当前位置:文档之家› 基于单片机循迹小车的设计

基于单片机循迹小车的设计

基于单片机循迹小车的设计
基于单片机循迹小车的设计

目录

[摘要] (2)

第一章绪论 (2)

1.1智能小车的来源 (2)

1.2研究智能小车的目的和意义 (3)

1.3智能小车的现状及未来 (3)

第二章方案的设计与论证 (4)

2.1主控系统 (4)

2.2 电源模块 (5)

2.3 电机驱动模块设计 (5)

2.4 检测模块 (7)

2.5 显示模块 (9)

第三章硬件设计 (10)

3.1 总体设计 (10)

3.2 主控电路 (11)

3.3 电机驱动电路 (12)

3.4 循迹检测电路 (12)

3.5 显示模块电路 (15)

第四章软件设计 (16)

4.1 主程序模块 (16)

4.2 循迹模块程序流程图 (17)

第五章PCB的制作 (18)

5.1 PCB的设计制作 (18)

结束语 (22)

谢辞 (22)

参考文献 (23)

封底 (24)

附图一 (25)

[摘要]本文介绍采用红外光电传感器(rpr220)的循迹小车的设计与实现。采用与白色地面反差

很大的黑色绝缘胶带路线引导小车按照既定路线循迹。用两个直流减速电机控制小车的行驶状态,通过安装在直流电机上的光电对射管实现对电机速度的测量,并以A T89C52单片机芯片作为控制核心。

本文同时也介绍了ITR8104的红外光电测速管,光电对管安装在光电测速盘上小圆孔经过的圆弧

上,通过专门的检测电路将输入信号输入到单片机内的行处理,处理后进行显示处理。

随着科学技术的发展,对智能小车的要求也越来越高,其中各种传感器的应用是实现智能小车“智

能”的关键因素。伴随着智能小车技术的发展,该项技术可广泛应用于自动巡逻、无人生产线、自动循

迹等。

[关键词] 循迹直流减速电机光敏电阻传感器、红外传感器、光电传感器。

第一章绪论

1.1智能小车的来源

自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领

域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、

认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。

随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的

重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当

发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单

的目标。视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。但CCD传感器的

价格、体积和使用方式上并不占优势,因此在不要求清晰图像只需要粗略感觉的系统中考虑使用接近觉

传感器是一种实用有效的方法。

在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目,比较有影

响力的有飞思卡尔智能车大赛。循迹是智能小车的基本功能,单片机通过安装在小车底部的光敏电阻传感器将信号反馈给单片机进行处理,从而控制小车在白色路面上循黑线行走。

1.2研究智能小车的目的和意义

智能小车要实现自动导循迹功能就必须要感知导引线,感知导引线相当给机器人一个视觉功能,选择正确的行进路线,使用传感器感知路线并作出判断和相应的执行动作。

该智能小车可以作为机器人的典型代表。它可以分为三大组成部分:传感器检测部分、执行部分、CPU。机器人要实现自动循迹功能,还可以扩展测速等功能,感知导引线和车速。可以实现小车自动识别路线,选择正确的行进路线。基于上述要求,传感检测部分考虑到小车一般不需要感知清晰的图像,只要求粗略感知即可,所以可以舍弃昂贵的CCD传感器而考虑使用价廉物美的光敏电阻传感器来充当。智能小车的执行部分,是由直流电机来充当的,主要控制小车的行进方向和速度。单片机驱动直流电机一般有两种方案:第一,勿需占用单片机资源,直接选择有PWM功能的单片机,这样可以实现精确调速;第二,可以由软件模拟PWM输出调制,采用专业的电机驱动芯片进行控制,可以实现精确调速、转向,同时单片机型号的选择余地较大。考虑到实际情况,本文选择第二种方案。CPU使用STC89C52单片机,配合软件编程实现。

1.3智能小车的现状及未来

现智能小车发展很快,从智能玩具到其它各行业都有实质成果。其基本可实现循迹、避障、检测贴片、寻光入库、避崖等基本功能,这几节的电子设计大赛智能小车又在向声控系统发展,比较出名的飞思卡尔智能小车更是走在前列。未来的智能小车的发展方向主要是面向自动行驶与导航,小车也进一步更加智能化。

第二章方案的设计与论证

根据要求,确定如下方案:在现有玩具电动车的基础上,加装红外传感器、光电检测器,实现对小车的行驶路线、速度状况的实时测量,并将测量数据传送至单片机进行相应处理,单片机采用目前应用比较广泛的A T89C52单片机。然后由单片机根据所检测的各种数据实现对小车的智能控制。这种方案能实现对小车运动状态进行实时控制,控制灵活、可靠,精度高,可满足系统的各项要求。

2.1主控系统

根据设计要求,我认为此设计属于多输入量的复杂程序控制问题。据此,拟定了以下两种方案并进行了综合的比较论证,具体如下:

方案一:

选用一片CPLD(如EPM7128LC84-15)作为系统的核心部件,实现控制与处理的功能。CPLD具有速度快、编程容易、资源丰富、开发周期短等优点,可利用VHDL语言进行编写开发。但CPLD在控制上较单片机有较大的劣势。同时,CPLD的处理速度非常快而小车的行进速度不可能太高,那么对系统处理信息的要求也就不会太高,在这一点上MCU就已经可以胜任了。若采用该方案,必将在控制上遇到许许多多不必要增加的难题

方案二:

采用单片机作为整个系统的核心,用其控制行进中的小车,以实现其既定的性能指标。充分分析我们的系统,其关键在于实现小车的自动控制,而在这一点上,单片机就显现出来它的优势——控制简单、方便、快捷。这样一来,单片机就可以充分发挥其资源丰富、有较为强大的控制功能及可位寻址操作功能、价格低廉等优点。因此,这种方案是一种较为理想的方案。

针对本设计特点——多开关量输入的复杂程序控制系统,需要擅长处理多开关量的标准单片机,而不能用精简I/O口和程序存储器的小体积单片机,D/A、A/D功能也不必选用。根据这些分析我们选用了MCS-51单片机。51单片机具有功能强大的位操作指令,I/O口均可按位寻址,程序空间多达8K,

对于本设计也绰绰有余,更可贵的是51单片机价格非常低廉。在综合考虑了传感器、两部电机的驱动等诸多因素后,我们决定采用一片单片机,充分利用STC89C52单片机的资源。

对比以上两种方案,我们选用方案二。

2.2 电源模块

方案一:

采用干电池提供5V的电压进行电路供电,考虑到整个系统的正常工作时的额定电压,我们选用了方案二;

方案二:

系统整体上采用DC+9V干电池经LM7805三端稳压管稳压后输出DC+5V电压供电。电机驱动模块电源采用4节干电池输出DC+6V电压供电。

2.3 电机驱动模块设计

方案一:

采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。此方案的优点是电路较为简单,缺点是继电器的响应时间慢,易损坏,寿命较短,可靠性不高。

方案二:

主要采用L298N,通过单片机的I/O输入改变芯片控制端的电平,即可以对直流电机进行正反转,停止的操作,输入引脚与输出引脚的逻辑关系图如图1所示:

电机驱动采用一片集成电机驱动芯片L298N 。L298N 是SGS 公司的产品,内部包含4通道逻辑驱动电路,是一种二相和四相电机的专用驱动器,即内含二个H 桥的高电压大电流双全桥式驱动器,接收标准TTL 逻辑电平信号,可驱动46V 、2A 以下的电机。其引脚排列图如图2所示。

OUT1、OUT2和OUT3、OUT4之间分别接两个电动机MG1、MG2。IN1、IN2、IN3、IN4引脚从单片机输入控制电平,控制电机正饭转。ENA 、ENB 接控制使能端,通过pwm 波形控制电机的转速。L298N 的逻辑功能表如下图所示,

对于电机的速度,我们采用pwm 调速的方法。其原理就是开关管在一个周期内的导通时间为t ,周期为T ,则电机两端的平均电压U=VCC*(t/T)=a*VCC 。其中,a=t/T (占空比),VCC 是电源电压。电机的转速与电机两端的电压成比例,而电机两端的电压与控制波形的占空比成正比,因此电机的速度与占空比成比例。

EnA In1 In2 运转状态 0 1 1 1 1

Ⅹ 1 0 1 0

Ⅹ 0 1 1 0

停止 正转 反转 刹停 停止

占空比越大,电机转速越快。在硬件电路上,我们将单片机的P1^0~P1^3口分别连接到L289N芯片的IN1~IN4上,通过改变P1^0~P1^3口的高低电平变换以控制小车的前进方向与停转,通过改变P1^0~P1^3口上的高低电平的占空比以控制电机的转速。

Pwm配合桥是驱动电路L298N,实现直流电机调速,简单且调速范围大。因此,我们选用了方案二。

另外,我们特别在直流电机的电枢两端并联一个瓷片电容104,以稳定电机的电压不至于对单片机造成干扰。

2.4 检测模块

本模块分为两个部分,分别为检测循迹模块和测速模块。

第一部分,检测循迹模块

方案一:

寻迹模块我们可以用光敏电阻组成,光敏电阻的阻值可以跟随周围环境光线的变化而变化。当光线照射到黑线上面时,光线反射较弱,光线照射到白色地面上时,光线反射较强。因此当光敏电阻在白色路面和黑线上方时,阻值会发生明显的变化将阻值的变化值转化为高低电平的变化。但是这种方式受环境光影响较大,实际测试中采用三路光敏检测循迹模块,为了减少可见光的干扰,在信号的输出端加上了一个非门输出信号(减小环境光的干扰)。但在实际测试中发现该电路输出并不稳定,电路图如图六所示,其中发光二极管D1在电路中只是作为电路的辅助光源补充器件,以便于小车在夜间循迹。

方案二:

在这里我们实际采用的是RPR220 型反射式传感器制作的寻迹模块RPR220是一种一体化反射型光电探测器,其发射器是一个砷化镓红外发光二极管,而接收器是一个高灵敏度,硅平面光电三极管当

发光二极管发出的光反射回来时,三极管导通并输出低电平。

对比以上两种方案,我们选用方案二。

该器件有如下特点:

1.塑料透镜以提高灵敏度;

2.内置的可见光过滤器以减少离散光的影响;

3.体积小,结构紧凑。

第二部分,测速模块

方案一:

采用目前技术比较先进的霍尔传感器作为测速的核心元件。该器件的优点是体积小,测速精准,误差小,芯片集成度高。但,由于成本较高,因此,未选用该器件。

方案二:

采用目前技术比较成熟的红外光电对射管作为本模块测速核心元件。此处我们选用型号为ITR8104的光电对管。光电对管安装在光电测速盘上小圆孔经过的圆弧上。该传感器具有测速精准、受可见光干扰小、价格便宜、易于装配、使用方便等特点。

将红外对射管安装在光电盘上圆孔的圆弧上,电机每旋转一周,安装在光电盘上的光电传感器检测4次信号,并将检测的信号送到单片机的外部中断I/O,对外部中断进行中断次数的计数,进而通过程序算法将小车的行驶速度显示在数码管上。

2.5 显示模块

方案一:

采用LCD1602液晶显示器作为显示模块电路显示器件。此方案的优点是可以对小车的行使信息,包括行驶速度、路程、状态等的显示,功能强大。但,考虑到该器件成本较高,且体积较大,因此没有采用。

方案二:

采用四位共阳极数码管作为模块电路的显示器件。通过外部安装在单片机上的光电对射管对光电盘(安装在直流电机转子上)进行单片机的外部中断计速,进而送数码管显示,其中,数码管的高两位显示小车行驶的路程,低两位显示小车的行驶速度。该电路结构简单,成本较低,并且基本满足设计的要求。

对比以上两种方案以及实际设计要求,我们选择方案二

第三章 硬件设计

3.1 总体设计

整个系统基于玩具小车的机械结构,并利用了小车的底盘、转向控制电机、行驶状态控制电机,能够平稳跟踪路面黑色轨迹运行,并能实时的根据小车的行驶情况对小车的状态进行调整,此部分通过专业的电机驱动芯片L298N 控制。

小车控制系统总体结构如下图所示。以AT89C52单片机为控制核心,主要由电源模块、寻迹检测模块、红外对射测速模块、直流电机驱动模块、数码管显示模块等功能模块组成。首先利用光电传感器对路面信号进行检测,经过比较器处理后,送给单片机进行实时控制,单片机输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。与此同时,红外对射管传感器开始对小车的行驶速度进行检测,并通过程序算法将小车的行驶速度与行驶距离实时的显示在数码管上。

CPU 控制模

块(AT89C52单片机)

电机模块驱动电路

红外对射测速模块电路

显示模块电路

晶振电路

复位电路

光敏检测模块电路 电源模块

电路

C2

22pF

C122pF

Y112M Hz X1

X2

晶振电路

C310uF

R13

10K

S1

复位按钮

V CC

RST 复位电路

P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78RESET 9RXD/P3.010T XD/P3.111INT 0/P3.212INT 1/P3.313T 0/P3.414T 1/P3.515WR/P 3.616RD/P3.7

17

X218X119P2.021P2.122P2.223P2.324P2.425P2.526P2.627P2.7

28

PSEN 29ALE 30EA/AP 31P0.732P0.633P0.534P0.435P0.336P0.237P0.138P0.039U1

AT 89C52

X1X2

RST P10P11P12P13A PWM B PWM

S1S2S3S4dp a b c d e f g L1B1R1

com 1223344556677889

9RP110k*8VCC

INT 0

VCC

C4104VCC

CPU 控制模块

3.2 主控电路

本次设计的主控芯片选择为STC89C52。STC89C52是一种低功耗高性能CMOS 8位微控制器,具有8K 的系统可编程Flash 存储器使用高密度非易失性存储器技术制造,与80C51产品指令和引脚完全兼容片上Flash 允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8位CPU 和在线系统可编程Flash ,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。主控电路模块采用AT89C52单片机作为主控芯,CPU 采用外部经稳压电路模块输出的+5V 直流电源供电,可支持高打1000次以上数据擦写。

3.3 电机驱动电路

电机驱动模块电路是基于一片集成电机驱动芯片L298N ,该芯片具有工作稳定,调速范围广且灵活,该部分采用独立的DC+6V 直流电源供电,实际调试过程中发现可以通过PWM 对电机的的运转速度进行调节。

EN A 6EN B

11

IN15IN27IN310IN412OUT 12OUT 23OUT 313OUT 414SEN A 1SEN B

15

V S

4

V S S

9

U2

L298N(15)P10P11P12P13A PWM B PWM 1

2

MG1MOTER

12MG2MOTER

DC+6V

+

C7

100uF

+C12100uF

VCC C90.1uF

C80.1uF

电机驱动模块电路

12J2

HEADER 2

DC+6V

D5

D6

D7

D8

D9

D10

D11

D12

3.4 循迹检测电路

第一部分,检测循迹模块

检测循迹模块主要采用的是 RPR220 型反射式传感器制作的,RPR220是一种一体化反射型光电探测器,其发射器是一个砷化镓红外发光二极管,而接收器是一个高灵敏度,硅平面光电三极管 当发光二极管发出的光反射回来时,三极管导通并输出低电平。

在此部分中,我们使用了双电压比较器LM393,下图为其引脚功能排列表及电路图。

R1 150R4 5.1k

VCC

R10

10k

R5

5.1k U7A

LM393

L1 VCC

U1 RPR220

第二部分,测速模块

如图二十三所示,传感器ITR8104在没有外部中断信号时,ITR8104接收管经R14电阻对外输出高电平,此时PNP 三极管Q8工作于截至状态,INT0输出高电平。

当传感器接受到外部中断信号(光电测速盘上的4个小孔),红外传感器接收管的集电极电平被拉低,经限流电阻R28导通三极管Q8,INT0此时电平被拉低,单片机I/O 口P3.2产生中断信号,单片机对中断信号进行计数,进而对检测到的数据进行程序算法处理输出。

IT R 8104

R29300R1410K R281K

R1510K

Q88050

VCC

INT 0

图二十三 红外对射管测速模块电路

3.5 显示模块电路

显示模块为数码管驱动经典电路,电路中PNP 三极管起到开关管的作用用来驱动共阳极数码管。段选端通过1K 的限流电阻接单片机的P0口,起到段选的作用,4个位选口接单片机的P2.0至P2.3口,当需要选中单个数码管是,相应的位选口上输出低电平,经PNP 三极管后选中相应的位,达到控制的目的,其中R16至R19为限流电阻,防止电流过大,烧毁数码管,起到保护数码管的作用。

e 1d

2

d p 3

c

4

g 5

S 1

6

b

7

S 2

8

S 3

9

f

10a

11

S 4

12

DS14SMG

R20

R22R21R24R23R26R25R27

R16R17R18R19

VCC

S1

S2S3S4a b c d e f g dp

Q49015

Q59015

Q69015

Q79015

显示模块电路

1K*81K*4

第四章软件设计

4.1 主程序模块

主程序默认单片机上电调用初始化程序以及判断三路传感器的状态,输入到单片机内进行处理后输出,调用循迹子程序,同时单片机的定时器及外部中断服务子程序对检测到的外部中断次数处理,实时刷新显示在数码管上。

开始

初始化程

上电判断三路

传感器状态

调用循迹

子程序

外部中断子

函数(中断

次数计数)

定时器中断服

务子程序(对

数码管送显示

数据)

结束

4.2 循迹模块程序流程图

根据实际情况,我们分析出了小车的7种行驶状态,如下所示,

小车的7种行驶状态

A B C 状态

a 1 0 1 B 路正照在黑线上,小车前进

b 0 0 1 AB 找在黑线上,小车左转弯

c 1 1 1 A 在黑线上,小车左转弯

d 1 0 0 BC 在黑线上,小车右转弯

e 1 1 0 C 在黑线上,小车右转弯

f 1 1 1 ABC 都不在黑线上,小车保持上一次状态不变

g 0 0 0 ABC 都在黑线上,小车停止

1 0 10 0 1 1 1 1 1 0 0 1 1 0 1 1 10 0 0

检测三路红外传感器状态(对应A 、B 、C )

小车前进

小车左转

弯小车左转

弯小车右转

弯小车右转

弯保持上一次状态

小车停止

第五章PCB的制作

5.1 PCB的设计制作

采用Protel 99se绘制原理图与PCB板,布线的过程中必须注意焊盘的大小与铜线的宽度。我选取的焊盘内径为0.8mm,外径2mm;正常布线线宽2.5mm,电源与地线宽5mm。从做板的情况来看基本达到制作得要求。

基于Protel 99se 软件的硬件电路原理图见附图一,图1为基于Protel 99se 软件绘制的主板PCB印刷电路板,绘制电路图以及制板整个过程是建立在硬件原理图的成功绘制以及每个部分硬件电路的反复多次测试的基础上完成的。特别是后期制作PCB板的的时候,为了考虑小车实际工作时的需要,三路RPR220红外传感器单独绘制PCB电路板(副板)是根据传感器实际安装位置安装在小车前底部,安装示意图如图6所示。

图2 基于Protel 99se 绘制的主板PCB图(未加泪滴及覆铜前的电路板),图3基于Protel 99se 绘制的主板PCB 3D 效果图,图4 基于Protel 99se 绘制的副板PCB图,图5 基于Protel 99se 绘制的副板PCB 3D效果图。

图1 基于Protel 99se 绘制的主板PCB图(覆铜、泪滴过后的电路板)

图2 基于Protel 99se 绘制的主板PCB图(未加泪滴及覆铜前的电路板)

图3基于Protel 99se 绘制的主板PCB 3D 效果图

图4 基于Protel 99se 绘制的副板PCB图

循迹小车的设计与制作毕业设计论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容: 按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期: 毕业设计(论文)

基于单片机的智能循迹小车设计

本科毕业设计(论文) 基于单片机的智能循迹小车设计 学生学院信息工程学院 专业测控技术与仪器 (光机电一体化方向)年级班别20 级(1)班 学号 学生姓名 指导教师 20 年6月

摘要 自循迹智能小车也是智能行走机器人的一种,智能小车可以适应不同的环境,不受外界温度、湿度、空间以及重力等各种恶劣条件的影响,在人类无法进入或者生存的环境中完成人类无法完成的任务。本课题是智能循迹小车系统的设计,智能小车的设计涉及传感器技术、电路涉及、程序设计、控制设计等多个方面的知识,是一项综合设计。设计目标是小车能沿着规划好的黑线行走,不偏离道路。。 智能循迹小车以木板车架为承载,包括单片机模块:STC89C52芯片;驱动模块:L298N驱动模块和两个直流电机;循迹模块:红外光电传感器和LM324运算放大器。红外光电传感器判断是否寻找到黑线,并将产生的电平信号发送至LM324运算放大器,再返回到单片机,单片机根据程序设计的要求做出相应的判断送给电机驱动模块控制小车在黑线上实现前进后退左转右转。 关键词:智能小车,自动循迹,单片机,红外传感器

Abstract Self-tracing smart car is also a kind of intelligent walking robot, intelligent car can adapt to different environments, from outside temperature, humidity, space and gravity and other adverse conditions, in the human can not enter or survive the environment to complete the human Unable to complete the task. This topic is the design of intelligent tracking car system, intelligent car design involves sensor technology, circuit involved, programming, control design and other aspects of knowledge, is a comprehensive design. The design goal is that the car can walk along the planned black line without departing from the road. The The following steps: STC89C52 chip; drive module: L298N drive module and two DC motors; tracking module: infrared photoelectric sensor and LM324 operational amplifier. Infrared photoelectric sensor to determine whether to find the black line, and the resulting level signal sent to the LM324 operational amplifier, and then return to the microcontroller, the microcontroller according to the requirements of the program to make the appropriate judgment to the motor drive module control car on the black line Turn forward and turn right. Key words: intelligent car, automatic tracking, single chip, infrared sensor

基于51单片机智能小车循迹程序

#include #define uchar unsigned char #define uint unsigned int ////电机驱动模块位定义//// sbit M11=P0^0; //左轮 sbit M12=P0^1; sbit M23=P0^2; //右轮 sbit M24=P0^3; sbit ENA=P0^4; //左轮使能PWM输入改变dj1数值控制转速sbit ENB=P0^5; //右轮使能PWM输入改变dj2数值控制转速////占空比变量定义//// unsigned char dj1=0; unsigned char dj2=0; uchar t=0; ////红外对管位定义//// sbit HW1=P1^0; //左前方 sbit HW2=P1^1; //右前方 sbit HW3=P1^2; //左后方 sbit HW4=P1^3; //右后方 ////小车前进//// void qianjin() { M11=1; //左轮 M12=0; // M23=1; //右轮 M24=0; // dj1=50; dj2=50; } ////向左微调//// void turnleft2() { M11=1; M12=0; M23=1; M24=0; dj1=7; //左轮 dj2=50; //右轮 } ////向右微调//// void turnright2() { M11=1; M12=0;

M23=1; M24=0; dj1=50; dj2=7; } ////向左大调//// void left() { M11=0; M12=1; M23=1; M24=0; dj1=7; dj2=80; } ////向右大调//// void right() { M11=1; M12=0; M23=0; M24=1; dj1=80; dj2=7; } ////循迹动作子函数//// void xj() { if(HW1==0&&HW2==0&&HW3==0&&HW4==0) //前进逻辑 { qianjin(); } if(HW1==1&&HW2==0&&HW3==0&&HW4==0) //左右微调 { turnleft2(); } if(HW1==0&&HW2==1&&HW3==0&&HW4==0) { turnright2(); } if(HW1==1&&HW2==0&&HW3==1&&HW4==0) //左右大调 { left(); }

基于STC89C52单片机-红外智能循迹小车 (1)

基于STC89C52单片机红外智能循迹小车 实验报告册 学院:电气工程学院 协会:电子科技协会 班级:电气1206 班 姓名:蔡申申 学号:201223910625 联系方式:151 **** ****

摘要 本报告论述了自己参加第八届河南工业大学科技创新大赛——基于STC89C52RC单片机红外智能循迹小车的方案论证、制作过程、调试过程。设计采用STC89C52RC单片机为核心控制器件,采用TCRT5000红外反射式开关传感器作为小车的循迹模块来识别白色路面中央的黑色引导线,采集信号并将信号转换为能被单片机识别的数字信号,单片机获取路面信息后,进行分析、处理,最后控制减速电机转动实现转向。实验表明:该系统抗干扰能力强、电路结构简单、制作成本低,运行平稳、可靠性好。 关键词:STC89C52单片机、反射式光电对管、PWM调速 减速电机

目录 摘要 (2) 1 绪论 (4) 1.1 智能循迹小车概述 (4) 1.1.1 循迹小车的发展历程回顾 (4) 1.1.2 智能循迹分类 (4) 1.1.3 智能循迹小车的应用 (5) 2 智能循迹小车总体设计方案 (5) 2.1 整体设计方案 (5) 2.1.1 系统设计步骤 (5) 2.1.2 系统基本组成 (5) 2.2 整体控制方案确定 (6) 3 系统的硬件设计 (6) 3.1 单片机电路的设计 (6) 3.1.1 单片机的功能特性描述 (6) 3.1.2 晶振电路 (7) 3.1.3 复位电路 (7) 3.2 光电传感器模块 (8) 3.2.1 传感器分布 (8) 3.3 电机驱动电路 (9) 3.3.1 L298N引脚结构 (9) 3.3.2 电机驱动原理 (9) 4 系统的软件设计 (10) 4.1 软件设计的流程 (10) 4.2 本系统的编译器 (10) 5 系统的总体调试 (11) 5.1 硬件的测试 (11) 5.2 系统的软件调试 (11) 结论 (11) 致谢 (11) 参考文献 (12) 附录A 原理图与模块电路图 (12) 附录B 程序代码 (13) 附录C 硬件实物图 (15)

基于单片机的智能寻迹小车毕业设计

基于单片机的智能寻迹小车毕业设计 系统主要由红外避障模块、声控模块、光电寻迹、电机驱动及语音播报模块组成。 采用P89V51单片机作为智能小车控制核心。系统能实现对线路进行寻迹,小 车可以 前进或后退,遇到障碍物可以自行停止并可以实现反向运行,系统可以利用声 音控 制小车的启停。整个系统小巧紧凑,控制准确,性价比高,人机互动性好。 P89V51单片机;红外避障;线路寻迹;直流减速电机 ABSTRACT System is mainly by infrared obstacle avoidance module, voice module, opto-electronics and motor drive tracing module. Used as a single- chip smart car P89V51 control core. System can realize the tracing lines, cars can go forward or backward, encountered obstacles can stop and reverse operation can be achieved, the system can use voice to control the start and stop car. Compact the entire system to control the accurate, cost-effective, good human-computer interaction. KEYWORD: P89V51MCU;Infrared obstacle avoidance;Tracing;DC motor speed 1

51单片机循迹小车程序

/*功能:寻迹小车 使用芯片:AT89S52 或者STC89C52 或AT89S51 STC89C51 晶振:12MHZ 编译环境:Keil 作者:MH~ */ #include // 引用标准库的头文件 #include #define uchar unsigned char #define uint unsigned int //=================电机驱动===================== sbit dianji_r = P3^0; //右边电机控制口,低电平转? sbit dianji_l = P3^7; //左边电机控制口,低电平转 //=============循迹感应接口====================== sbit xjmk_r = P3^2;// 右边寻迹模块检测口INT0 sbit xjmk_l = P3^3;// 左边寻迹模块检测口INT1 void check_righet();//右边时候检测到黑线测试程序 void check_left();//左边时候检测到黑线测试程序 void delay_50us(uint t); void delayms(uint Ms); uchar r_count;//右边传感器检测到的次数计数单元 uchar l_count; uint time; //***********************主程序****************************** main() { time=50; dianji_r=0;//上电时右侧电机运行 dianji_l=0;//上电时左侧电机运行 EA=1; EX1=1; EX0=1; IT1=0; IT0=0;

基于AT89S51单片机的智能超声波避障小车

基于 AT89S51 单片机的智能 超声波避障小车
姓名: 班级: 学号:
钟洋 08 电子二班 200810330219 张儒
指导老师:

目录
摘要...........................................3 一、总体方案概述.......................................3 二、总体电路原理图....................................3 三、各模块功能介绍.................................4 (一) 、超声波测距模块................................4 (二) 、数码管显示模块................................4 (三) 、步进电机控制模块..............................6 (四) 、语音提示模块..................................7 (五) 、速度自控模块..................................8 (六) 、信号提示模块..................................8 (七) 、单片机控制模块...............................8 四、系统软件设计..................................9 五、元件清单.....................................10 六、应用前景.....................................10 六、参考文献.....................................11
2

循迹小车原理

寻迹小车 在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目。笔者通过论证、比较、实验之后,制作出了简易小车的寻迹电路系统。整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。 总体方案 整个电路系统分为检测、控制、驱动三个模块。首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。系统方案方框图如图1所示。 图1 智能小车寻迹系统框图 传感检测单元 小车循迹原理 该智能小车在画有黑线的白纸“路面”上行驶,由于黑线与白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。 红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。 传感器的选择 市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射与接收器件,其内部结构与外接电路均较为简单,如图2所示: 图2 ST168检测电路 ST168采用高发射功率红外光、电二极管与高灵敏光电晶体管组成,采用非接触式检测方式。ST168的检测距离很小,一般为8~15毫米,因为8毫米以下就是它的检测盲区,而大于15毫米则很容易受干扰。笔者经过多次测试、比较,发现把传感器安装在距离检测物表面10毫米时,检测效果最好。 R1限制发射二极管的电流,发射管的电流与发射功率成正比,但受其极限输入正向电流50mA的影响,用R1=150的电阻作为限流电阻,Vcc=5V作为电源电压,测试发现发射功率完全能满足检测需要;可变电阻

基于单片机的智能循迹小车

第1章绪论 1.1课题背景 目前,在企业生产技术不断提高、对自动化技术要求不断加深的环境下,智能车辆以及在智能车辆基础上开发出来的产品已成为自动化物流运输、柔性生产组织等系统的关键设备。世界上许多国家都在积极进行智能车辆的研究和开发设计。移动机器人是机器人学中的一个重要分支,出现于20世纪06年代。当时斯坦福研究院(SRI)的Nils Nilssen和charles Rosen等人,在1966年至1972年中研制出了取名shakey的自主式移动机器人,目的是将人工智能技术应用在复杂环境下,完成机器人系统的自主推理、规划和控制。从此,移动机器人从无到有,数量不断增多,智能车辆作为移动机器人的一个重要分支也得到越来越多的关注。 智能小车,是一个集环境感知、规划决策,自动行驶等功能于一体的综合系统,它集中地运用了计算机、传感、信息、通信、导航及白动控制等技术,是典型的高新技术综合体。 智能车辆也叫无人车辆,是一个集环境感知、规划决策和多等级辅助驾驶等功能于一体的综合系统。它具有道路障碍自动识别、自动报警、自动制动、自动保持安全距离、车速和巡航控制等功能。智能车辆的主要特点是在复杂的道路情况下,能自动地操纵和驾驶车辆绕开障碍物并沿着预定的道路(轨迹)行进。智能车辆在原有车辆系统的基础上增加了一些智能化技术设备: (1)计算机处理系统,主要完成对来自摄像机所获取的图像的预处理、增强、分析、识别等工作; (2)摄像机,用来获得道路图像信息; (3)传感器设备,车速传感器用来获得当前车速,障碍物传感器用来获得前方、侧方、后方障碍物等信息。 智能车辆技术按功能可分为三层,即智能感知/预警系统、车辆驾驶系统和全自动操作系统团。上一层技术是下一层技术的基础。三个层次具体如下: (1)智能感知系统,利用各种传感器来获得车辆自身、车辆行驶的周围环境及 驾驶员本身的状态信息,必要时发出预警信息。主要包括碰撞预警系统和驾驶员状态监控系统。碰撞预警系统可以给出前方碰撞警告、盲点警告、车道偏离警告、换道/

基于单片机89c51循迹小车原理与程序

自循迹小车 第一章引言 1.1 设计目的 通过设计进一步掌握51单片机的应用,特别是在嵌入式系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。 1.2 设计方案介绍 该智能车采用红外对管方案进行道路检测,单片机根据采集到的红外对管的不同状态判断小车当前状态,通过pid控制发出控制命令,控电机的工作状态以实现对小车姿态的控制。 1.3 技术报告内容安排 本技术报告主要分为三个部分。第一部分是对整个系统实现方法的一个概要说明,主要内容是对整个技术方案的概述;第二部分是对硬件电路设计的说明,主要介绍系统传感器的设计及其他硬件电路的设计原理等;第三部分是对系统软件设计部分的说明,主要内容是智能模型车设计中主要用到的控制理论、算法说明及代码设计介绍等。

第二章技术方案概要说明 本模型车的电路系统包括电源管理模块、单片机模块、传感器模块、电机驱动模块. 在整个系统中,由电源管理模块实现对其他各模块的电源管理。其中,对单片机、光电管提供5V电压,对电机提供6V电压 路径识别电路由3对光电发送与接收管组成。由于路面存在黑色引导线,落在黑线区域内的光电接收管接收到反射的光线的强度与白色的路面不同,进而在光电接收管两端产生不同的电压值,由此判断路线的走向。传感器模块将当前采集到的一组电压值传递给单片机,进而根据一定得算法对舵机进行控制,使小车自动寻线行走。 单片机模块是智能车的核心部分,主要完成对外围各个模块的管理,实现对外围模块的信号发送,以及对传感器模块的信号采集,并根据软件算法对所采集的信号进行处理,发送信号给执行模块进行任务执行,还对各种突发事件进行监控和处理,保证整个系统的正常运作。 电机驱动采用L293驱动芯片,该芯片支持2路电机驱动同时支持PWM 调速

基于单片机控制的循迹小车设计毕业设计

摘要 本循迹小车采用现在较为流行的8位单片机作为系统大脑,以STC89C52单片机为控制核心。用其控制行进中的小车,以实现其既定的性能指标。充分分析我们的系统,其关键在于实现小车的自动控制,而在这一点上,单片机就显现出来它的优势控制简单、方便、快捷。40脚的DIP封装使它拥有32个完全IO(GPIO-通用输入输出)端口,通过这些端口加以信号输入电路,将各传感器的信号传至单片机分析处理,从而控制 L293D电机驱动,控制小车。利用红外对管检测黑线,通过循迹模块里的红外对管是否寻到黑线产生的电平信号返回到单片机红外对管来实现循迹功能。单片机根据程序设计的要求做出相应的判断送给电机驱动模块。让小车来实现前进,左转,右转,停车等基本功能。集成红外线传感器即光电开关进行避障。整个系统的电路结构简单,可靠性能高。根据小车各部分功能,分析硬件电路,并调试电路。将调试成功的各个模块逐个地融合成整体,再进行软件编程调试,直至完成。 关键词:循迹小车STC89C52单片机红外对管 L293D电机驱动

Abstract This tracking car adopts the now popular 8-bit single chip microcomputer as the system of the brain, with the STC89C52 single-chip microcomputer as the core. To control the traveling car with it, in order to realize the given performance index. Full analysis of our system, the key is to achieve the automatic control cars, but at this point, single-chip microcomputer control will show its advantage is simple, convenient and fast. 40 feet DIP package makes it has 32 completely IO (GPIO - general input/output port, signal input circuit, through these ports will transmit the signals to single chip microcomputer analysis of each sensor to control L293D motor drive and control the car. The use of infrared for detecting tube black line, through infrared tracking module for tube whether find level signal produced by the black thread returns to the SCM infrared tube to realize tracking function. SCM according to the requirement of the program design make the corresponding judgment for motor driver module. Let the car to achieve forward, turn left, turn right, the basic function such as parking. Integrated infrared sensor photoelectric switch for obstacle avoidance. The circuit of the whole system structure is simple, reliable performance is high. According to the function of car parts, analyze the hardware circuit, and debug the circuit. Debugging success of each module individually merged into a whole, and then software programming and debugging, until completion. KEY WORDS: STC89C52 dc motor infrared sensors the pipe tracing cars L293D motor drive

基于 单片机设计智能避障小车

单片机设计智能避障小车 摘要 利用红外对管检测黑线与障碍物,并以STC89C51单片机为控制芯片控制电动小汽车的速度及转向,从而实现自动循迹避障的功能。其中小车驱动由L298N 驱动电路完成,速度由单片机输出的PWM波控制。本文首先介绍了智能车的发展前景,接着介绍了该课题设计构想,各模块电路的选择及其电路工作原理,最后对该课题的设计过程进行了总结与展望并附带各个模块的电路原理图,和本设计实物图,及完整的C语言程序。 关键词:智能小车;51单片机;L298N;红外避障;寻迹行驶 abstract Using infrared detection black and obstacles to the line and STC89C51 microcontroller as the control chip to control the speed of the electric car and steering, so as to realize the function of automatic tracking and obstacle avoidance. Which the car driven by the L298N driver circuit is completed, the speed of the microcontroller output PWM wave control. This article first introduces the development of the intelligent car prospect, then introduces the design idea, the subject selection of each module circuit and working principle of the circuit, the design process of the subject is summarized and prospect with each module circuit principle diagram, and the real figure design, and complete C language program. Key words: smart car; 51 MCU; L298N; infrared obstacle avoidance; track driving

基于某51单片机的智能小车控制系统

工业职业技术学院 毕业设计 课题名称基于51与单片机的智能小车控制系统 系(院)名称电气工程系 专业及班级 学生 学号 指导教师

完成日期年11 月19 日

摘要 随着我国科学技术的进步,智能化作为现代社会的新产物开始越来越普及,各种高科技也广泛应用于智能小车和机器人玩具制造领域,使智能机器人越来越多样化。智能小车是一个多种高薪技术的集成体,它融合了机械、电子、传感器、计算机硬件、软件、人工智能等许多学科的知识,可以涉及到当今许多前沿领域的技术。 整个小车平台主要以51单片机为控制核心,通过无线遥控实现前进后退和转向行驶,通过红外线传感器,实现小车的自适应巡航、避障等功能。设计采用对比选择,模块独立,综合处理的研究方法。通过翻阅大量的相关文献资料,分析整理出有关信息,在此基础上列出不同的解决方案,结合实际情况对比方案优劣选出最优方案进行设计。从电机车体,最小系统到无线遥控,红外线对管的自动寻迹再到红外线自动避障和语音控制,完成各模块设计。通过调试检测各模块,得到正确的信号输出,实现其应有的功能。最后将各个调试成功的模块结合到小车的车体上,结合程序,通过单片机的控制,将各模块有效整合在一起,达到所预期的目标,完成最终设计与制作,能使小车在一定的环境中智能化运转。 关键字:智能小车,单片机,红外传感器。

目录 第一章绪论.............................................................................................................................- 1 - 1.1.1智能循迹小车概述........................................................................................................- 1 - 1.1.2课题研究的目的和意义 ...............................................................................................- 2 - 1.1.3智能循迹小车智能循迹分类.......................................................................................- 3 - 1.1.4智能循迹小车的应用....................................................................................................- 3 - 第二章方案设计 ..........................................................................................................................- 5 - 2.1 主控系统.........................................................................................................................- 5 - 2.2单片机最小系统 ...............................................................................................................- 6 - 2.2.1 STC89C52简介...................................................................................................- 6 - 2.2.2 时钟电路...............................................................................................................- 8 - 2.2.3复位及复位电路....................................................................................................- 8 - 2.3 电机驱动模块................................................................................................................ - 10 - 2.4 循迹及避障模块............................................................................................................ - 11 - 2.5 机械系统......................................................................................................................... - 11 - 2.6电源模块......................................................................................................................... - 11 - 第三章硬件设计 ..................................................................................................................... - 12 - 3.1总体设计......................................................................................................................... - 12 - 3.1.1主板设计框图..................................................................................................... - 12 - 主板设计框图如图3-1,所需原件清单如表3-1 .................................................. - 12 -

毕业设计+智能循迹避障小车设计之令狐文艳创作

单片机系统课程设计 令狐文艳 轮式移动机器人的设计 学院:通信与电子工程学院 班级:电子131 姓名:初清晨 学号:2013131013 同组成员:孟庆阳张轩 指导老师:王艳春 日期:2015年12月24日

组员分工 1、组长:张轩,实物焊接,报告整理,程序设计 2、组员:孟庆阳,实物焊接,仿真测试,报告整理 3、组员:初清晨,实物焊接,报告整理,仿真测试

目录 摘要1 第一章绪论2 1.1智能小车的意义和作用2 1.2智能小车的现状3 第二章方案设计与论证3 2.1 主控系统3 2.2 电机驱动模块4 2.3 循迹模块5 2.4 避障模块6 2.5 机械系统7 2.6电源模块7 第三章硬件设计7 3.1 AT89S52单片机的简介8 3.2总体设计11 3.3驱动电路12 3.4信号检测模块13 3.5主控电路14 第四章软件设计15 4.1主程序框图15 4.2电机驱动程序15 4.3循迹模块16 4.4避障模块20 结束语25 致谢26 附录一循迹加红外避障综合程序28 附录二实物图32

摘要 随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,智能度越来越高,应用范围也得到了极大的扩展。智能作为现代的新发明,是以后的发展方向,它可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等用途。智能电动小车就是其中的一个体现。设计者可以通过软件编程实现它的行进、循迹、停止的精确控制以及检测数据的存储、显示,无需人工干预。因此,智能电动小车具有再编程的特性,是机器人的一种。 本设计采用AT89S52单片机加电机驱动电路和红外遥控及循迹模块还有红外接收一体化传感器设计而成,采用模块化的设计方案,运用红外遥控器控制小车的前进、后退、左转、右转、启动和停止。 关键词:智能小车;STC89C52单片机;L9110;红外对管 Intelligent tracking and obstacle-avoid car Abstract:Based infrared detection of black lines and theroad obstacles, and use a STC89C52 MCU as the controlling core for the speed and direction, A electronic drived, which can automatic track and avoid the obstacle, was designed and fabricated. In which, the car is drived by the L298N circuit, its speed is controlled by the output PWM signal from the STC89C52. Keywords: Smart Car; STC89C52 MCU; L298N;Infrared Emitting Diode 第一章绪论 1.1智能小车的意义和作用 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。 随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的

基于MSP430单片机循迹小车

课程设计报告 课程名称嵌入式系统原理与设计 课题名称智能循迹小车 专业通信工程 班级1101班 学号 姓名 指导老师 2014 年 1 月 5 日

1.系统总设计 1.1 功能说明 本课题是基于MSP430单片机循迹智能小车的设计与实现,小车系统以MSP430单片机为系统控制处理器,采用红外传感器对赛道进行道路检测,单片机根据检测到的

信号的不同状态判断小车的当前状态,通过电机驱动芯片L298N发出控制命令,控制电机的工作状态以实现对小车的控制。 1.2 任务分配情况 参与此次项目制作的一共七人,分别是:振凤,志成,肖新加,戴小敏,小林,鹏华和莹任务分配情况如表1所示: 产品名称:智能循迹小车 技术参数: L298N基本参数: 类型:半桥输入类型:非反相输出数: 4 电流输出/同道:2A 电流峰值输出:3A 工作温度:-25~135°C 器件型号:L298N 产品的使用方法: 用六节干电池9V直流电压作为供电电源,接通电源,在有黑线的跑道上行走。注意事项:1、所用电源不能超过9V,以免电压过大,把电机烧坏。 2、小孩使用时,应在大人的陪同下使用,以免被小车的尖锐部分弄伤。 3、轻拿轻放,以免损坏小车器件。 4、长期不使用时,应把电池取出。 生产日期:20xx年xx月xx日 2.硬件设计 此次项目中硬件部分的设计主要包含以下模块:电源模块,红外循迹模块,电机驱动模块和MSP430f149单片机。 2.1 电源模块 模型车通过自身系统,采集赛道信息,获取自身速度信息,加以处理,由芯片给出指令控制其前进转向等动作,各部分都需要由电路支持,电源管理尤为重要。在本设计

51单片机循迹小车开题报告

一、研究课题的目的和意义 1)研究目的: 随着汽车工业的迅速发展,其与电子信息产业的融合速度也显著提高,汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。关于汽车的研究也就越来越受人关注。全国电子大赛和省内电子大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究。可见其研究意义很大。本设计就是在这样的背景下提出的,为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。设计的智能电动小车应该能够具有自动寻迹、小灯显示等功能。 此项设计以AT89S52单片机为控制核心,逐步实现小车的循线行走功能。2)研究意义: 1、加深课堂上的学习 由于单片机教学例子有限,因此,单片机智能车能综合学生课堂上的知识来实践,使学习者更好的了解单片机的发展。通过此次的单片机寻轨车制作,使学 生从理论到实践,初步体会单片机项目的设计、制作、调试和成功完成项目的过 程及困难,以此学会用理论联系实际。通过对实践中出现的不足与学习来补充教 学上的盲点。 2、从理论转为实际运用 智能汽车是一种高新技术密集的新型汽车,是在网络环境下利用信息技术、智能控制技术、自动控制、模式识别、传感器技术、汽车电子、电气、计算机 和机械等多个学科的最新科技成果,使汽车具有自动识别行驶道路、自动驾驶等 先进功能.随着控制技术、计算机技术和信息技术的发展,智能车在工业生产和日 常生活中已经扮演了非常重要的角色.近年来,智能车在野外、道路、现代物流 及柔性制造系统中都有广泛运用,已成为人工智能领域研究和发展的热点。 二、研究内容 1)系统设计: 智能寻迹小车采用后轮驱动,左右后轮各用一个直流减速电机驱动,通过调制后面两个轮子的转速从而达到控制转向的目的在车体前部分别装有左中右三或者两个红外反射式传感

相关主题
文本预览
相关文档 最新文档