究所(筹) 中国科学院长春分院 中国科学院长春光学精密机械与物理研究所 中国科学院长春应用化学研究所 中国科学院东北地理与农业生态研究所 *中国科学院东北地理与农业生态研究所农业技术中心(原中国科学院黑龙江农业现代化研究所) 中国科学院上海分院 中国科学院上海微系统与信息技术研究所 中国科学院上海技术物理研究所 中国科学院上海光学精密机械研究所 中国科学院上海硅酸盐研究所 中国科学院上海有机化学研究所 中国科学院上海应用物理研究所(原子核研究所) 中国科学院上海天文台 中国科学院上海生命科学院 *生物化学与细胞生物学研究所 *神经科学研究所 *药物研究所 *植物生理生态研究所 *国家基因研究中心 *健康科学研究中心 *中国科学院上海生命科学信息中心 *营养科学研究所 *中国科学院上海生物工程研究中心 中国科学院上海巴斯德研究所(筹) 中国科学院福建物质结构研究所 中国科学院城市环境研究所 中国科学院宁波材料技术与工程研究所(筹) 中国科学院南京分院

GRACE卫星非差简化动力学定轨研究

GRACE 卫星非差简化动力学定轨研究 益鹏举①②,赵春梅①,郑作亚 ② (①中国测绘科学研究院 大地测量与地球动力学研究所,北京 100830;②山东科技大学 测绘科学 与工程学院,山东 青岛 266510) 【摘 要】本文基于卫星精密定轨的基本理论,研究了GRACE 卫星非差简化动力学定轨的方法;并用自行研制的定轨软件CASMORD 对实测的星载GPS 数据进行非差数据的简化动力学定轨,通过比较GRACE 卫星解算的轨道与JPL 事后轨道及SLR 测距信息,结果表明:利用非差观测值进行GRACE 卫星的简化动力学定轨,三维位置精度(3D-RMS )优于7cm ,X 、Y 、Z 方向RMS 约为3~5cm ,从而论证了该方法的可行性、实用性。 【关键词】非差;GRACE 卫星;简化动力学定轨;星载GPS 【中图分类号】P228 【文献标识码】A 【文章编号】1009-2307(2011)03- - GRACE reduced-dynamic orbit determination using zero-difference data Astract: Based on the basic theory of Precise Orbit Determination, the method of the reduced-dynamic orbit determination using zero-difference data onboard GPS observations was researched in this paper. The orbit of GRACE satellite was determined by the autonomic software CASMORD. Compared GRACE orbiting results of reduced-dynam i c m et hod’s solutions with JPL ’s PSO and SLR measurement, the results showed that the 3D-RMS was better than 7 cm and the direction of X ,Y ,Z was about 3~5 cm, to demonstrate the feasibility and practicability of this method. Key words: zero difference ;GRACE satellite ;reduced-dynamic orbit determination ;onboard GPS YI Peng-ju ①②, ZHAO Chun-mei ①, ZHENG Zuo-ya ②(①Institute of Geodesy and Geodynamics, Chinese Academy of Surveying and Mapping, Beijing 100830, China; ②Geomatics College, Shandong University of Science and Technology, Qingdao 266510, China) 1 引言 随着低轨卫星在国民经济、军事、科研等方面的广泛应用,各国发射的低轨卫星越来越多,这些卫星身负着不同的科学任务,为各国的经济发展及科研事业做出了贡献。为了保障不同种类的低轨卫星完成相应的科学任务,卫星的精密定轨便成为卫星顺利完成其任务的重要前提之一。相对传统的SLR 动力学定轨精度差及纯几何法定轨受观测值品质,卫星观测几何图形等的影响比较大,并且得到的轨道是一组离散的点,轨道外推精度差等原因,1992年,美国和法国联合研制TOPEX/POSEIDON (T/P )卫星,采用星载GPS 定轨的新方法,该方法由Yunck 等科学家于1986年提出,对TOPEX/POSEIDON (T/P )卫星的定轨精度,已达厘米级。由此,采用星载GPS 定轨便成为众多低轨卫星定轨的新手段。星载GPS 定轨按观测方程的不同组合分为非差、单差、双差,按是否考虑摄动力及与摄动力模型的关系可分为动力学定轨、几何法定轨、简化动力学定轨。本文采用非差简化动力学定轨的方法,以GRACE 卫星为例,分析研究了GRACE 卫星的精密定轨。 本文主要探讨利用GRACE 卫星星载GPS 观测值及GPS 精密星历及钟差,采用星载GPS 定轨中的非差简化动力学定轨方法进行GRACE 卫星的定轨。该方法采用非差定轨,利用星载GPS 观测数据,以无电离层线性组合的相位观测值作为观测量对GRACE 卫星进行简化动力学定轨,并将GRACE 卫星解算的结果与JPL 发布的事后轨道(PSO )及SLR 高精度测距信息进行比较,结果表明:该方法能够充分吸收GPS 几何法定轨和动力学法定轨的优点,同时顾及低轨卫星的动力学状态信息以及几何信息,通过两者权信息的适当调整,以此达到改善定轨精度的目的。从而论证了该定轨方法及解算方案的可行性、实用性。 2 观测模型 2.1 基本观测方程 LEO 卫星与GPS 卫星(G )之间的相位观测和伪距观测基本方程分别为[1,2]: ,.G G G L i L L ion i i P c t c t e ρδδδρ=+???++ (1) ,,,,,G G G G G L i L L ion i rel pco i pco i i L i i L c t c t N ρδδδρδρδρδρλε=+????++++?+ (2) DOI :CNKI:11-4415/P.20101130.1621.046 网络出版时间:2010-11-30 16:21 网络出版地址:https://www.doczj.com/doc/a28171519.html,/kcms/detail/11.4415.p.20101130.1621.046.html

相关主题
文本预览
相关文档 最新文档