当前位置:文档之家› 机器人面临核心技术难题,实现突破的路径在哪

机器人面临核心技术难题,实现突破的路径在哪

机器人面临核心技术难题,实现突破的路径在哪

机器人面临核心技术难题,实现突破的路径在哪

?工业机器人被认为是智能制造的重要基石,但国产机器人和芯片产业其实存在相似制约,即对外依存度高、缺乏核心技术,阻碍我国智能制造的发展。在5月10日召开的第五届中国机器人峰会上,工业机器人如何突围成为大家探讨的重点。

?

?

?机器人面临核心技术难题

?

?

?我国机器人市场增长迅猛,到2020年预计销量将达到20万台。去年1

月26日发布的《中国制造2025》重点领域技术创新路线图(2017年版)提出到2020年,自主品牌工业机器人市场占有率达到50%以上,关键零部件国产化率达到50%以上。

?

?

?国家制造强国建设战略咨询委员会委员屈贤明说,现在问题的关键就是要吸取芯片发展滞后受制于人的教训,力争到2020年基本解决机器人关键零部件依靠国外的这幺一个瓶颈。

?

?

?工业机器人产业的确面临井喷的趋势,但这种井喷必须依靠自主零部件和

服务机器人的核心技术

服务机器人的核心技术 一、上游企业的核心技术:传感器技术 相比工业机器人,服务机器人对精度的要求苛刻程度较小,而对智能的要求更高。因此以往机器人产业的进入壁垒高性能交流伺服电机和高精密减速器大大降低,而传感器、信号处理算法、运动规划算法将成为新的核心技术。 传感器是实现服务机器人功能的关键,工业机器人工作环境是已知和结构化的,而服务机器人工作环境是未知的,需要通过大量的传感器判断环境情况,对环境有准确的描述,·从而做出反应。传感器对于服务机器人的重要程度远远超过工业机器人。 除了目前已经比较成熟的压力、温度、接近和气体传感器之外,正在研发的核心传感器还包括深度传感器。深度传感器是机器人用来识别空间,判断“我在哪里?”和“我可以去哪?”的传感器。此外,服务机器人一般需要自主移动,这对传感器的微型化和集成化也提出了更高的要求。 二、中下游企业的核心技术:人工智能 人工智能技术是服务机器人的核心技术。人工智能研究如何让计算机去完成以往需要人的智力才能胜任的工作,研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。 人工智能技术包括:机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识

别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。 三、人形机器人的核心技术及技术挑战 人形机器人的核心技术 1)运动控制技术:① 算法;② 核心元器件:舵机 核心的元器件就是舵机,舵机它里面实际上是一种高精度的伺服模组,包含四个部分:伺服控制、电机、减速和传感反馈电路,和工业机器人类似,它70%的成本可能是在电机、传感和减速这一块,人形机器人也是类似的。所以要实现人形机器人量产,让它的价格更亲民的话,伺服舵机是非常重要的一块。 2)交互技术 在PC时代我们可能更多地是用遥控器或者是键盘鼠标来操控机器人。现在我们用触摸、用手机来控制它。但是更自然的人机交互方式应该是语言或者视觉,能够感知人的情绪,它可以识别说话的语音语调的变化来改变它的回答内容。更自然的交互技术可以提高用户的体验感,这是非常重要的一块。 四、人形机器人的技术挑战 1)伺服舵机。现在小型机器人输出扭矩比较小,现在输出扭矩的要求更大,它里面的电机、减速的要求很大。核心元器件的研发在国内领域还很少。 2) 稳定行走的控制理论,在实际的机器人的测试和运行过程中不是很理想。 3)室内定位导航。现在机器人还只能在小范围内运动。它的定位导航现在虽然有激光、视

人工智能的核心技术【精选】整理版

人工智能的核心技术是什么? 《人工智能标准化白皮书(2018)》 1 机器学习 机器学习(Machine Learning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。 (1)根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。 监督学习 监督学习是利用已标记的有限训练数据集,通过某种学习策略/方法建立一个模型,实现对新数据/实例的标记(分类)/映射,最典型的监督学习算法包括回归和分类。监督学习要求训练样本的分类标签已知,分类标签精确度越高,样本越具有代表性,学习模型的准确度越高。监督学习在自然语言处理、信息检索、文本挖掘、手写体辨识、垃圾邮件侦测等领域获得了广泛应用。 无监督学习 无监督学习是利用无标记的有限数据描述隐藏在未标记数据中的结构/规律,最典型的非监督学习算法包括单类密度估计、单类数据降维、聚类等。无监督学习不需要训练样本和人工标注数据,便于压缩数据存储、减少计算量、提升算法速度,还可以避免正、负样本偏移引起的分类错误问题。主要用于经济预测、异常检测、数据挖掘、图像处理、模式识别等领域,例如组织大型计算机集群、社交网络分析、市场分割、天文数据分析等。 强化学习 强化学习是智能系统从环境到行为映射的学习,以使强化信号函数值最大。由于外部环境提供的信息很少,强化学习系统必须靠自身的经历进行学习。强化学习的目标是学习从环境状态到行为的映射,使得智能体选择的行为能够获得环境最大的奖赏,使得外部环境对学习系统在某种意义下的评价为最佳。其在机器人控制、无人驾驶、下棋、工业控制等领域获得成功应用。 (2)根据学习方法可以将机器学习分为传统机器学习和深度学习。 传统机器学习 传统机器学习从一些观测(训练)样本出发,试图发现不能通过原理分析获得的规律,实现对未来数据行为或趋势的准确预测。相关算法包括逻辑回归、隐马尔科夫方法、支持向

智能制造十大核心技术

2016智能制造十大核心技术 所谓智能制造(Intelligent Manufacturing,IM)是指由智能机器和人类专家共同组成的人机一体化智能系统,它在制造过程中能进行智能活动,诸如分析、推理、判断、构思和决策等,通过人与人、人与机器、机器与机器之间的协同,去扩大、延伸和部分地取代人类专家在制造过程中的脑力劳动。 智能制造使得企业的竞争要素发生根本性的变化,由之前的材料、能源两种资源为核心转变为材料、能源和信息三种资源为核心的竞争,从而产生了两种生产力,即以传统的材料和能源为代表的工业生产力和以信息为代表的信息生产力,这三种资源、两种生产力合在一起,形成未来企业竞争的核心。 1、赛博物理系统 CPS:即赛博物理系统,Cyber-PhysicalSystems,是一个综合计算、 网络和物理环境的多维复杂系统,通过3C(Computing、Communication、Control)技术的有机融合与深度协作,实现大型工程系统的实时感知、动态控制和信息服务,让物理设备具有计算、通信、精确控制、远程协调和自治等五大功能,从而实现虚拟网络世界与现实物理世界的融合。CPS可以将资源、信息、物体以及人紧密联系在一起,从而创造物联网及相关服务,并将生产工厂转变为一个智能环境。 2、人工智能 AI:即人工智能(Artificial Intelligence),它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统。它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 3、增强现实技术 AR:即增强现实技术,Augmented Reality,它是一种将真实世界信息 和虚拟世界信息“无缝”集成的新技术,是把原本在现实世界的一定时间空间范 围内很难体验到的实体信息(视觉、声音、味道、触觉等信息)通过电脑等科学 技术,模拟仿真后再叠加,将虚拟的信息应用到真实世界,被人类感官所感知,从而达到超越现实的感官体验。真实的环境和虚拟的物体实时地叠加到了同一个画面或空间同时存在。增强现实技术,不仅展现了真实世界的信息,而且将虚拟的信息同时显示出来,两种信息相互补充、叠加。增强现实技术包含了多媒体、三维建模、实时视频显示及控制、多传感器溶合、实时跟踪及注册、场景融合等新技术与新手段。

机器人路径规划方法的研究

第5期(总第156期) 2009年10月机械工程与自动化 M ECHAN I CAL EN G I N EER I N G & AU TOM A T I ON N o 15 O ct 1 文章编号:167226413(2009)0520194203 机器人路径规划方法的研究 李爱萍,李元宗 (太原理工大学机械工程学院,山西 太原 030024) 摘要:路径规划技术是机器人学研究领域中的一个重要部分。目前的研究主要分为全局规划方法和局部规划方法两大类。通过对机器人路径规划方法研究现状的分析,指出了各种方法的优点及不足,并对其发展方向进行了展望。 关键词:机器人;全局规划;局部规划中图分类号:T P 242 文献标识码:A 收稿日期:2009201207;修回日期:2009204218 作者简介:李爱萍(19792),女,山西晋中人,在读硕士研究生。 0 引言 路径规划技术是机器人学研究领域中的一个重要 部分。机器人的最优路径规划就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在其工作空间中找到一条从起始状态到目标状态的最优路径。根据对环境信息的掌握程度不同,路径规划可分为:①全局路径规划:环境信息完全已知,根据环境地图按照一定的算法搜寻一条最优或者近似最优的无碰撞路径,规划路径的精确程度取决于获取环境信息的准确程度;②局部路径规划:环境信息完全未知或部分未知,根据传感器的信息来不断地更新其内部的环境信息,从而确定出机器人在地图中的当前位置及周围局部范围内的障碍物分布情况,并在此基础上,规划出一条从当前点到某一子目标点的最优路径。 1 全局规划方法111 栅格法 栅格法是目前研究最广泛的路径规划方法之一。该方法将机器人的工作空间分解为多个简单的区域(栅格),由这些栅格构成一个显式的连通图,或在搜索过程中形成隐式的连通图,然后在图上搜索一条从起始栅格到目标栅格的路径。一般路径只需用栅格的序号表示。但栅格的划分直接影响其规划结果,如果栅格划分过大,环境信息储藏量小,分辨率下降,规划能力就差;栅格划分过小,规划时间长,而且对信息存储能力的要求会急剧增加。112 可视图法 可视图法中的路径图由捕捉到的存在于机器人一 维网络曲线(称为路径图)自由空间中的节点组成。路径的初始状态和目标状态同路径图中的点相对应,这样路径规划问题就演变为在这些点间搜索路径的问题。要求机器人和障碍物各顶点之间、目标点和障碍物各顶点之间以及各障碍物顶点与顶点之间的连线均不能穿越障碍物,即直线是“可视的”。然后采用某种方法搜索从起始点到目标点的最优路径,搜索最优路径的问题就转化为从起始点到目标点经过这些可视直线的最短距离问题。该法能够求得最短路径,但需假设忽略机器人的尺寸大小,使得机器人通过障碍物顶点时离障碍物太近甚至接触,并且搜索时间长。113 拓扑法 拓扑法将规划空间分割成具有拓扑特征的子空间,根据彼此的连通性建立拓扑网络,在网络上寻找起始点到目标点的拓扑路径,最终由拓扑路径求出几何路径。拓扑法的基本思想是降维法,即将在高维几何空间中求路径的问题转化为低维拓扑空间中判别连通性的问题。其优点在于利用拓扑特征大大缩小了搜索空间,其算法的复杂性仅依赖于障碍物数目,在理论上是完备的;而且拓扑法通常不需要机器人的准确位置,对于位置误差也就有了更好的鲁棒性。缺点是建立拓扑网络的过程相当复杂,特别是在增加障碍物时如何有效地修正已经存在的拓扑网是有待解决的问题。 114 自由空间法 自由空间法采用预先定义的广义锥形或凸多边形等基本形状构造自由空间,并将自由空间表示为连通图,通过搜索连通图来进行路径规划。自由空间的构

工业机器人核心技术全解析

工业机器人核心技术全解析 无论是德国率先提出的“工业4.0”概念,美国推行的“先进制造伙伴关系(AMP)”计划,还是日本正在实施的“智慧制造系统(IMS)”和中国工信部通过的“中国制造2025规划”,这些都指向同一个目标,那就是希望通过先进的IT与自动化技术来促进制造业的革新,以实现“智能化”,提升效率,降低成本。而要实现这个目标工业机器人是不可或缺的一环。 以前,工业机器人应用最为广泛的是汽车制造业;现在,工业机器人制造企业正努力向其他领域拓展。工业机器人制造企业也如雨后春笋般不断涌现,据统计仅去年中国国内差不多增加了200多加工业机器人制造厂商。对于工业机器人的市场前景,业界都是一致看好,普遍认为未来5~10年将会迎来工业机器人的一个爆发期。不过,要想在这一波浪潮中得益的话也并不容易。因为工业机器人涉及的系统相当复杂,仅核心零部件就包括了机械系统、控制器、伺服器和减速器等等。本刊就工业机器人的关键技术问题采访了一些半导体厂商,详细介绍了工业机器人当中的一些电子核心零部件。 控制器平台之争 在Altera公司亚太区工业业务部市场开发首席经理江允贵看来,有三个趋势在推动着工业自动化市场的蓬勃发展。一是,提升能源效率,降低能源成本;二是提升生产效率,这包括功能安全、生产线的稳定安全、保护操作人员的安全、以及机器损坏的降低和更长的生命周期和可靠度;三是所谓的智能工厂。而只有前面两个因素达到后,才有可能实现智能工厂。他认为工业机器人是自动化里的很关键一部分。 江允贵拿智能工厂举例,他说现在一个典型的的智能工厂,从企业到工厂,以及工厂内如都是以工业以太网相连接的,他认为用工业以太网取代传统的以太网,主要是因为工业以太网的实时性更好。工业以太网可以连接主站和从站,连接主站中的PLC、PAC/运动控制器和HMI,和从站中的伺服器、I/O模块等等。

人工智能原理及其应用(王万森)第3版 课后习题答案

第1章人工智能概述课后题答案 1.1什么是智能?智能包含哪几种能力? 解:智能主要是指人类的自然智能。一般认为,智能是是一种认识客观事物和运用知识解决问题的综合能力。 智能包含感知能力,记忆与思维能力,学习和自适应能力,行为能力 1.2人类有哪几种思维方式?各有什么特点? 解:人类思维方式有形象思维、抽象思维和灵感思维 形象思维也称直感思维,是一种基于形象概念,根据感性形象认识材料,对客观对象进行处理的一种思维方式。 抽象思维也称逻辑思维,是一种基于抽象概念,根据逻辑规则对信息或知识进行处理的理性思维形式。 灵感思维也称顿悟思维,是一种显意识与潜意识相互作用的思维方式。 1.3什么是人工智能?它的研究目标是什么? 解:从能力的角度讲,人工智能是指用人工的方法在机器(计算机)上实现智能;从学科的角度看,人工智能是一门研究如何构造智能机器或智能系统,使它能模拟、延伸和扩展人类智能的学科。 研究目标: 对智能行为有效解释的理论分析; 解释人类智能; 构造具有智能的人工产品; 1.4什么是图灵实验?图灵实验说明了什么? 解:图灵实验可描述如下,该实验的参加者由一位测试主持人和两个被测试对象组成。其中,两个被测试对象中一个是人,另一个是机器。测试规则为:测试主持人和每个被测试对象分别位于彼此不能看见的房间中,相互之间只能通过计算机终端进行会话。测试开始后,由测试主持人向被测试对象提出各种具有智能性的问题,但不能询问测试者的物理特征。被测试对象在回答问题时,都应尽量使测试者相信自己是“人”,而另一位是”机器”。在这个前提下,要求测试主持人区分这两个被测试对象中哪个是人,哪个是机器。如果无论如何更换测试主持人和被测试对象的人,测试主持人总能分辨出人和机器的概率都小于50%,则认为该机器具有了智能。 1.5人工智能的发展经历了哪几个阶段? 解:孕育期,形成期,知识应用期,从学派分立走向综合,智能科学技术学科的兴起

机器人路径规划

1绪论 1.1机器人简介 1.1.1什么是机器人 机器人一词不仅会在科幻小说、动画片等上看到和听到,有时也会在电视上看到在工厂进行作业的机器人,在实际中也有机会看到机器人的展示。今天,说不定机器人就在我们的身过,但这里我们要讨论的是什么是机器人学研究的机器人。 机器人(robot)一词来源下1920年捷克作家卡雷尔. 查培克(Kapel Capek)所编写的戏剧中的人造劳动者,在那里机器人被描写成像奴隶那样进行劳动的机器。 后来作为一种虚构的机械出现在许多作品中,代替人们去完成某些工作。20世纪60年代出现了作为可实用机械的机器人。为了反这种机器人同虚构的机器人及玩具机器人加以区别,称其为工业机器人。 工业机器人的兴起促进了大学及研究所开展机器人的研究。随着计算机的普及,又积极地开展了带有智能的机器人的研究。到70年代,机器人作为工程对象已经被确认,机器人一词也受到公认。目前,机器人学的研究对象已不仅仅是工业机器人了。 即便是实际存在的机器人,也很难把它定义为机器人,而且其定义也随着时代在变化。这里简单地反具有下述性质的机械看作是机器人: 1.代替人进行工作:机器人能像人那样使用工具和机械,因此,数控机床和 汽车不是机器人。 2.有通有性:既可简单地变换所进行的作为,又能按照工作状况的变化相应 地进行工作。一般的玩具机器人不能说有通用性。 3.直接对个界作工作:不仅是像计算机那样进行计算,而且能依据计算结果 对外界结果对外界产生作用。 机器人学把这样定义的机器人作为研究对象。

1.1.2机器人的分类 机器人的分类方法很多,这里我们依据三个有代表性的分类方法列举机器人的种类。 首先,由天机器人要代替人进行作业,因此可根据代替人的哪一个器官来分类: 操作机器人(手):利用相当于手臂的机械手、相当于手指的手爪来使物体协作。 移动机器人(腿):虽然已开发出了2足步行和4足步行机器人,但实用的却是用车轮进行移动的机器人。(本文以轮式移动机器人作为研究对象)视觉机器人(眼):通过外观检查来除掉残次品,观看人的面孔认出是谁。虽然还有使用触觉的机器人,但由于它不是为了操作,所以不能说是触觉机器人。 也还有不仅代替单一器官的机器人,例如进行移动操作,或进行视觉和操作的机器人。 其次,按机器人的应用来分类: 工业机器人:可分为搬送、焊接、装配、喷漆、检查等机器人,主要用于工厂内。 极限作业器人:主要用在人们难以进入的核电站、海底、宇宙空间等进行作为的机器人。也包括建筑、农业机器人等。 娱乐机器人:有弹奏乐器的机器人、舞蹈机器人、宠物机器人等,具有某种程度的通用性。也有适应环境面改变行动的宠物机器人。 最后则是按照基于什么样的信息进行动作来分类: 表1基于动作信息的机器人分类

人工智能历史、核心技术和应用

人工智能历史、核心技术和应用 一、概述 2011年以来,开发与人工智能相关的产品和技术并商业化的公司已获得超过总计20亿美元的风险投资,还有数十亿美元的投资收购人工智能初创公司。巨额投资、计算机导致失业等问题也开始浮现,计算机比人更加聪明并有可能威胁到人类生存这类论断被媒体四处引用并引发广泛关注。 IBM承诺拨出10亿美元来使他们的认知计算平台Watson商业化。谷歌在最近几年里的投资主要集中在人工智能领域,比如收购了8个机器人公司和1个机器学习公司。Facebook聘用了人工智能学界泰斗Yann LeCun 来创建人工智能实验室。牛津大学研究人员的报告,美国约47%的工作因为机器认知技术自动化而变得岌岌可危。 纽约时报畅销书《The Second Machine Age》论断,数字科技和人工智能带来巨大积极改变的时代已经到来,但是随之而来的也有引发大量失业等负面效应。 硅谷创业家Elon Musk 则通过不断投资的方式来保持对人工智能的关注。他甚至认为人工智能的危险性超过核武器。著名理论物理学家Stephen Hawking认为,如果成功创造出人工智能则意味着人类历史的终结,“除非我们知道如何规避风险。”

二、人工智能与认知科技 揭秘人工智能的首要步骤就是定义专业术语,勾勒历史,同时描述基础性的核心技术。 1、人工智能的定义 人工智能领域苦于存在多种概念和定义,有的太过有的则不够。作为该领域创始人之一的Nils Nilsson先生写到:“人工智能缺乏通用的定义。”一本如今已经修订三版的权威性人工智能教科书给出了八项定义,但书中并没有透露其作者究竟倾向于哪种定义。实用的定义为——人工智能是对计算机系统如何能够履行那些只有 依靠人类智慧才能完成的任务的理论研究。例如,视觉感知、语音识别、在不确定条件下做出决策、学习、还有语言翻译等。 比起研究人类如何进行思维活动,从人类能够完成的任务角度对人工智能进行定义,而非人类如何思考,在当今时代能够让我们绕开神经机制层面对智慧进行确切定义从而直接探讨它的实际应用。随着计算机为解决新任务挑战而升级换代并推而广之,人们对那些所谓需要依靠人类智慧才能解决的任务的定义门槛也越来越高。所以,人工智能的定义随着时间而演变,这一现象称之为“人工智能效应”,概括起来就是“人工智能就是要实现所有目前还无法不借助人类智慧才能实现的任务的集合。” 2、人工智能的历史

一文看懂发展工业机器人的重要性及技术难题的突破

一文看懂发展工业机器人的重要性及技术难题的突破 根据机器人的应用环境及我国机器人的自身市场现状,中国电子学会将机器人分成工业机器人、服务机器人、特种机器人三类。其中,工业机器人是指面向工业领域的多关节机械手或多自由度机器人,在工业生产加工过程中通过自动控制来代替人类执行某些单调、频繁和重复的长时间作业。 工业机器人被认为是智能制造的重要基石,但国产机器人和芯片产业其实存在相似制约,即对外依存度高、缺乏核心技术,阻碍我国智能制造的发展。在近日召开的第五届中国机器人峰会上,工业机器人如何突围成为大家探讨的重点。 据前瞻产业研究院《中国工业机器人行业产销需求预测与转型升级分析报告》数据显示,2016年我国机器人销量8.7万台,同比增长26.9%,快于全球增速15.9%,占全球销量的30%。2017年我国工业机器人年销量11.1万台,同比增长27.59%,增速连续三年扩大。机器人面临核心技术难题 我国机器人市场增长迅猛,到2020年预计销量将达到20万台。去年1月26日发布的《中国制造2025》重点领域技术创新路线图(2017年版)提出到2020年,自主品牌工业机器人市场占有率达到50%以上,关键零部件国产化率达到50%以上。 国家制造强国建设战略咨询委员会委员屈贤明说,现在问题的关键就是要吸取芯片发展滞后受制于人的教训,力争到2020年基本解决机器人关键零部件依靠国外的这么一个瓶颈。工业机器人产业的确面临井喷的趋势,但这种井喷必须依靠自主零部件和集成技术的提升才能解决目前供给不平衡不充分的困境。关键零部件这几年虽有突破,但电机、主轴等高端部件仍大量依靠进口。 香港科技大学教授李泽湘认为,机器人核心零部件一直是困扰国产机器人发展的一个瓶颈问题,如何突破这个瓶颈,使国家机器人特别是工业机器人产业得到快速稳定发展,是所有机器人领域从业者的一个梦想,也是一个长时间的追求。 机器人为何那么重要

机器人技术的发展现状

(一)国内工业机器人的需求情况 工业机器人发展长期以来受限于成本较高与国内劳动力价格低廉的状况,随着中国经济持续快速的发展,近几年的国民生产总值年平均增长率更是保持在9%左右,人民生活水平不断地提高,劳动力供应格局已经逐步从“买方”市场转为“卖方”市场、由供远大于求转向供求平衡。作为制造业主力的农民工也从早期的仅解决温饱问题到现在对薪资和工作条件提出了更高的要求。这些情况使得许多劳动密集型企业为了提高劳动生产率所采用的增加工人数量、延长工人劳动时间的方法变得成本高昂,同时也受到法律的限制和政策的阻碍。无论是企业还是社会都认识到必须采取从改善机器设备入手,提高技术和资金的密集度来减少用工量以应对这种改变。总之,劳动力过剩程度降低、单个工人成本上升、对产品质量更高的要求、国家对装备制造业的重视等变化改善了机器人的使用环境,工业机器人及技术在中国已逐步得到了政府和企业的重视。随着机器人知识的广泛普及,人们对于各种机器人的了解与认识逐步深化,利用机器人技术提升我国工业发展水平、从制造业大国向强国转变,提高人民生活质量成为全社会的共识。 (二)国内工业机器人的销售情况 国家863机器人技术主题自成立以来一直重视机器人技术在产业中的推广和应用,长期以来推进机器人技术以提升传统产业,利用机器人技术发展高新产业。目前,政府正在使用各种办法加大中国装备制造业在市场中占据的份额,并提供优惠措施鼓励更多企业使用机器人及技术以提升技术水平。国内越来越多的企业在生产中采用了工业机器人,各种机器人生产厂家的销售量都有大幅度的提高。根据我国海关统计,最近4年来许多企业在华的销售量甚至是前面十几年销售量的几倍,年平均增长率超过40%。2001年我国工业机器人海关进出口数量不过是3774台,国内生产数量约700台左右。2004年市场规模已经增长到万台左右,数量和金额相对于2001年都增长了两倍。2004年国产工业机器人数量突破了1400台,产值突破8亿元人民币。进口机器人数量超过9000台,其中多功能机器人约1700台,简易机器人7500台,进口额约25亿美元。德国CLOOS公司在华焊接机器人销售量2000年以前为47台,2000年以后已经突破121台,销售量翻了近3倍。可以预见,中国的工业机器人产业不久后将会作为一种在国民经济中占据重要地位的产业而存在。 (三)国内工业机器人的市场特征 1.以汽车制造业为主的制造业发展促进了工业机器人的发展。汽车制造业属于技术、资 金密集型产业,也是工业机器人应用最广泛的行业。在我国,工业机器人的最初应用是在汽车和工程机械行业,主要用于汽车及工程机械的喷涂及焊接。2000年开始,受国家宏观政策调控及居民消费水平提高的影响,我国汽车工业进入了一个高速增长期。面对这种局面,国际汽车巨头纷纷进入中国市场并与我国企业合资设厂或扩大原有生产规模,国内企业也纷纷转型或加大对汽车行业的投资,整个行业增产扩能增加了对工业机器人需求。据不完全统计,最近几年国内厂家所生产的工业机器人有超过一半是提供给汽车行业的,海关进出口增长数据与汽车行业增长数据具有较高的相关度。可知,汽车工业的发展是近几年我国工业机器人增长的原动力之一。 2.沿海经济发达地区是工业机器人的主要市场。我国工业机器人的使用集中在广东、江 苏、上海、北京等地,工业机器人的拥有量占全国的一半以上,这种分布态势和增长趋势符合我国现阶段经济发展状况。我国经济最具活力的地区已经从珠江三角洲地区扩展到

【机器人智能技术论文】人工智能机器人论文

【机器人智能技术论文】人工智能机器人论文 随着社会发展的需要和机器人应用领域的扩大,人们对智能机器人的要求也越来越高。下面是的机器人智能技术论文,希望你能从中得到感悟! 刍议智能机器人及其关键技术 【摘要】文章介绍了机器人的定义,阐述了智能机器人研究领域的关键技术,最后展望了智能机器人今后的发展趋势。 【关键词】智能机器人;信息融合;智能控制 一、机器人的定义 自机器人问世以来,人们就很难对机器人下一个准确的定义,欧美国家认为机器人应该是“由计算机控制的通过编程具有可以变更的多功能的自动机械”;日本学者认为“机器人就是任何高级的自动机械”,我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器。”目前国际上对机器人的概念已经渐趋一致, __标准化组织采纳了美国机器人协会(RIA:Robot Institute of America)

于1979 年给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变 和可编程动作的专门系统。”概括说来,机器人是靠自身动和控制能力来实现各种功能的一种机器。 二、智能机器人关键技术 随着社会发展的需要和机器人应用领域的扩大,人们对智能 机器人的要求也越来越高。智能机器人所处的环境往往是的、难以预测的,在研究这类机器人的过程中,主要涉及到以下关键技术: (1)多传感器信息融合。多传感器信息融合技术是近年来十分热门的研究课题,它与控制理论、信号处理、人工智能、概率和统计相结合,为机器人在各种复杂、动态、不确定和的环境中执行任务提供了一种技术解决途径。机器人所用的传感器有很多种,根据不同用途分为内部测量传感器和外部测量传感器两大类。内部测量传感器用来检测机器人组成部件的内部状态,包括:特定位置、角度传感器;任 意位置、角度传感器;速度、角度传感器;加速度传感器;倾斜角传感器;方位角传感器等。外部传感器包括:视觉(测量、认识传感器)、 触觉(接触、压觉、滑动觉传感器)、力觉(力、力矩传感器)、接近觉(接近觉、距离传感器)以及角度传感器(倾斜、方向、姿式传感器)。多传感器信息融合就是指综合多个传感器的感知数据,以产生更可靠、

移动机器人路径规划技术综述

第25卷第7期V ol.25No.7 控制与决策 Control and Decision 2010年7月 Jul.2010移动机器人路径规划技术综述 文章编号:1001-0920(2010)07-0961-07 朱大奇,颜明重 (上海海事大学水下机器人与智能系统实验室,上海201306) 摘要:智能移动机器人路径规划问题一直是机器人研究的核心内容之一.将移动机器人路径规划方法概括为:基于模版匹配路径规划技术、基于人工势场路径规划技术、基于地图构建路径规划技术和基于人工智能的路径规划技术.分别对这几种方法进行总结与评价,最后展望了移动机器人路径规划的未来研究方向. 关键词:移动机器人;路径规划;人工势场;模板匹配;地图构建;神经网络;智能计算 中图分类号:TP18;TP273文献标识码:A Survey on technology of mobile robot path planning ZHU Da-qi,YAN Ming-zhong (Laboratory of Underwater Vehicles and Intelligent Systems,Shanghai Maritime University,Shanghai201306, China.Correspondent:ZHU Da-qi,E-mail:zdq367@https://www.doczj.com/doc/a29561988.html,) Abstract:The technology of intelligent mobile robot path planning is one of the most important robot research areas.In this paper the methods of path planning are classi?ed into four classes:Template based,arti?cial potential?eld based,map building based and arti?cial intelligent based approaches.First,the basic theories of the path planning methods are introduced brie?y.Then,the advantages and limitations of the methods are pointed out.Finally,the technology development trends of intelligent mobile robot path planning are given. Key words:Mobile robot;Path planning;Arti?cial potential?eld;Template approach;Map building;Neural network; Intelligent computation 1引言 所谓移动机器人路径规划技术,就是机器人根据自身传感器对环境的感知,自行规划出一条安全的运行路线,同时高效完成作业任务.移动机器人路径规划主要解决3个问题:1)使机器人能从初始点运动到目标点;2)用一定的算法使机器人能绕开障碍物,并且经过某些必须经过的点完成相应的作业任务;3)在完成以上任务的前提下,尽量优化机器人运行轨迹.机器人路径规划技术是智能移动机器人研究的核心内容之一,它起始于20世纪70年代,迄今为止,己有大量的研究成果报道.部分学者从机器人对环境感知的角度,将移动机器人路径规划方法分为3种类型[1]:基于环境模型的规划方法、基于事例学习的规划方法和基于行为的路径规划方法;从机器人路径规划的目标范围看,又可分为全局路径规划和局部路径规划;从规划环境是否随时间变化方面看,还可分为静态路径规划和动态路径规划. 本文从移动机器人路径规划的具体算法与策略上,将移动机器人路径规划技术概括为以下4类:模版匹配路径规划技术、人工势场路径规划技术、地图构建路径规划技术和人工智能路径规划技术.分别对这几种方法进行总结与评价,展望了移动机器人路径规划的未来发展方向. 2模版匹配路径规划技术 模版匹配方法是将机器人当前状态与过去经历相比较,找到最接近的状态,修改这一状态下的路径,便可得到一条新的路径[2,3].即首先利用路径规划所用到的或已产生的信息建立一个模版库,库中的任一模版包含每一次规划的环境信息和路径信息,这些模版可通过特定的索引取得;随后将当前规划任务和环境信息与模版库中的模版进行匹配,以寻找出一 收稿日期:2009-08-30;修回日期:2009-11-18. 基金项目:国家自然科学基金项目(50775136);高校博士点基金项目(20093121110001);上海市教委科研创新项目(10ZZ97). 作者简介:朱大奇(1964?),男,安徽安庆人,教授,博士生导师,从事水下机器人可靠性与路径规划等研究;颜明重(1977?),男,福建泉州人,博士生,从事水下机器人路径规划的研究.

人工智能及其应用 习题参考答案 第1章

第一章绪论 1 什么是人工智能?试从学科和能力两方面加以说明。 答:人工智能(学科):人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。其近期的主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。 人工智能(能力):人工智能(能力)是智能机器所执行的通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动。 2 为什么能够用机器(计算机)模仿人的智能? 答:物理符号系统假设:任何一个系统,如果它能够表现出智能,那么它就必定能够执行上述 6 种功能。反之,任何系统如果具有这6种功能,那么它就能够表现出智能;这种智能指的是人类所具有的那种智能。 推论:既然人是一个物理符号系统,计算机也是一个物理符号系统,那么就能够用计算 机来模拟人的活动。 因此,计算机可以模拟人类的智能活动过程。 3.现在人工智能有哪些学派?它们的认知观是什么? 答:符号主义,又称为逻辑主义、心理学派或计算机学派。认为人工智能源于数理逻辑。连接主义,又称为仿生学派或生理学派。认为人工智能源于仿生学,特别是人脑模型的研究。

行为主义,又称为进化主义或控制论学派。认为人工智能源于控制论。 4.你认为应从哪些层次对认知行为进行研究? 答:应从下面4个层次对谁知行为进行研究: (1)认知生理学:研究认知行为的生理过程,主要研究人的神经系统(神经元、中枢神经系统和大脑)的活动。 (2)认知心理学:研究认知行为的心理活动,主要研究人的思维策略。 (3)认知信息学:研究人的认知行为在人体内的初级信息处理,主要研究人的认知行为如何通过初级信息自然处理,由生理活动变为心理活动及其逆过程 (4)认知工程学:研究认知行为的信息加工处理,主要研究如何通过以计算机为中心的人工信息处理系统,对人的各种认知行为(如知觉、思维、记忆、语言、学习、理解、推理、识别等)进行信息处理。 5.人工智能的主要研究和应用领域是什么? 答:问题求解,逻辑推理与定理证明,自然语言理解,自动程序设计,专家系统,机器学习,神经网络,机器人学,模式识别,机器视觉,智能控制,智能检索,智能调度与指挥,分布式人工智能与 Agent,计算智能与进化计算,数据挖掘与知识发现,人工生命。 6、人工智能的发展对人类有哪些方面的影响?试结合自己了解的情况何理解,从经济、社会何文化等方面加以说明?

机器人路径规划方法的研究进展与趋势

机器人路径规划方法的研究进展与趋势 朱明华,王霄,蔡兰 (江苏大学机械工程学院,江苏镇江212013) 摘要:对机器人路径规划的研究进行了概括和总结,阐述了机器人全局路径规划方法、局部路径规划方法及混合方法的研究现状、特点和主要成果,指出了其今后的发展方向及研究重点。 关键词:机器人;遗传算法;路径规划;粗糙集 中图分类号:T P242 文献标识码:A 文章编号:1001-3881(2006)3-005-4 R esearch P rogress and Future Develop m ent on Path P lanni n g for Robot Z HU M inghua,WANG X iao,CA I Lan (M echanical Eng i n eering Institute,Jiangsu Un i v ersity,Zhenjiang Jiangsu212013,China) Abstrac t:T he research of robo t pa t h plann i ng w as s umm arized,the research sta t us quo,character i stic and ma i n producti on of robo t g l obal path p l ann i ng m ethod,l oca l path p l ann i ng m ethod and hybr i d m ethod were expatiated,its deve l op m ent d irec tions and study f o cus w ere po i nted out. K eyword s:R obot;G enetic a l gor it hm s;P ath p lann i ng;R ough set 路径规划技术是机器人研究领域中的一个重要分支,是机器人导航中最重要的任务之一。蒋新松在文献[1]中为路径规划作出了这样的定义:路径规划是自治式移动机器人的一个重要组成部分,它的任务就是在具有障碍物的环境内按照一定的评价标准,寻找一条从起始状态(包括位置和姿态)到达目标状态(包括位置和姿态)的无碰路径。障碍物在环境中的不同分布情况当然直接影响到规划的路径,而目标位置的确定则是由更高一级的任务分解模块提供的。目前,根据对环境的掌握情况,机器人的路径规划问题可以大致分为二大类:基于环境先验信息的全局路径规划;基于不确定环境的传感器信息的局部路径规划。 1 全局路径规划方法(G lobal Pat h Plann i n g) 依据已获取的全局环境信息,给机器人规划出一条从起点至终点的运动路径。规划路径的精确程度取决于获取环境信息的准确程度。全局路径规划规划方法通常可以寻找最优解,但需要预先知道准确的全局环境信息。通常该方法计算量大,实时性差,不能较好地适应动态非确定环境。基于环境建模的全局路径规划的方法主要有:自由空间法、构型空间法和栅格法等。 1 1 自由空间法(Free Space Approach) 自由空间法采用预先定义的如广义锥形[2]和凸多边形[3]等基本形状构造自由空间,并将自由空间表示为连通图,然后通过搜索连通图来进行路径规划,此方法比较灵活,即使起始点和目标点改变,也不必重构连通图,但是算法的复杂程度与障碍物的多少成正比,且不能保证任何情况下都能获得最短路径。因而该方法仅适用于路径精度要求不高,机器人速度不快的场合。按照划分自由空间方法的不同又可分为:凸区法、三角形法、广义锥法。 1 2 构型空间法 为了简化问题,通常将机器人缩小为一点,将其周围的障碍物按比例相应地进行拓展,使机器人在障碍物空间中能够任意移动而不与障碍物及其边界发生碰撞。目前研究比较成熟的有可视图法[4]和优化算法(如D ijkstra法[5]、A*搜索算法[6]等)。 1 2 1 可视图法(V-G r aph) 通过起始点和目标点及障碍物的顶点在内的一系列点来构造可视图。连接这些点使某点与其周围的某可视点相连,即要求机器人和障碍物各顶点之间、目标点和障碍物各顶点以及各障碍物顶点与顶点之间的连线均不能穿越障碍物,也即直线是可视的。从而搜索最优路径的问题就转化为经过这些可视直线从起始点到目标点的最短距离问题。 1 2 2 优化算法(Optm i ization A l gorit hm) 优化算法可以删除一些不必要的连线以简化可视图,从而缩短搜索时间,求得最短路径。但是,优化算法缺乏灵活性,一旦起点和目标点改变,就必须重构可视图,并且搜索效率也较低。 1 3 栅格法(Grids) 栅格法[7]将机器人的工作环境分解成一系列具有二值信息的网格单元,并假设工作空间中障碍物的位置和大小已知且在机器人运动过程中不会发生变化。用尺寸相同的栅格对机器人的二维工作空间进行规划,栅格大小以机器人自身的尺寸为准。若某一栅格范围内不含任何障碍物,则称此栅格为自由栅格;反之,称为障碍栅格。这样,自由空间和障碍物均可表示为栅格块的集成。栅格的表识方法有两种:直角坐标法和序号法。直角坐标法如图1所示,以栅格阵左上角为坐标原点,水平向右为X轴正方向,竖直向

机器人新实施计划书

一、主要技术、产品及服务(产品开发、生产策略,行业特点、竞争焦点、主要的技术指标和关键技术说明、主要介绍技术、产品及服务的背景、目前所处发展阶段、与国内外同行业其它公司同类技术、产品及服务的比较,本公司技术、产品及服务的新颖性、先进性和独特性,如拥有的专门技术、版权、配方、品牌、销售网络、许可证、专营权、特许权经营等) 1、产品概述 项目名称:高性能码垛机器人及其控制系统的研制 项目内容:为降低工人劳动强度,改善生产环境,提高企业生产效率,降低生产成本,增进经济效益,研制一种新型码垛机器人,用于工业生产过程中实现大批量工件的获取、搬运、码垛、拆垛等,这对于降低码垛机器人的成本和提高国内工业生产自动化的水平具有重大的意义。 主要研究内容包括:(1)码垛机器人机械机构的设计,关键部件的受力分析,整体的运动学仿真以及模态分析;(2)码垛机器人控制系统的研制。 面对我国经济的迅速发展、劳动力的短缺、生产成本的增高等,本项目提出“高性能码垛机器人及其控制系统的研制”。项目的研发不仅可以降低工人劳动强度,改善生产环境,提高生产效率,并且可以大幅降低企业生产成本,具有巨大的市场价值和应用推广前景。 关键技术: (1)四自由度码垛机器人机械部分的设计和码垛机器人动力学分析; (2)满足自动化生产线上码垛作业的高性能码垛机器人控制系统的研制。 主要技术、经济指标: (1)主体结构是四边形的连杆结构,由4个自由度组成,其中包括2个旋转副和2个移动副。机器人的执行末端通过腰部的旋转运动,前大臂的水平运动,后大臂的垂直运动,抓手的旋转运动相互组合,共同完成对物品的码垛作业。该码垛机器人水平方向滑座移动范围-100mm

机器人路径规划问题

原理 设:U(X)为总引力场,()att U x 为目的地引力场,()rep U x 为障碍物排斥场;F(X)为总引力,()att F x 为引力,()rep F x 为斥力;,k η是正比例位置增益系数,0,,g X X X 分别代表机器人,目标和障碍物在空间中的位置。(,)||g g X X X X ρ=-表示机器人与目标之间的距离。00(,)||X X X X ρ=-为机器人在空间的位置与障碍物之间的距离。常数0ρ代表障碍物的影响距离,应根据障碍物和目标点的具体情况而定。 引力势场函数为: 21()(,)2 att g U X k X X ρ= 斥力势场函数为: 2000000111(,)()2(,)0 rep X X U X X X X X ηρρρρρρ????-≤??=????>? 总势场函数为: ()()()att rep U X U X U X =+ 力函数F(X)是势场函数U(X)的负梯度。 机器人所受的引力为: ()()att g F X k X X =- 斥力为: 00200000111 (,)()(,)(,)0 (,) rep X X F X X X X X X X ηρρρρρρρ???-≤???=????>? 合力为: ()()()att rep F X F X F X =+ 实验步骤 根据上述原理进行做实验,力求确定主要参数影响距离0ρ,引力参数k ,斥力系数η,以及机器人运动的步长l 。步骤: (1) 简历地图,确定机器人目标和障碍的位置,并确定矢量势场模型的矢量初始参数; (2) 计算机器人到球的距离,计算吸引力矢量; (3) 计算球场上障碍物对机器人的位置斥力,判断是否需要避障,计算斥力矢量; (4) 计算引力矢量和斥力矢量的和,并将该和矢量分解到x 和y 轴上,继而确定机器人下一步的位置点; (5)然后回到步骤(2),直到该位置点为终点。 核心代码: void find_Attract(double *Yatx,double *Yaty,int h0,int w0)//求引力

相关主题
文本预览
相关文档 最新文档