当前位置:文档之家› 概率论与数理统计第七章参数估计习题答案

概率论与数理统计第七章参数估计习题答案

统计学第七章、第八章课后题答案

统计学复习笔记 第七章参数估计 一、思考题 1.解释估计量和估计值 在参数估计中,用来估计总体参数的统计量称为估计量。估计量也是随机变量。如样本均值,样本比例、样本方差等。 根据一个具体的样本计算出来的估计量的数值称为估计值。 2.简述评价估计量好坏的标准 (1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。 (2)有效性:是指估计量的方差尽可能小。对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。 (3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。 3.怎样理解置信区间 在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。置信区间的论述是由区间和置信度两部分组成。有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。在公布调查结果时给出被调查人数是负责任的表现。这样则可以由此推算出置信度(由后面给出的公式),反之亦然。 4.解释95%的置信区间的含义是什么 置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。 不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以的概率覆盖总体参数。 5.简述样本量与置信水平、总体方差、估计误差的关系。 1. 估计总体均值时样本量n 为 (z 2 )2 2其中: E z n n E22 其中: E z 2 n 2. 样本量n 与置信水平1- α、总体方差、估计误差E之间的关系为与置信水平 成正比,在其他条件不变的情况下,置信水平越大,所

概率论与数理统计综合试题

Ⅱ、综合测试题 s388 概率论与数理统计(经管类)综合试题一 (课程代码 4183) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列选项正确的是 ( B ). A. A B A B +=+ B.()A B B A B +-=- C. (A -B )+B =A D. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是 ( D ). A.P (A -B )=P (A )-P (B ) B.P (AB )=P (A )P (B ) C. P (A +B )=P (A )+P (B ) D. P (A +B )=P (A )+P (B )-P (AB ) 3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A. 18 B. 16 C. 14 D. 1 2 4.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ). A. 1120 B. 160 C. 15 D. 12 5.设随机事件A ,B 满足B A ?,则下列选项正确的是 ( A ). A.()()()P A B P A P B -=- B. ()()P A B P B += C.(|)()P B A P B = D.()()P AB P A = 6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ( C ). A. 0()1f x ≤≤ B. f (x )连续 C. ()1f x dx +∞-∞ =? D. ()1f +∞= 7.设离散型随机变量X 的分布律为(),1,2,...2k b P X k k ===,且0b >,则参数b 的 值为 ( D ). A. 1 2 B. 13 C. 15 D. 1

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告 学生姓名李樟取 学生班级计算机122 学生学号201205070621 指导教师吴志松 学年学期2013-2014学年第1学期

实验报告一 成绩 日期 年 月 日 实验名称 单个正态总体参数的区间估计 实验性质 综合性 实验目的及要求 1.了解【活动表】的编制方法; 2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法. 实验原理 利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。 1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为 样本的观测值 于是得到μ的置信水平为1-α 的置信区间为 利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。 2.设总体2~(,)X N μσ,其中2 σ未知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为样本的观测值 整理得 /2/21X z X z n n P αασαμσ? ?=-??? ?-<<+/2||1/X U z P n ασμα????==-??????-

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

统计学答案第七章

1 估计量的含义是指()。 A.用来估计总体参数的统计量的名称 B.用来估计总体参数的统计量的具体数值 C.总体参数的名称 D.总体参数的具体数值 2 在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。这种评价标准称为()。 A.无偏性 B.有效性 C.一致性 D.充分性 3 根据一个具体的样本求出的总体均值的95%的置信区间()。 A.以95%的概率包含总体均值 B.有5%的可能性包含总体均值 C.一定包含总体均值 D.要么包含总体均值,要么不包含总体均值 4 无偏估计是指()。 A.样本统计量的值恰好等于待估的总体参数 B.所有可能样本估计值的数学期望等于待估总体参数 C.样本估计值围绕待估总体参数使其误差最小 D.样本量扩大到和总体单元相等时与总体参数一致 5 总体均值的置信区间等于样本均值加减边际误差,其中的边际误差等于所要求置信水平的临界值乘以()。 A.样本均值的抽样标准差 B.样本标准差 C.样本方差 D.总体标准差 6 当样本量一定时,置信区间的宽度()。 A.随着置信系数的增大而减小 B.随着置信系数的增大而增大 C.与置信系数的大小无关 D.与置信系数的平方成反比 7 当置信水平一定时,置信区间的宽度()。 A.随着样本量的增大而减小 B.随着样本量的增大而增大 C.与样本量的大小无关 D.与样本量的平方根成正比 8 一个95%的置信区间是指()。 A.总体参数有95%的概率落在这一区间内 B.总体参数有5%的概率未落在这一区间内 C.在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数 D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题(一) 一、选择题(本题共6小题,每小题2分,共12分) 1.某射手向一目标射击两次,A i表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1A2B.21A A C.21A A D.21A A 2.某人每次射击命中目标的概率为p(0

6.设随机变量X 与Y 相互独立,X 服从参数2为的指数分布,Y ~B (6,2 1),则D(X-Y)=( ) A .1- B .74 C .54- D .12 - 二、填空题(本题共9小题,每小题2分,共18分) 7.同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为________. 8.将3个球放入5个盒子中,则3个盒子中各有一球的概率为= _______ _. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是= . 10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度f Y (y )=________. 11.设二维随机变量(X ,Y )的概率密度 f (x ,y )=? ??≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59?? ???, 则相关系数,X Y ρ= ________. 13. 二维随机变量(X ,Y ) (1,3,16,25,0.5)N -:,则X : ;Z X Y =-+: . 14. 随机变量X 的概率密度函数为 51,0()50,0x X e x f x x -?>?=??≤?,Y 的概率密度函数为1,11()20,Y y f y others ?-<

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

统计学第七章、第八章课后题答案.doc

统计学复习笔记 第七章 一、 思考题 1. 解释估计量和估计值 在参数估计中,用来估计总体参数的统计量称为估计量。估计量也是随机变量。如样本均值,样本比例、样本方差等。 根据一个具体的样本计算出来的估计量的数值称为估计值。 2. 简述评价估计量好坏的标准 (1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。 (2)有效性:是指估计量的方差尽可能小。对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。 (3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。 3. 怎样理解置信区间 在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。置信区间的论述是由区间和置信度两部分组成。有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。在公布调查结果时给出被调查人数是负责任的表现。这样则可以由此推算出置信度(由后面给出的公式),反之亦然。 4. 解释95%的置信区间的含义是什么 置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。 不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。 5. 简述样本量与置信水平、总体方差、估计误差的关系。 1. 估计总体均值时样本量n 为 2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为 其中: 2222α2222)(E z n σα=n z E σα2=

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

概率论与数理统计考试试卷与答案

0506 一.填空题(每空题2分,共计60 分) 1、A、B 是两个随机事件,已知p(A) 0.4,P(B) 0.5,p(AB) 0.3 ,则p(A B) 0.6 , p(A -B) 0.1 ,P(A B)= 0.4 , p(A B) 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2 只,则第一次、第二次取红色球的概率为:1/3 。(2)若有放回地任取 2 只,则第一次、第二次取红色球的概率为:9/25 。( 3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55 。 3、设随机变量X 服从B(2,0.5)的二项分布,则p X 1 0.75, Y 服从二项分 布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从B(100,0.5),E(X+Y)= 50 , 方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、 0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取 一件。 ( 1)抽到次品的概率为:0.12 。 2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 6、若随机变量X ~N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则P{ 2 X 4} 0.815 , Y 2X 1,则Y ~ N( 5 ,16 )。

7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1 ,D(Y)=2, 且 X、Y 相互独立,则:E(2X Y) - 4 ,D(2X Y) 6 。 8、设D(X) 25 ,D( Y) 1,Cov( X ,Y) 2,则D(X Y) 30 9、设X1, , X 26是总体N (8,16)的容量为26 的样本,X 为样本均值,S2为样本方 差。则:X~N(8 ,8/13 ),25S2 ~ 2(25),X 8 ~ t(25)。 16 s/ 25 10、假设检验时,易犯两类错误,第一类错误是:”弃真” ,即H0 为真时拒绝H0, 第二类错误是:“取伪”错误。一般情况下,要减少一类错误的概率,必然增大另一类错误的概率。如果只对犯第一类错误的概率加以控制,使之

概率论与数理统计数学实验

概率论与数理统计数学实验 目录 实验一几个重要的概率分布的MATLAB实现 p2-3 实验二数据的统计描述和分析 p4-8 实验三参数估计 p9-11 实验四假设检验 p12-14 实验五方差分析 p15-17 实验六回归分析 p18-27

实验一 几个重要的概率分布的MATLAB 实现 实验目的 (1) 学习MATLAB 软件与概率有关的各种计算方法 (2) 会用MATLAB 软件生成几种常见分布的随机数 (3) 通过实验加深对概率密度,分布函数和分位数的理解 Matlab 统计工具箱中提供了约20种概率分布,对每一种分布提供了5种运算功能,下表给出了常见8种分布对应的Matlab 命令字符,表2给出了每一种运算功能所对应的Matlab 命令字符。当需要某一分布的某类运算功能时,将分布字符与功能字符连接起来,就得到所要的命令。 例1 求正态分布()2,1-N ,在x=1.2处的概率密度。 解:在MATLAB 命令窗口中输入: normpdf(1.2,-1,2) 结果为: 0.1089 例2 求泊松分布()3P ,在k=5,6,7处的概率。 解:在MATLAB 命令窗口中输入: poisspdf([5 6 7],3) 结果为: 0.1008 0.0504 0.0216 例3 设X 服从均匀分布()3,1U ,计算{}225P X .-<<。 解:在MATLAB 命令窗口中输入: unifcdf(2.5,1,3)-unifcdf(-2,1,3) 结果为: 0.75000

例4 求概率995.0=α的正态分布()2,1N 的分位数αX 。 解:在MATLAB 命令窗口中输入: norminv(0.995,1,2) 结果为: 6.1517 例5 求t 分布()10t 的期望和方差。 解:在MATLAB 命令窗口中输入: [m,v]=tstat(10) m = 0 v = 1.2500 例6 生成一个2*3阶正态分布的随机矩阵。其中,第一行3个数分别服从均值为1,2,3;第二行3个数分别服从均值为4,5,6,且标准差均为0.1的正态分布。 解:在MATLAB 命令窗口中输入: A=normrnd([1 2 3;4 5 6],0.1,2,3) A = 1.1189 2.0327 2.9813 3.9962 5.0175 6.0726 例7 生成一个2*3阶服从均匀分布()3,1U 的随机矩阵。 解:在MATLAB 命令窗口中输入: B=unifrnd(1,3,2,3) B = 1.8205 1.1158 2.6263 2.7873 1.7057 1.0197 注:对于标准正态分布,可用命令randn(m,n);对于均匀分布()1,0U ,可用命令rand(m,n)。

统计学第七章、第八章课后题答案

统计学复习笔记 第七章 参数估计 一、 思考题 1. 解释估计量和估计值 在参数估计中,用来估计总体参数的统计量称为估计量。估计量也是随机变量。如样本均值,样本比例、样本方差等。 根据一个具体的样本计算出来的估计量的数值称为估计值。 2. 简述评价估计量好坏的标准 (1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。 (2)有效性:是指估计量的方差尽可能小。对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。 (3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。 3. 怎样理解置信区间 在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。置信区间的论述是由区间和置信度两部分组成。有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。在公布调查结果时给出被调查人数是负责任的表现。这样则可以由此推算出置信度(由后面给出的公式),反之亦然。 4. 解释95%的置信区间的含义是什么 置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。 不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。 5. 简述样本量与置信水平、总体方差、估计误差的关系。 1. 估计总体均值时样本量n 为 2. 样本量n 与置信水平1-α、总体方差 、估计误差E 之间的关系为 其中: 2222α2222)(E z n σα=n z E σα2=

概率论与数理统计参数估计

第六章 参数估计 在实际问题中, 当所研究的总体分布类型已知, 但分布中含有一个或多个未知参数时, 如何根据样本来估计未知参数,这就是参数估计问题. 参数估计问题分为点估计问题与区间估计问题两类. 所谓点估计就是用某一个函数值作为总体未知参数的估计值;区间估计就是对于未知参数给出一个范围,并且在一定的可靠度下使这个范围包含未知参数. 例如, 灯泡的寿命X 是一个总体, 根据实际经验知道, X 服从),(2σμN , 但对每一批灯泡而言, 参数2,σμ是未知的,要写出具体的分布函数, 就必须确定出参数. 此类问题就属于参数估计问题. 参数估计问题的一般提法: 设有一个统计总体, 总体的分布函数为),(θx F , 其中θ为未知参数(θ可以是向量). 现从该总体中随机地抽样, 得一样本 n X X X ,,,21 , 再依据该样本对参数θ作出估计, 或估计参数θ的某已知函数).(θg 第一节 点估计问题概述 内容分布图示 ★ 引言 ★ 点估计的概念 ★ 例1 ★ 评价估计量的标准 ★ 无偏性 ★ 例2 ★ 例3 ★ 有效性 ★ 例4 ★ 例5 ★ 例6 ★ 相合性 ★ 例7 ★ 例8 ★ 内容小结 ★ 课堂练习 ★ 习题6-1 ★ 返回 内容要点: 一、点估计的概念 设n X X X ,,,21 是取自总体X 的一个样本, n x x x ,,,21 是相应的一个样本值. θ是总体分布中的未知参数, 为估计未知参数θ, 需构造一个适当的统计量 ),,,,(?2 1 n X X X θ 然后用其观察值 ),,,(?21n x x x θ 来估计θ的值. 称),,,(?21n X X X θ为θ的估计量. 称),,,(?21n x x x θ为θ的估计值. 在不致混淆的情况下, 估计量与估计值统称为点估计,简称为估计, 并简记为θ?. 注: 估计量),,,(?21n X X X θ是一个随机变量, 是样本的函数,即是一个统计量, 对不同的样本值, θ的估计值θ?一般是不同的. 二、评价估计量的标准 从例1可见,参数点估计的概念相当宽松, 对同一参数,可用不同的方法来估计, 因而得到不同的估计量, 故有必要建立一些评价估计量好坏的标准. 估计量的评价一般有三条标准:

“概率论与数理统计”测试题参考答案

“概率论与数理统计”测试题参考答案 1.设A , B 是两个随机事件,已知P (A ) = ,P (B ) = ,P (A B )=,求:(1))(B A P ;(2))(B A P . 解:(1) )(A P =)(1A P -= )(B A P = )(A P )(A B P = ? = (2) )(B A P =1-)(B A P = 1 - )()(B P B A P =1-8 .008.0= 2.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率. 解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则 (1))(1)(1)(211A P A P A P -=-= 745.0255.011312 38=-=-=C C . (2))()()()(3232A P A P A A P B P +=+= 273.0018.0255.0255.0312 34=+=+C C . 3.两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。已知第一台加工的零件是第二台加工的零件的3倍,求任意取出的零件是合格品的概率. 解:设A i :“是第i 台车床加工的零件”(,)i =12,B :“零件是合格品”.由全概公式有 P B P A P B A P A P B A ()()()()()=+1122 显然43)(1= A P ,4 1)(2=A P ,99.0)(1=A B P ,P B A ().2098=,故 9875.098.04199.043)(=?+?=B P 4.一袋中有9个球,其中6个黑球3个白球.今从中依次无放回地抽取两个,求第2次抽取出的是白球的概率. 解:设如下事件: i A :“第i 次抽取出的是白球”(2,1=i )

概率论和数理统计知识点总结(超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

统计学第四版第七章答案

第四章 抽样分布与参数估计 某快餐店想要估计每位顾客午餐的平均花费金额。在为期3周的时间里选取49名顾客组成 了一个简单随机样本。 (1)假定总体标准差为15元,求样本均值的抽样标准误差。 x σ= = = (2)在95%的置信水平下,求边际误差。 x x t σ?=?,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ?=?x z ασ=?0.025x z σ=?=×= (3)如果样本均值为120元,求总体均值 的95%的置信区间。 置信区间为: (),x x x x -?+?=()120 4.2,120 4.2-+=(,) 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。 要求: 大样本,样本均值服从正态分布:2,x N n σμ?? ???:或2,s x N n μ?? ??? : 置信区间为: 22x z x z αα?-+ ? (1)构建μ的90%的置信区间。 2z α=0.05z =,置信区间为:()81 1.645 1.2,81 1.645 1.2-?+?=(,) (2)构建μ的95%的置信区间。 2z α=0.025z =,置信区间为:()81 1.96 1.2,81 1.96 1.2-?+?=(,) (3)构建μ的99%的置信区间。 2z α=0.005z =,置信区间为:()81 2.576 1.2,81 2.576 1.2-?+?=(,) 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取 36人,调查他们每天上网的时间,得到下面的数据(单位:小时): 解:

第七章参数估计练习题(最新整理)

第七章参数估计练习题 一.选择题 1.估计量的含义是指() A.用来估计总体参数的统计量的名称 B.用来估计总体参数的统计量的具体数值 C.总体参数的名称 D.总体参数的具体取值 2.一个95%的置信区间是指() A.总体参数有95%的概率落在这一区间内 B.总体参数有5%的概率未落在这一区间内 C. 在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数。 D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数。 3.95%的置信水平是指() A.总体参数落在一个特定的样本所构造的区间内的概率是95% B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95% C.总体参数落在一个特定的样本所构造的区间内的概率是5% D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5% 4.根据一个具体的样本求出的总体均值的95%的置信区间() A.以95%的概率包含总体均值 B.有5%的可能性包含总体均值 C.一定包含总体均值 D.要么包含总体均值,要么不包含总体均值 5. 当样本量一定时,置信区间的宽度() A.随着置信水平的增大而减小 B. .随着置信水平的增大而增大 C.与置信水平的大小无关D。与置信水平的平方成反比 6.当置信水平一定时,置信区间的宽度() A.随着样本量的增大而减小 B. .随着样本量的增大而增大 C.与样本量的大小无关D。与样本量的平方根成正比 7.在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。这种评价标准称为() A.无偏性 B.有效性 C. 一致性D. 充分性 8. 置信水平(1-α)表达了置信区间的() A.准确性 B. 精确性 C. 显著性D. 可靠性 9. 在总体均值和总体比例的区间估计中,边际误差由() A.置信水平决定 B. 统计量的抽样标准差确定 C. 置信水平和统计量的抽样标准差 D. 统计量的抽样方差确定 10. 当正态总体的方差未知,且为小样本条件下,估计总体均值使用的分布是() A.正态分布 B. t分布 C.χ2分布 D. F分布 11. 当正态总体的方差未知,且为大样本条件下,估计总体均值使用的分布是()

相关主题
文本预览
相关文档 最新文档