当前位置:文档之家› 集成运算放大器习题集及答案

集成运算放大器习题集及答案

集成运算放大器习题集及答案
集成运算放大器习题集及答案

第二章 集成运算放大器

题3.2.1 某集成运放的一个偏置电路如图题3.2.1所示,设T 1、T 2管的参数完全相同。问:

(1) T 1、T 2和R 组成什么电路?

(2) I C2与I REF 有什么关系?写出I C2的表达式。

图题3.2.1

解:(1) T 1、T 2和R 2组成基本镜像电流源电路

(2) REF

BE

CC REF C R V V I I -==2

题3.2.2 在图题3.2.2所示的差分放大电路中,已知晶体管的β =80,r be =2 k Ω。

(1) 求输入电阻R i 和输出电阻R o ;

(2) 求差模电压放大倍数vd

A &。

图题3.2.2

解:(1) R i =2(r be +R e )=2×(2+0.05)=4.1 k Ω

R o =2R c =10 k Ω

(2) 6605

.0812580)1(-=?+?-=β++β-=e be c vd

R r R A &

题3.2.3 在图题3.2.3所示的差动放大电路中,设T 1、T 2管特性对称,β1=β2=100,V BE =0.7V ,且r bb ′=200Ω,其余参数如图中所示。

(1) 计算T 1、T 2管的静态电流I CQ 和静态电压V CEQ ,若将R c1短路,其它参数不变,则

T 1、T 2管的静态电流和电压如何变化?

(2) 计算差模输入电阻R id 。当从单端(c 2)输出时的差模电压放大倍数2d A &=?; (3) 当两输入端加入共模信号时,求共模电压放大倍数2

c A &和共模抑制比K CMR ; (4) 当v I1=105 mV ,v I2=95 mV 时,问v C2相对于静态值变化了多少?e 点电位v E 变化了

多少?

解:(1) 求静态工作点:

mA 56.010

2101/107

122)1/(1=?+-=+β+-=e b BE EE CQ R R V V I

V 7.07.010100

56

.01-≈-?-

=--=BE b BQ E V R I V V 1.77.01056.012=+?-=--=E c CQ CC CEQ V R I V V

若将R c1短路,则

mA 56.021==Q C Q C I I (不变) V 7.127.0121=+=-=E CC Q CE V V V

V 1.77.01056.0122=+?-=--=E c CQ CC Q CE V R I V V (不变)

(2) 计算差模输入电阻和差模电压放大倍数:

Ω=?+=β++=k 9.456

.026

101200)

1('EQ T bb be I V r r Ω=+?=+=k 8.29)9.410(2)(2be b id r R R

5.338

.2910100)(22

=?=+β=be b c d r R R A &

(3) 求共模电压放大倍数和共模抑制比:

5.020

1019.410101002)1(2

-=?++?-=β++β-=e be b c c R r R R A & 675.05.332

2===c d CMR

A A K &&(即36.5d

B ) (4) 当v I1=105 mV ,v I2=95 mV 时,

mV 109510521=-=-=I I Id v v v

mV 1002

95

105221=+=+=

I I Ic v v v mV 285100)5.0(105.33222=?-+?=?+?=?Ic

c I

d d O v A v A v && 所以,V O2相对于静态值增加了285 mV 。

由于E 点在差模等效电路中交流接地,在共模等效电路中V E 随共模输入电压的变化

而变化(射极跟随器),所以,mV 100==?Ic E v v ,即e 点电位增加了100 mV 。

题3.2.4 差分放大电路如图题3.2.4所示,设各晶体管的β =100,V BE =0.7V ,且r be1=r be2=3 k Ω,电流源I Q =2mA ,R =1 M Ω,差分放大电路从c 2端输出。

(1) 计算静态工作点(I C1Q ,V C2Q 和V EQ );

(2) 计算差模电压放大倍数2d A &,差模输入电阻R id 和输出电阻R o ; (3) 计算共模电压放大倍数2

c A &和共模抑制比K CMR ; (4) 若v I1 =20sin ωt mV ,v I2 =0,试画出v C2和v E 的波形,并在图上标明静态分量和动态分量的幅值大小,指出其动态分量与输入电压之间的相位关系。

图题3.2.4

解:(1) 计算静态工作点:

mA 12

1

21===Q Q C Q C I I I V 5.45.116)//(22=?-=-+=

L c Q C CC L

c L

Q C R R I V R R R V

V 71.01100

1

7.0-=?--=--=V R I V V b BQ BE EQ (2) 计算差模电压放大倍数,输入电阻和输出电阻:

75.18)

31(2)3//3(100)(2)//(2

=+?=+β=be b L c d r R R R A & Ω=+=k 8)(2be b id r R R Ω==k 3c o R R

(3) 计算共模电压放大倍数和共模抑制比:

42

105.72000

101315.11002)1(-?-=?++?-=β++β-=R r R R A be b c c & 25000105.775.1842

2=?==-c d CMR

A A K &&(即88d

B ) (4) 若v I1 =20sin ωt mV ,v I2 =0,则

(V) sin 375.022t v A v i

d c ω=?≈& (V) sin 01.0t v v ic

e ω==

t v V v c Q C C ω+=+=∴sin 375.05.4222(V ) t v V v e EQ E ω+-=+=sin 01.071.0(V )

v C2和v E 的波形如图3.2.4所示,它们的动态分量与输入电压v I1之间都相位相同。

图3.2.4

题3.2.5 FET 组成的差分放大电路如图题3.2.5所示。已知JFET 的g m =2 mS ,r ds =20 k Ω。

(1) 求双端输出时的差模电压放大倍数vd

A &; (2) 求单端输出时的差模电压放大倍数1vd A &、共模电压放大倍数1

vc A &和共模抑制比K CMR ;

图题3.2.5

解:(1) 双端输出时,

3.13)20//10(2)//(2)//(2-=?-=-=-==ds d m gs

ds d gs m id o vd r R g V r R V g V V A &&&&&

(2) 单端输出时,

7.6)20//10(22

1

)//(212)//(

11-=??-

=-=-==ds d m gs

ds d gs m id

o vd r R g V

r R V g V V A &&&&&

325.02021)20//10(221)//(1

-=?+?-=?+-=s m ds d m vc R g r R g A & 5.20325.07.61

1===vc vd CMR

A A K && (即26.3 d

B )

题3.2.6 采用射极恒流源的差分放大电路如图题3.2.6所示。设差放管T 1、T 2特性对称,β1 = β2 = 50,r bb ′=300 Ω,T 3管β3 = 50,r ce3 = 100 k Ω,电位器R w 的滑动端置于中心位置,其余元件参数如图中所示。

(1) 求静态电流I CQ1、I CQ2、I CQ3和静态电压V OQ ;

(2) 计算差模电压放大倍数2d A &,输入电阻R id 和输出电阻R o ; (3) 计算共模电压放大倍数2

c A &和共模抑制比K CMR ; (4) 若v I1=0.02sin ωt V ,v I2 =0,画出v O 的波形,并标明静态分量和动态分量的幅值大小,

指出其动态分量与输入电压之间的相位关系。

图题3.2.6

解:(1) 求静态工作点:

mA 4.15.15030

//107.012301010//3

3

212113=+-?+=+β-+=e b b BE EE b b b CQ R R R V V R R R I mA 7.02

1

321==

=CQ CQ CQ I I I

V 5.2)10//10(7.010

1012

10)//(22=?-

+?=-+=

L c CQ CC L c L OQ R R I V R R R V

(2) 计算差模性能指标:

Ω=?+=β++==k 2.27

.026

51300)

1(1'

21Q C T bb be be I V r r r Ω=?

+=k 25.14.126

513003be r 8.121

.051)2.25(2550)1()(2)//(12

=?++??=β+++β=w be b L C d R r R R R A & R id =2(R b +r be1)+(1+β)R w =2×(5+2.2)+51×0.1=19.5 k Ω R o =R c =10 k Ω

(3) 计算共模性能指标:

Ω=?++?+=++β+=k 832100)5

.125.130//105

.1501()1(333333ce e be b e o r R r R R R

003

.0)832205.0(512.255

50)

22

1

)(1()

//(322

-=?+?++?-=+β+++β-=o w be b L c c R R r R R R A & 4267003.08.122

2===c d CMR

A A K && (即72.6 d

B ) (4) 若v I1=0.02sin ωt V ,v I2 =0时,则

(V) sin 26.05.21

22t v A V v I d Q O O ω+=+=& v O 波形如图所示,其动态分量与v I1之间相位相同。

题3.2.7 在图题3.2.7所示电路中,设各晶体管均为硅管,β = 100,r bb ′=200 Ω。

(1) 为使电路在静态时输出直流电位V OQ =0,R c2应选多大?

(2) 求电路的差模电压放大倍数vd

A &; (3) 若负电源(-12V )端改接公共地,分析各管工作状态及V O 的静态值。

图题3.2.7

解:(1) 当V OQ =0时,I CQ3·R c3=V cc , ∴I CQ3=V CC /R c3=12/12=1 mA

mA 01.0100

1

3

33==

β=

CQ BQ I I mA 12.047

7.0122121Re 22=-?==≈I I I EQ CQ I Rc2=I CQ2-I BQ3=0.12-0.01=0.11 mA Ω=+?=

+=

k 64.811

.07

.025.012

3

332Rc BE e CQ c I V R I R

(2) 求差模电压放大倍数vd

A &: Ω=?+==k 1.2212

.026

10120021be be r r Ω=?

+=k 83.21

26

1012003be r 第二级(CE 反相放大级)输入电阻为R i2:

R i2=r be3+(1+β3)R e3=2.83+101×0.25=28.1 k Ω 差模放大级:

151.222)1.28//64.8(1002)//(1221

=??=β=be i c vd r R R A & 反相放大级:

7.421

.2812100232

-=?-=β-=i c v R R A & ∴5.6402

1-=?=v vd vd A A A &&& (3) 若负电源(-12V )端改为接地,则因静态时V B1=V B2=0,故T 1、T 2管处于截止状态,

I CQ2=0,V B3=12V ,所以T 3管也处于截止状态。故V OQ =0。

题3.2.8 三级放大电路如图题3.2.8所示,已知:r be1 = r be2 = 4 k Ω,r be3 = 1.7 k Ω,r be4 = r be5 = 0.2 k Ω,各管的β = 50。图中所有电容在中频段均可视作短路。试画出放大电路的交流通路,

计算中频电压放大倍数v

A &,输入电阻R i 和输出电阻R o 。

图题3.2.8

解:交流通路为:

图3.2.5

输入级差分放大电路的电压放大倍数为

97.74

2)//1

.5

(50231'

11

-=??-=β-=be be L v r r R A & (r be3是中间级的输入电阻) 中间级共射放大电路的电压放大倍数为

1747

.1)//8.6(5033'

22

-=?-=β-=i be L v R r R A & (R i3是输出级的输入电阻) 其中,Ω=+??

+=β++=k 6.451

2.81

2.8512.0)//2.8)(1(43L be i R r R 输出级的电压放大倍数近似为1

13

≈v A & 所以,总的电压放大倍数为:

13873

21=??=v v v v A A A A &&&& 输入电阻和输出电阻为:

Ω=+?=

=k 48

2.88

2.8)2//(2.81be i r R

Ω=β++=k 13.018

.6//2.84be o r R

题3.2.9判断下列说法是否正确:

(1) 由于集成运放是直接耦合放大电路,因此只能放大直流信号,不能放大交流信号。

(2) 理想运放只能放大差模信号,不能放大共模信号。

(3) 不论工作在线性放大状态还是非线性状态,理想运放的反相输入端与同相输入端之间的电位差都为零。

(4) 不论工作在线性放大状态还是非线性状态,理想运放的反相输入端与同相输入端均不从信号源索取电流。

(5) 实际运放在开环时,输出很难调整至零电位,只有在闭环时才能调整至零电位。解:(1) 错误。集成运放可以放大交流信号。

(2) 正确。

(3) 错误,当工作在非线性状态下,理想运放反相输入端与同相输入端之间的电位差可以不为零。

(4) 正确。

(5) 正确。

题3.2.10已知某集成运放开环电压放大倍数A od=5000,最大电压幅度V om=±10V,接成闭环后其电路框图及电压传输特性曲线如图题 3.2.10(a)、(b)所示。图(a)中,设同相端上的输入电压v I=(0.5+0.01sinωt)V,反相端接参考电压V REF=0.5V,试画出差动模输入电压v Id和输出电压v O随时间变化的波形。

图题3.2.10

解:v O=A od·v Id=5000×0.001sinωt=50sinωt (V),但由于运放的最大输出电压幅度为V om=±10V,所以当|v Id|≤2 mV时,按上述正弦规律变化;而当|v Id|>2 mV时,v O已饱和。输出电压波形如图所示。

题3.2.11已知某集成运放的开环电压放大倍数A od=104(即80dB),最大电压幅度V om=±10V,输入信号v I按图题3.2.11所示的方式接入。设运放的失调和温漂均不考虑,即当v I =0时,v O=0,试问:

(1) 当v I=1 mV时,v O等于多少伏?

(2) 当v I=1.5 mV时,v O等于多少伏?

(3) 当考虑实际运放的输入失调电压V IO=2 mV时,问输出电压静态值V O为多少?电路能否实现正常放大?

图题3.2.11

解:(1) 当v I=1 mV时,则

v O=-A od·v I=-104×1 mV=-10 V (临界饱和输出)

(2) 当v I=1.5 mV时,则

v O=-A od·v I=-104×1.5 mV=-15 V,已超过饱和输出值,所以实际v O为-10V。

(3) 若V IO=2 mV时,则静态时V OQ=-A od·V IO=-10V,已处于反向饱和状态,放大器不能实现正常放大。

题3.2.12试根据下列各种要求,从运放参数表(教材中表3.2.1)中选择合适的运放型号。

(1) 作一般的音频放大,工作频率f≤10 kHz,增益约为40 dB。

(2) 作为微伏级低频或直流信号放大。

(3) 用来与高内阻传感器(如R s=10 M )相配合。

(4) 作为便携式仪器中的放大器(用电池供电)。

(5) 要求输出电压幅度V om≥∣±24V∣。

(6) 用于放大10 kHz方波信号,方波的上升沿与下降沿时间不大于2μs,输出幅度为±10V。

解:(1) 可选用通用型运放CF741(μA741)。

(2) 可选用高精度型运放CF7650(ICL7650)。

(3) 宜选用高阻型运放5G28。

(4) 宜选用低功耗型运放CF3078(CA3078)。

(5) 宜选用高压型运放CF143(LM143)。

(6) 可选用高速型运放CF715或宽带型运放CF507。

题3.2.13差分放大电路如图题3.2.13所示,其中三极管采用Q2N3904,二极管为DIN4148。电源电压为+V CC=+15V,-V EE =-15V。试用PSPICE程序仿真分析:

(1) 设置直流分析,以V i为扫描对象,仿真分析差分放大电路的静态工作点I C1Q、I C2Q、V C1Q、V EQ;

(2) 在上述分析后,查看差分放大电路的电压传输特性曲线,并解释电压传输特性曲线上的非线性特性;

(3) 设置交流分析,分析差分放大电路的频率特性;

(4) 设置瞬态分析,分析差分放大电路的各个电压波形v B、v E、v O,并注意它们的相位和大小;

(5) 将输入端改接成差模输入,设置交流分析,计算其差模电压放大倍数;

(6) 将输入端改接成共模输入,设置交流分析,计算其共模电压放大倍数。

图题3.2.13

解:(1) 将分析方式设置为直流分析,以输入信号源作为直流分析的扫描对象。直流分析设置参数为:Sweep Var. Type为V oltage Source,Sweep Type为Linear,Name:V i,Start Value:-0.1,End Value:0.1,Increment:0.001V。通过PSPICE仿真可得到:I C1Q=I C2Q=0.685 mA,V C1Q=V C2Q=14.32 V,V EQ=-651 mV。

(2) 通过上述直流扫描分析可以查看差分放大电路的电压传输特性曲线,如图3.2.13(1)所示。由于三极管电流放大倍数β的非线性,电压传输特性曲线中放大区部分只是近似为直线。

图3.2.13(1) 电压传输特性曲线

(3) 交流分析设置参数为:AC Sweep Type为Decade(十倍程扫描),Name:V i,Pts./Decade:101(每十倍程扫描点数为10点),Start Freq.:10,End Freq.:100meg。

(4) 瞬态分析时信号源为VSIN元件,属性设置为VOFF=0,V AMPL=1mV,FREQ=1 K;瞬态分析设置参数为Print Step=20ns,Final Time=2ms。通过瞬态分析可得到差分放大电路中各点的波形,其中双端输出的电压波形如图3.2.13(2)所示。

图3.2.13(2) v O波形

(5) 为了求差模电压放大倍数,需将信号源改为差模输入电压,然后进行交流扫描分析。

通过仿真可得该差分放大电路双端输出时的差模电压放大倍数为-26.0。

(6) 为了求共模电压放大倍数,需将信号源改为共模输入电压,然后进行交流扫描分析。通过仿真可得该差分放大电路双端输出时的共模电压放大倍数为0,单端输出时的共模电压放大倍数为-0.0003。

题3.2.14电路如图题3.2.6所示,三极管用Q2N3904,其它参数不变。试用PSPICE程序分析该电路:

(1) 求电路的静态电流点;

(2) 计算差模电压放大倍数A d2、共模电压放大倍数A c2和共模抑制比K CMR;

(3) 若v i=0.02sinωt (V),仿真分析v O的波形。

解:输入并编辑好电路图,如图3.2.14(1)所示。

图3.2. 14(1) 仿真分析电路图

(1) 对电路进行仿真分析,可得静态工作点:V B1Q=-26 mV,V B2Q = -27 mV,V C1Q = 12 V,V C2Q = 2.4V,V B3Q = -9.07 V,V C3Q = -719.6 mV。

(2) 设置交流扫描分析(AC Sweep...),将信号源改为差模输入,可得差模电压放大倍数A d2为21.47,将信号源改为差模输入,可得共模电压放大倍数A c2为1.6×10-4,共模抑制比K CMR为1.3×105(即102dB)。

(3) 设置瞬态分析若v i=0.02sinωt (V),可得仿真分析v O的波形如图3.2. 14(2)所示。

图3.2. 14(2) 输出波形曲线

题3.2.15电路如图题3.2.8所示,三极管用Q2N2222,设各管的β=100,图中电容取50μF,其它参数不变。试用PSPICE程序分析:

(1) 该放大电路的电压放大倍数A v,输入电阻R i和输出电阻R o;

(2) 当输入电压取频率为1 kHz、幅值为1 mV的正弦信号时,仿真分析该电路输出电压v O的波形和幅值。

解:(1)输入并编辑好电路图如图3.2.15(1)所示。

图3.2.15(1) 仿真分析电路图

设置交流扫描分析(AC Sweep...)和瞬态分析。可得:中频源电压增益A v为557(即54.9dB),输入电阻R i为7.47KΩ,输出电阻R o为69.89Ω。

其中,源电压增益的对数幅频特性曲线如图3.2.15(2)所示。

图3.2.15(2) 电压增益对数幅频特性曲线

(2) 当输入电压取频率为1 kHz、幅值为1 mV的正弦信号时,仿真分析该电路输出端的电压波形如图3.2.15(3)所示。

图3.2.15(3) 输出波形曲线

集成运算放大器应用实验

《电路与电子学基础》实验报告 实验名称集成运算放大器应用 班级2013211XXX 学号2013211XXX 姓名XXX

实验7.1 反相比例放大器 一、实验目的 1.测量反相比例运算放大器的电压增益,并比较测量值与计算值。 2.测定反响比例放大器输出与输入电压波形之间的相位差。 3.根据运放的输入失调电压计算直流输出失调电压,并比较测量值与计算值。 4.测定不同电平的输入信号对直流输出失调电压的影响。 二、实验器材 LM 741 运算放大器 1个 信号发生器 1台 示波器 1台 电阻:1kΩ 2个,10kΩ 1个,100kΩ 2个 三、实验步骤 1.在EWB平台上建立如图7-1所示的实验电路,仪器按图设置。 单击仿真开关运行动态分析,记录输入峰值电压 V和输出峰值电压 ip V,并记录直流输出失调电压of V及输出与输入正弦电压波形之间的op 相位差。

Vip=4.9791mV Vop=498.9686mV Vof=99.37mV 相位差π 2.根据步骤1的电压测量值,计算放大器的闭环电压增益Av。 Av=-100.2 3.根据电路元件值,计算反相比例运算放大器的闭环电压增益。 Av=-100 4.根据运放的输入失调电压 V和电压增益Av,计算反相比例运放 if 的直流输出失调电压 V。 of Vof=100mV 四、思考与分析 1.步骤3中电压增益的计算值与步骤1,2中的测量值比较,情况如何? 计算值为-100,测量值为-100.2,基本相等,略有误差

2.输出与输入正弦电压波形之间的相位差怎样? 相位差为π 3.步骤1中直流输出失调电压的测量值与步骤4中的计算值比较,情况如何? 测量值为99.37mV,计算值为100mV,基本相等,略有误差 4.步骤1中峰值输出电压占直流输出失调电压的百分之几? 500% 5.反馈电阻 R的变化对放大器的闭环电压增益有何影响? f 在R1一定的条件下,Rf越大,闭环电压增益越大 实验7.2 加法电路 一、实验目的 1.学习运放加法电路的工作原理。 2.分析直流输入加法器。 3.分析交直流输入加法器。 4.分析交流输入加法器。 二、实验器材 LM741 运算放大器 1个直流电源 2个 0~2mA毫安表 4个万用表 1个 信号发生器 1台

差分运算放大器基本知识

一.差分信号的特点: 图1 差分信号 1.差分信号是一对幅度相同,相位相反的信号。差分信号会以一个共模信号 V ocm 为中心,如图1所示。差分信号包含差模信号和公模信号两个部分, 差模与公模的定义分别为:Vdiff=(V out+-V out- )/2,Vocm=(V out+ +V out- )/2。 2.差分信号的摆幅是单端信号的两倍。如图1,绿色表示的是单端信号的摆 幅,而蓝色表示的是差分信号的摆幅。所以在同样电源电压供电条件下,使用差分信号增大了系统的动态范围。 3.差分信号可以抑制共模噪声,提高系统的信噪比。In a differential system, keeping the transport wires as close as possible to one another makes the noise coupled into the conductors appear as a common-mode voltage. Noise that is common to the power supplies will also appear as a common-mode voltage. Since the differential amplifier rejects common-mode voltages, the system is more immune to external noise. 4.差分信号可以抑制偶次谐波,提高系统的总谐波失真性能。 Differential systems provide increased immunity to external noise, reduced even-order harmonics, and twice the dynamic range when compared to signal-ended system. 二.分析差分放大器电路 图2.差分放大器电路分析图

集成运算放大器及其应用

第九章集成运算放大器及其应用(易映萍) 9.1 差分放大电路 9.2互补功率放大电路 9.3 集成运算放大电路 9.4 理想集成运放的线性运用电路 9.5 理想集成运放的非线性运用电路 习题 第九章集成运算放大器及其应用 9.1 差分放大电路 9.1.1 直接耦合多级放大电路的零点漂移现象 工业控制中的很多物理量均为模拟量,如温度、流量、压力、液面和长度等,它们通过不同的传感器转化成的电量也均为变化缓慢的非周期性连续信号,这些信号具有以下两个特点: 1.信号比较微弱,只有通过多级放大才能驱动负载; 2.信号变化缓慢,一般采用直接耦合多级放大电路将其放大。 u=0)时,人们在试验中发现,在直接耦合的多级放大电路中,即使将输入端短路(即 i u≠0),这种现象称为零点漂移(简称为零漂),如图输出端还会产生缓慢变化的电压(即 o 9.1所示。 (a)测试电路(b)输出电压u o的漂移 图9.1 零点漂移现象 9.1.2 零漂产生的主要原因 在放大电路中,任何参数的变化,如电源电压的波动、元件的老化以及半导体元器件参数随温度变化而产生的变化,都将产生输出电压的漂移,在阻容耦合放大电路中,耦合电容对这种缓慢变化的漂移电压相当于开路,所以漂移电压将不会传递到下一级电路进一步放

大。但是,在直接耦合的多级放大电路中,前一级产生的漂移电压会和有用的信号(即要求放大的输入信号)一起被送到下一级进一步放大,当漂移电压的大小可以和有用信号相当时,在负载上就无法分辨是有效信号电压还是漂移电压,严重时漂移电压甚至把有效信号电压淹没了,使放大电路无法正常工作。 采用高质量的稳压电源和使用经过老化实验的元件就可以大大减小由此而产生的漂移,所以由温度变化所引起的半导体器件参数的变化是产生零点漂移现象的主要原因,因而也称零点漂移为温度漂移,简称温漂,从某种意义上讲零点漂移就是静态工作点Q点随温度的漂移。 9.1.3抑制温漂的方法 对于直接耦合多级放大电路,如果不采取措施来抑制温度漂移,其它方面的性能再优良,也不能成为实用电路。抑制温漂的方法主要由以下几种: (1)采用稳定静态工作的分压式偏置放大电路中Re的负反馈作用; (2)采用温度补偿的方法,利用热敏元件来抵消放大管的变化; (3)采用特性完全相同的三极管构成“差分放大电路”; 9.1.4 差分放大电路 差分放大电路是构成多级直接耦合放大电路的基本单元电路。直接耦合的多级放大电路的组成框图如图9.2所示。 图9.2 多级放大的组成框图 A倍后传送到负载上,对电路造从上图可知输入级一旦产生了温漂,会经中间级放大 u2 A≈1,对电路造成的成严重的影响,而中间级产生的温漂,由于直接到达功放级而功放的 u 影响跟输入级相比少得多,所以,我们主要应设法抑制输入级产生的温漂,故在直接耦合的多级放大电路中只有输入级常采用差分放大电路的形式来抑制温漂。 9.1.4.1 差分放大电路的组成及结构特点 一.电路组成 差分放大电路如图9.3所示。

第16章习题_集成运放

16-001、同相比例运算放大电路通常比反相运算放大电路输入阻抗 。 16-002、设图中A 为理想运放,请求出各电路的输出电压值。(12分) U 016V U 026V U 03V U 04 10V U 052V U 062V 16-003、在图示电路中,设A 1、A 2、A 3均为理想运算放大器,其最大输出电压幅值为± 12V 。 1. 试说明A 1、A 2、A 3各组成什么电路? 2. A 1、A 2、A 3分别工作在线形区还是非线形区? 3. 若输入为1V 的直流电压,则各输出端u O1、u O2、u O3的电压为多大?(10分) U o3 U o1 U o2 20 k 10 k 2V (1) A + + 8 2V (2) 10 k 20 k A + + 8 2V 1V (3) 20 k 10 k A + + 8 (4) 2V 3V U o4 20 k 10k 10 k 20k A + + 8 (5) 2 V U o5 20 k A + + 8 U o6 (6) 2V A + + 8 +k R 1 u I O3 k k

1.A 1组成反相比例电路,A 2 组成过零比较器,A 3 组成电压跟随器; 2.A 1和A 3 工作在线性区,A 2 工作在非线性区; 3.u O1 = -10V,u O2 = -12V,u O3 = -6V。

16-301、试求图所示各电路输出电压与输入电压的运算关系式。 图 解:在图示各电路中,集成运放的同相输入端和反相输入端所接总电阻均相等。各电路的运算关系式分析如下: (a )f f f O I1I2I3I1I2131212 (1)225//R R R u u u u u u u R R R R =-?-?++?=--+ (b ) 3f f f 2 O I1I2I3I1I2131123123 (1)(1)1010R R R R R u u u u u u u R R R R R R R =- ?++?++?=-++++ (c ))( 8)(I1I2I1I21 f O u u u u R R u -=-= (d ) 3f f f 4f O I1I2I3I41212431243I1I21314 (1)(1)////202040R R R R R R u u u u u R R R R R R R R R R u u u u =- ?-?++?++?++=--++ 16-302、在同相输人加法电路如图题8.1.1所示,求输出电压o v ;当R 1=R 2=R 3=R f 时,o v =? 解 输出电压为 P f O v R R v ???? ? ?+=31 式中 21 121212 P S S R R v v v R R R R = +++ 即)(112112213S S f O v R v R R R R R v +???? ??+???? ? ?+=

集成运放线性应用

实训九 集成运放的线性应用 内容一 集成运放的反相、同相比例运算电路 一、实训目的 1.掌握集成运算放大器的使用方法。 2.了解集成运放构成反相比例、同相比例运算电路的工作原理。 3.掌握集成运放反相比例、同相比例运算电路的测试方法。 二、实训测试原理 1. 反相放大电路 电路如图(1)所示。输入信号U i 通过电阻R 1加到集成运放的反相输入端,输出信号通过反馈电阻R f 反送到运放的反相输入端,构成电压并联负反馈。 根据“虚断”概念,即i N =i p ,由于R 2接地, 所以同相端电位U p =0。又根据“虚短”概念可知,U N =U p ,则U N =U p =0,反相端电位也为零。但反相端又不是接地点,所以N 点又称“虚地”。则有 f 1i i =,1i = 1i R U ,f i =-f 0R U 则0U =-1 f R R i U 。 运放的同相输入端经电阻R 2接地,R 2叫平衡电阻,其大小为R 2=R 1∥R f 。 图(1) 反相放大电路 图(2) 同相放大电路 图(3) 电压跟随器 2. 同相放大电路 电路如图(2)所示。输入信号U i 通过平衡电阻R 2加到集成运放的同相输入端,输出信号通过反馈电阻R f 反送到运放的反相输入端,构成电压串联负反馈。根据“虚断”与“虚短”的概念,有N P i U U U ==,i N =i P =0;则得i 1f 0)1(U R U +=若1R =∞,0f =R ,则i 0U U =即为电压跟随器,如图(3)。

三、实训仪器设备 1.直流稳压电源 2.万用表 3.示波器 四、实训器材 1. 集成块μA741(HA17741) 2. 电阻10KΩ×2 100KΩ×2 2 KΩ×2 3. 电位器1KΩ×1 五、实训电路 图(3)反相比例运算实训电路 图(4)同相比例运算实训电路 六、测试步骤及内容 1. 反相比例运算实训

运算放大器基础

运算放大器核心是一个差动放大器。 就是两个三极管背靠背连着。共同分担一个横流源的电流。三极管一个是运放的 正向输入,一个是反向输入。正向输入的三极管放大后送到一个功率放大电路放 大输出。 这样,如果正向输入端的电压升高,那么输出自然也变大了。如果反相输入端电 压升高,因为反相三级管和正向三级管共同分担了一个恒流源。反向三级管电流 大了,那正向的就要小,所以输出就会降低。因此叫反向输入。 当然,电路内部还有很多其它的功能部件,但核心就是这样的。 数字电路即为TTL或C-MOS逻辑电路,而谈到模拟电路,首先就应想到运算放大器。但是,这里讲的运算放大器是怎样一个器件呢? 简而言之,运算放大器是具有两个输入端,一个输出端,以极大的放大率将两输入端之间的电压放大之后,传递到输出端的一种放大器。 如果以电路符号来表示运算放大器,则如 右图,可表示为三角形。它的两个输入部分分 别叫做非倒相输入(1N+)和倒相输入(IN-)。 它以极大的放大率将倒相输入端与非倒相输 人端之间的电压放大,然后从输出端(OUT)输 出。 模拟/zh2002202 发表于2007-04-09, 14:09 1.“虚断”和“虚短”概念 如果为了简化包含有运算放大器的电子电路,总是假设运算放大器是理想的,这样就有“虚短”和“虚断”概念。 “虚短”是指在理想情况下,两个输入端的电位相等,就好像两个输入端短接在一起,但事实上并没有短接,称为“虚短”。虚短的必要条件是运放引入深度负反馈。 “虚断”是指在理想情况下,流入集成运算放大器输入端电流为零。这是由于理想运算放大器的输入电阻无限大,就好像运放两个输入端之间开路。但事实上并没有开 路,称为“虚断”。 2.集成运算放大器线性应用电路 集成运算放大器实际上是高增益直耦多级放大电路,它实现线性应用的必要条件是引入深度负反馈。此时,运放本身工作在线性区,两输入端的电压与输出电压成线 性关系,各种基本运算电路就是由集成运放加上不同的输入回路和反馈回路构成。 在分析由运放构成的各种基本运算电路时,一定要抓住不同的输入方式(同相或反相)和负反馈这两个基本点。 3.有源滤波电路

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

集成运算放大器电路分析及应用(完整电子教案)

集成运算放大器电路分析及应用(完整电子教案) 3.1 集成运算放大器认识与基本应用 在太阳能充放电保护电路中要利用集成运算放大器LM317实现电路电压检测,并通过三极管开关电路实现电路的控制。首先来看下集成运算放大器的工作原理。 【项目任务】 测试如下图所示,分别测量该电路的输出情况,并分析电压放大倍数。 R1 15kΩ R3 15kΩ R4 10kΩ V2 4 V XFG1 1 VCC 5V U1A LM358AD 3 2 4 8 1 VCC 3 5 2 4 R1 15kΩR2 15kΩ R3 15kΩ R4 10kΩ V2 4 V XFG1 1 VCC 5V U1A LM358AD 3 2 4 8 1 VCC 3 5 2 4 函数信号发生器函数信号发生器 (a)无反馈电阻(b)有反馈电阻 图3.1集成运算符放大器LM358测试电路(multisim) 【信息单】 集成运放的实物如图3.2 所示。 图3.2 集成运算放大 1.集成运放的组成及其符号 各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成,如图3.3所示。输入级一般由可以抑制零点漂移的差动放大电路组成;中间级的作用是获得较大的电压放大倍数,可以由共射极电路承担;输出级要求有较强的带负载能力,一般采用射极跟随器;偏置电路的作用是为各级电路供给合理的偏置电流。

图3.3集成运算放大电路的结构组成 集成运放的图形和文字符号如图 3.4 所示。 图3.4 集成运放的图形和文字符号 其中“-”称为反相输入端,即当信号在该端进入时, 输出相位与输入相位相反; 而“+”称为同相输入端,输出相位与输入信号相位相同。 2.集成运放的基本技术指标 集成运放的基本技术指标如下。 ⑴输入失调电压 U OS 实际的集成运放难以做到差动输入级完全对称,当输入电压为零时,输出电压并不为零。规定在室温(25℃)及标准电源电压下,为了使输出电压为零,需在集成运放的两输入端额外附加补偿电压,称之为输入失调电压U OS ,U OS 越小越好,一般约为 0.5~5mV 。 ⑵开环差模电压放大倍数 A od 集成运放在开环时(无外加反馈时),输出电压与输入差模信号的电压之比称为开环差模电压放大倍数A od 。它是决定运放运算精度的重要因素,常用分贝(dB)表示,目前最高值可达 140dB(即开环电压放大倍数达 107 )。 ⑶共模抑制比 K CMRR K CMRR 是差模电压放大倍数与共模电压放大倍数之比,即od CMRR oc A K =A ,其含义与差动放大器中所定义的 K CMRR 相同,高质量的运放 K CMRR 可达160d B 。 ⑷差模输入电阻 r id r id 是集成运放在开环时输入电压变化量与由它引起的输入电流的变化量之比,即从输入端看进去的动态电阻,一般为M Ω数量级,以场效应晶体管为输入级的r id 可达104M Ω。分析集成运放应用电路时,把集成运放看成理想运算放大器可以使分析简化。实际集成运 放绝大部分接近理想运放。对于理想运放,A od 、K CMRR 、r id 均趋于无穷大。 ⑸开环输出电阻 r o r o 是集成运放开环时从输出端向里看进去的等效电阻。其值越小,说明运放的带负载能力越强。理想集成运放r o 趋于零。 其他参数包括输入失调电流I OS 、输入偏置电流 I B 、输入失调电压温漂 d UOS /d T 和输入失调电流温漂 d IOS /d T 、最大共模输入电压 U Icmax 、最大差模输入电压 U Idmax 等,可通过器件

集成运算放大器的基本应用

实验名称 集成运算放大器的基本应用 一.实验目的 1.掌握集成运算放大器的正确使用方法。 2.掌握用集成运算放大器构成各种基本运算电路的方法。 3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。 二.实验元器件 集成运算放大器 LM324 1片 电位器 1k Ω 1只 电阻 100k Ω 2只;10k Ω 3只;5.1k Ω 1只;9k Ω 1只 电容 0.01μf 1只 三、预习要求 1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。 2.写出上述四种运算电路的vi 、vo 关系表达式。 3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。 4.自拟实验数据表格。 四.实验原理及参考电路 本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。 1. 反向比例运算 反向比例运算电路如图1所示,设组件LM324为理想器件,则 11 0υυR R f -=

R f 100k R 1 10k A 10k R L v o v 1 R 9k 图1 其输入电阻1R R if ≈,图中1//R R R f ='。 由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。 在选择电路参数是应考虑: ○ 1根据增益,确定f R 与1R 的比值,因为 1 R R A f vf - = 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。 若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。 ○ 2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。 本次试验中所选用电阻在电路图中已给出。 2. 反向比例加法运算 反向比例加法运算电路如图2所示,当运算放大器开环增益足够大时,其输入端为“虚地”,11v 和12v 均可通过1R 、2R 转换成电流,实现代数相加,其输出电压 ??? ??+-=122111 v R R v R R v f f o 当R R R ==21时 ()1211v v R R v f o +- = 为保证运算精度,除尽量选用精度高的集成运算放大器外,还应精心挑选精度高、稳定性好的电阻。f R 与R 的取值范围可参照反比例运算电路的选取范围。 同理,图中的21////R R R R f ='。

集成运算放大器练习题及答案

第十章 练习题 1. 集成运算放大器是: 答 ( ) (a) 直接耦合多级放大器 (b) 阻容耦合多级放大器 (c) 变压器耦合多级放大器 2. 集成运算放大器的共模抑制比越大, 表示该组件: 答 ( ) (a) 差模信号放大倍数越大; (b) 带负载能力越强; (c) 抑制零点漂移的能力越强 3. 电路如图10-1所示,R F2 引入的反馈为 : 答 ( ) (a) 串联电压负反馈 (b) 并联电压负反馈 (c) 串联电流负反馈 (d) 正反馈 图10-1 4. 比例运算电路如图10-2所示,该电路的输出电阻为: 答 ( ) (a) R F (b) R 1+R F (c) 零 图10-2 5. 电路如图10-3所示,能够实现u u O i =- 运算关系的电路是: 答 ( ) (a) 图1 (b) 图2 (c) 图3 图10-3 6. 电路如图10-4所示,则该电路为: 答 ( )

(a)加法运算电路; (b)反相积分运算电路; (c) 同相比例运算电路 图10-4 7. 电路如图10-5所示,该电路为: 答 ( ) (a) 加法运算电路 (b) 减法运算电路 (c) 比例运算电路 O u i 1 u i2 图10-5 8. 电路如图10-6所示,该电路为: 答 ( ) (a) 加法运算电路 (b) 减法运算电路 (c) 比例运算电路 u O u i 1u i2 图10-6 9. 电路如图10-7所示,该电路为: 答 ( ) (a)比例运算电路 (b) 比例—积分运算电路 (c) 微分运算电路 O u 图10-7 10. 电路如图10-8所示 ,输入电压u I V =1,电阻R R 1210==k Ω, 电位器R P 的阻值为20k Ω 。 试求:(1) 当R P 滑动点滑动到A 点时,u O =? (2) 当R P 滑动点滑动到B 点时,u O =? (3) 当R P 滑动点滑动到C 点(R P 的中点)时 , u O =?

(完整版)集成运算放大器练习题

集成运算放大器测试题 指导老师:高开丽班级:11机电姓名: _____________ 成绩: 一、填空题(每空1分,共20分) 1、集成运放的核心电路是__________ 电压放大倍数、_________ 输入电阻和_______ 输出电阻的电路。(填“低”、“高”) 2、集成运由_____________ 、______________ 、________________ 、___________ 四个部分组成。 3、零漂的现象是指输入电压为零时,输出电压_________________ 零值,出现忽大忽小得现象。 4、集成运放的理想特性为:________________ 、______________ 、_________ 、_____________ 。 5、负反馈放大电路由__________________ 和__________________ 两部分组成。 6、电压并联负反馈使输入电阻__________ ,输出电阻___________ 。 7、理想运放的两个重要的结论是_______________ 和_____________ 。 &负反馈能使放大电路的放大倍数________________ ,使放大电路的通频带展宽,使输出信号波形的非线性失真减小,__________ 放大电路的输入、输出电阻。 二、选择题(每题3分,共30分) 1、理想运放的两个重要结论是() A 虚断VI+=VI-,虚短i l+=il- B 虚断VI+=VI-=O ,虚短i l+=il-=O C 虚断VI+=VI-=O ,虚短i I+=iI- D 虚断i I+=iI-=0 ,虚断VI+=VI- 2、对于运算关系为V0=10VI的运算放大电路是() A反相输入电路B同相输入电路C电压跟随器D加法运算电路 3、电压跟随器,其输出电压为V0,则输入电压为() A VI B - VI C 1 D -1 4、同相输入电路,R仁10K,Rf=100K ,输入电压VI为10mv,输出电压V0为 () A -100 mv B 100 mv C 10 mv D -10 mv

运算放大器技术合集:运放工作原理、基础及经典电路分析

运算放大器技术合集:运放工作原理、基础及经典电路分析 一、入门篇:运算放大器的工作原理、基础 *运算放大器的工作原理 运算放大器具有两个输入端和一个输出端,如图1-1所示,其中标有“+”号的输入端为“同相输入端”而不能叫做正端),另一只标有“一”号的输入端为“反相输入端”同样也不能叫做负端,如果先后分别从这两个输入端输入同样的信号,则在输出端会得到电压相同但极性相反的输出信号:输出端输出的信号与同相输人端的信号同相,而与反相输入端的信号反相。 运算放大器所接的电源可以是单电源的,也可以是双电源的,如图1-2所示。运算放大器有一些非常有意思的特性,灵活应用这些特性可以获得很多独特的用途,总的来说,这些特性可以综合为两条: 1、运算放大器的放大倍数为无穷大。 2、运算放大器的输入电阻为无穷大,输出电阻为零。 现在我们来简单地看看由于上面的两个特性可以得到一些什么样的结论。 首先,运算放大器的放大倍数为无穷大,所以只要它的输入端的输入电压不为零,输出端就会有与正的或负的电源一样高的输出电压本来应该是无穷高的输出电压,但受到电源电压的限制。准确地说,如果同相输入端输入的电压比反相输入端输入的电压高,哪怕只高极小的一点,运算放大器的输出端就会输出一个与正电源电压相同的电压;反之,如果反相输入端输入的电压比同相输人端输入的电压高,运算放大器的输出端就会输出一个与负电源电压相同的电压(如果运算放大器用的是单电源,则输出电压为零)。 其次,由于放大倍数为无穷大,所以不能将运算放大器直接用来做放大器用,必须要将输出的信号反馈到反相输入端(称为负反馈)来降低它的放大倍数。如图1-3中左图所示,R1的

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

集成运放组成的基本运算电路实验报告

实验报告课程名称:电路与电子技术实验指导老师: 成绩: 实验名称:集成运放组成的基本运算电路实验实验类型:同组学生:一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.研究集成运放组成的比例、加法和积分等基本运算电路的功能; 2.掌握集成运算放大电路的三种输入方式。 3.了解集成运算放大器在实际应用时应考虑的一些问题; 4.理解在放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标的影响; 5.学会用集成运算放大器实现波形变换 二、实验容和原理 1.实现两个信号的反相加法运算 2.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 3.实现单一信号同相比例运算(选做) 4.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值,测量闭环传输特性:Vo = f (Vs) 5.实现两个信号的减法(差分)运算 6.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 7.实现积分运算(选做) 8.设置输出初态电压等于零;输入接固定直流电压,断开K2,进入积分;用示波器观察输出变化(如何设轴,Y轴和触发方式) 9.波形转换—方波转换成三角波 10.设:Tp为方波半个周期时间;τ=R2C 11.在T p<<τ、T p ≈τ、T p>>τ三种情况下加入方波信号,用示波器观察输出和输入波形,记录线性 三、主要仪器设备 1.集成运算电路实验板;通用运算放大器μA741、电阻电容等元器件; 2.MS8200G型数字多用表;XJ4318型双踪示波器;XJ1631数字函数信号发生器;DF2172B型交流电压表; 型可调式直流稳压稳流电源。

集成运放大器的基础知识

课题集成运放大器的基础知识所属章节第三章:集成运算放大器 教学目的1、了解集成运放的组成的符号 2、掌握理想运放的两个重要结论 教学重点1、运算放大器的组成 2、运算放大器的电路符号 3、运算放大器的主要参数 4、理想运算放大器 教学方法讲授法、多媒体课件教学 课题引入 集成运算放大器最早应用于模拟计算机中,如完成加法、减法等数学运算。而今主要有来完成信号的产生、转换、处理等,集成运算放大器已得到广泛应用。 授课内容 一、集成运算放大器的组成及符号 集成运算放大器实质上是一种双端输入、单端输出,具有高增益,高输入阻抗、低输出阻抗的多极直接耦合放大电路。 1、电路组成 集成运放内部组成框图如图所示。 ①输入级 输入级又称前置级,它往往是一个双端输入的高性能差分放大电路。一般要求其输入电阻高,差模放大倍数大,抑制共模信号的能力强,静态电流小。 ②中间级 中间级是整个放大电路的主要放大电路。其作用是使集成运放具有较强的放大能力,多采用共射(或共源)放大电路。而且为了提高电压放大倍数,经常采用复合管做放大管,以恒流源作集电极负载。其电压放大倍数可达千倍以上。 ③输出级 输出级具有输出电压线性范围宽,输出电阻小(即带负载能力强),非线性失真小等优点。多采用互补对称发射极输出电路。 ④偏置电路 偏置电路用于设置集成运放各级放大电路的静态工作点。与分 授课内容立元件不同,集成运放多采用电流源电路为各级提供合适的集电

极(或发射极、漏极)静态工作电流,从而确定了合适的静态工作点。 2、电路符号 旧标准新标准 二、集成运放的主要参数 1、开环差模电压放大倍数Avd 在集成运放无外加反馈时的直流差模放大倍数称为开环差模电压放大倍数。 2、共模抑制比K CMR 共模抑制比等于差模放大倍数与共模放大倍数之比的绝对值, 3、差模输入电阻R id 集成运放在输入差模信号时的输入电阻。 4、输出电阻Ro 集成运放开环状态下的输出电阻。 5、输入失调电压v IO 理想集成运放,当输入为零时,输出也为零。但实际集成运放的差分输入级不易做到完全对称,在输入为零时,输出电压可能不为零。为使其输出为零,人为的在输入端加一补偿电压,称此补偿电压为输入失调电压,用v IO表示。 6、输入失调电流I IO 集成运放在常温下,当输出电压为零时,两输入端的静态电流之差,称为输入失调电流,用I IO表示, 三、理想集成运算放大器 理想运算放大器的条件: 1、开环差模增益(放大倍数)A vd=∞; 2、差模输入电阻R id =∞; 3、输出电阻Ro=0; 4、共模抑制比K CMR=∞; 两条重要结论: ①理想集成运放两输入端的净输入电压等于零。即 v i =v N -v P =0 v N =v P, 通常称为“虚短”。 ②理想集成运放的两输入端电流均为零。即 i N -i P =0,通常称为“虚断” 。 课堂练习1、集成运放电路是一种高增益的放大器,它的内部电

实验 集成运算放大器的基本应用

实验集成运算放大器的基本应用(Ⅱ)——有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图9-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图9-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。 如图9-2(a)所示,为典型的二阶有源低通滤波器。它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,引入适量的正反馈,以改善幅频特性。 图9-2(b)为二阶低通滤波器幅频特性曲线。

(a)电路图 (b)频率特性 图9-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图9-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图9-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。 (a) 电路图 (b) 幅频特性 图9-3 二阶高通滤波器 电路性能参数A uP 、f O 、Q 各量的函义同二阶低通滤波器。 图9-3(b )为二阶高通滤波器的幅频特性曲线,可见,它与二阶低通滤波器的幅频特性曲线有“镜像”关系。 3、 带通滤波器(BPF )

运算放大器基本电路——11个经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB 以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。

第16章集成运算放大器

河北工业大学课程教案 200 7 ~ 200 8 学年 第 2 学期 学 院 ( 部 ) 电气与自动化学院 系 (教 研 室 ) 电工电子教学中心 课 程 名 称 电工与电子技术(二) 任课专业、年级、班级 土木 主 讲 教 师 姓 名 黎霞 职 称 、 职 务 讲师 使 用 教 材 电工学(第六版)

电工与电子技术(二)课程说明 一、课程基本情况 课程类别:技术基础课 总学时: 64 实验、上机学时:20 二、课程性质 本课程是高等学校非电类各专业本科生必修的一门技术基础课,它是学生系统学习电工、电子技术理论和培养、掌握基本实验技能的重要技术基础课程。随着科学技术的发展,电工与电子技术的应用日趋广泛且日益渗透到工程领域的各学科及相关专业,在国民经济的发展中占有越来越重要的地位。 三、课程的教学目的和基本要求 通过电工技术、电子技术课程的学习,使学生获得必要的基本理论、基本知识和基本操作技能,了解电工、电子技术的应用和我国电工、电子技术的发展概况,为与电工、电子技术相关联的后续课程的学习奠定必要的理论基础。提高学生从事与所修专业相关联的工程技术中电与非电接口知识的运用能力。 四、本课程与其它课程的联系 本课程作为高数和物理课程的工程应用实例,同时也为后续模拟电子技术、数字电子技术、PLC控制、测控技术、电机等课程奠定了理论基础。

电工与电子技术(二)课程教案 授课题目(教学章、节或主题): 课时安排4学时 第十六章 集成运算放大器 授课时间第11 周 教学目的和要求(分掌握、熟悉、了解三个层次): 1.掌握:集成运算放大气的线性应用和非线性应用的基本条件和分析依据;集成运放线性应用的三种基本输入方式及其电路的特点;集成运放负反馈类型的判断 2.熟悉:比例放大、反相器、同相器、加法器、减法器、积分器、微分器等基本运算放大电路的结构、工作原理、特点和功能及有这些电路组成的其他电路 3.了解:集成运算放大器的基本组成和特点、各主要参数的意义;由运放构成的电压比较器的工作原理。 教学内容(包括基本内容、重点、难点): 1.基本内容:集成运放的组成和特点、主要参数、理想化条件、信号运算方面的应用 2.重点:集成运算放大气的线性应用的基本电路结构、运算关系及主要特点 3.难点: 运放线性应用和非线性应用的特点及分析方法 讲课进程和时间分配: 16.1 集成运放的简介 1学时 16.2 运放在运算方面的应用(1):比例、加法、减法运算 1学时 16.2运放在运算方面的应用(2):积分、微分 1学时 16.3.3 运放在信号处理方面的应用:电压比较器 0.5学时 17.2 放大电路的负反馈 0.5学时 授课内容: 集成电路是相对于分立电路而言的,就是把整个电路的各元件以及相互之间的联接同时制造在一块半导体芯片上,组成一个不可分割的整体。它与分立元件联成的电路比较,体积更小,重量更轻,功耗更低,又由于减少了电路的焊接点而提高了工作的可靠性。本章所讨论的集成运算放大器是具有高开环放大倍数并带有深度负反馈的多级直接耦合放大电路。由于它首先应用于电子模拟计算机上,作为基本运算单元,完成加减、积分和微分、乘除等数学运算,故由此得名,现在运算放大器的应用远远地超出模拟计算机的界限,在信号运算、信息处理、信号测量及波形产生等方面获得广泛应用。

相关主题
文本预览
相关文档 最新文档