当前位置:文档之家› 常微分方程证明题(5)

常微分方程证明题(5)

常微分方程证明题(5)
常微分方程证明题(5)

常微分方程习题集(5)

(五)证明题

1. 试证:如果)(t ?是

AX dt

dX

=满足初始条件η?=)(0t 的解,那么 η?)(ex p )(0t t A t -=.

2. 设)(1x y ?=和)(2x y ?=是方程0)(=+''y x q y 的任意两个解,求证:它们的朗斯基行列式C x W ≡)(,其中C 为常数.

3. 假设m 不是矩阵A 的特征值,试证非齐线性方程组

mt Ce AX dt

dX

+=,有一解形如:mt Pe t =)(?,其中P C ,是常数向量. 4. 设(,)f x y 及y

f

??连续,试证方程0),(=-dx y x f dy 为线性方程的充

要条件是它有仅依赖与x 的积分因子.

5. 设)(x f 在),0[∞+上连续,且0)(lim =+∞

→x f x ,求证:方程

)(d d x f y x

y

=+的任意解)(x y y =均有0)(lim =+∞

→x y x .

6. 试证:若已知黎卡提方程的一个特解,则可用初等积分法求它的通解.

7. n 阶齐线性方程一定存在n 个线性无关解.

8. 设)(x y ψ=是一阶非齐次线性方程于区间I 上的任一解,)(x ?是其对应一阶齐次线性方程于区间I 上的一个非零解。则含有任意常数C 的表达式:

)()(x x C y ψ?+=

是一阶非齐次线性方程于区间I 上的全部解的共同表达式。

9. 设n n ?矩阵函数)(1t A ,)(2t A 在(a , b )上连续,试证明,若方程组

X t A dt dX )(1=与X x A dt

dX

)(2=有相同的基本解组,则)(1t A ≡)(2t A 。 10. 证明: 一个复值向量函数)()()(t iv t u t X +==?是(LH )的解

的充要条件,它的实部)(t u 和虚部)(t v 都是(LH )的解。

(五)、证明题参考答案

1. 试证:如果)(t ?是

AX dt

dX

=满足初始条件η?=)(0t 的解,那么 η?)(ex p )(0t t A t -=.

证明:因为At t exp )(=Φ是AX dt

dX

=的基本解矩阵,)(t ?是其解,

所以存在常向量C 使得:

C At t ?=exp )(?,

令0t t =,则:

C At 0ex p =η,

所以

η10)(ex p -=At C ,

η

ηη

?)(exp )exp(exp )(exp exp )(0010t t A At At At At t -=-?=?=- 2. 设)(1x y ?=和)(2x y ?=是方程0)(=+''y x q y 的任意两个解,求证:它们的朗斯基行列式c x W ≡)(,其中c 为常数.

证明:设)(x q 在区间I 上连续,由刘维尔公式可知,对任意I x ∈0,它们的朗斯基行列式)(x W 满足:

))(exp()()(0

10?-=x

x dt t a x W x W ,I x ∈0

而在方程0)(=+''y x q y 中,0)(1=x a ,所以

)(1)()(00x W x W x W ==,

即 c x W ≡)(, I x ∈

3. 假设m 不是矩阵A 的特征值,试证非齐线性方程组

mt Ce AX dt

dX

+=,有一解形如:mt Pe t =)(?.其中P C ,是常数向量. 证明:要证mt pe t =)(?是解,就是要证能够确定常数向量P ,它使得

mt mt mt Ce APe dt

Pe d +=)

(, 即mt mt mt Ce APe Pme +=,成立。

亦即

C A mE P =-)(,

由于m 不是A 的特征值,故0≠-A mE ,从而A mE -存在逆矩阵, 那么可取向量 ,

1)(--=A mE C P ,

这样方程就有形如mt Pe t =)(?的解.

4. 设(,)f x y 及

y

f

??连续,试证方程0),(=-dx y x f dy 为线性方程的充要条件是它有仅依赖与x 的积分因子.

证明:先证必要性,设方程0),(=-dx y x f dy 为线性方程,即

0))()((=-+dx x f y x p dy ,

所以

0),(=??=??x

N

x p y

M

)(x p N

x

N

y M =??-??, 即它有仅依赖与x 的积分因子,且 ))(ex p()(dx x p x ?=μ是其积分因子。

再证充分性,因为在方程0),(=-dx y x f dy ,中

,1),,(=-=N y x f M

所以

0,=????-=??x

N

y

f

y M ,

y f N x

N

y M ??-=??-

?? 如果它有仅依赖与x 的积分因子,则y

f

??-是x 的函数,设

)(x p y

f

=??-

关于y 积分得:)()(),(x f y x p y x f +-=,)(x f 是x 的可微函数,故方程

0),(=-dx y x f dy 可表为:

0))()((=-+dx x f y x p dy

是线性方程.

5. 设)(x f 在),0[∞+上连续,且0)(lim =+∞

→x f x ,求证:方程

)(d d x f y x

y

=+的任意解)(x y y =均有0)(lim =+∞

→x y x .

证明:设)(x y y =为方程的任一解,它满足初始值条件

由常数变易法有:

ds e s f e e y x y x s x

x x x x x )()()(00

)()(-----?+=,

于是

e

d e )(lim

e lim

)(lim 0

x x x

x x

s x x x x x s

s f y x y --∞

→-∞

→∞→?+=

= 0 + ??

?

??=??∞---∞→∞

-发散若收敛

若,00

000

0d e )(,0e e )(lim d e )(0x x s x x x x x x x s s s f s f s s f

6. 试证:若已知黎卡提方程的一个特解,则可用初等积分法求它的通解.

证明:设)(x ?为黎卡提方程的一个特解,则

)()()()()()

(2x r x x q x x p dx

x d ++=???, 令z x y +=)(?,则有

)())()(())()(()(2x r z x x q z x x p dx

dz

dx x d ++++=+??? 整理得:

2)()]()()(2[z x p z x q x x p dx

dz

++=? 它是2=n 的伯努利方程,可用初等积分法求它的通解.

7. n 阶齐线性方程一定存在n 个线性无关解.

证明:设

X t A dt

dX

)(=的系数矩阵)(t A 在区间I 上连续,

任意取定一点I t ∈0和n 个线性无关的n 维常向量n ξξξ,,, 21。 对于每一个i ,n i ,,2,1 =,以)(t X i 表示X t A dt

dX

)(=满足初始条件

i i t X ξ=)(0的解向量。

由存在与唯一性定理可知,此解向量在区间I 上存在且有定义。 由于常向量组)(,),(),(00201t X t X t X n 是线性无关的,从而向量函数组)(,),(),(21t X t X t X n 于区间I 上线性无关.

8. 设)(x y ψ=是一阶非齐次线性方程于区间I 上的任一解,

)(x ?是其对应一阶齐次线性方程于区间I 上的一个非零解。则含有任意常数c 的表达式:

)()(x x c y ψ?+=

是一阶非齐次线性方程于区间I 上的全部解的共同表达式。

证明:将)()(x x c y ψ?+=直接代入一阶非齐次线性方程

)()(x f y x p dx

dy

=+可知,对任意常数c ,)()(x x c y ψ?+=都是一阶非齐次线性方程的解。

反之,设)(0x y 是一阶非齐次线性方程的任一解,则)()(0x x y ψ-是

其对应齐次方程

0)(=+y x p dx

dy

的解。 任取I x ∈0,由于)(x ?是其对应一阶齐次线性方程0)(=+y x p dx

dy

区间I 上的一个非零解,所以0)(0≠x ?。

令))()(())((0010x x y x c ψ?-=-,则)(x c ? 和)()(0x x y ψ-都是其对应齐

次方程

0)(=+y x p dx

dy

的解,并且在0x x =时取相同的值,故由初值问题解的唯一性知,应有)()()(0x x y x C ψ?-=,即)()()(0x x C x y ψ?+=。

9. 设n n ?矩阵函数)(1t A ,)(2t A 在(a , b )上连续,试证明,若方

程组

X t A dt dX )(1=与X x A dt dX

)(2=在(a , b )上有相同的基本解组,则)(1t A ≡)(2t A ,),(b a x ∈.

证明:因为方程组与X x A dt

dX

)(2=在(a , b )上有相同的基本解组,

所以可设)(t Φ是其基本解矩阵。

从而有: ),(),()()

(1b a t t t A dt t d ∈Φ≡Φ,

与 ),(),()()

(1b a t t t A dt

t d ∈Φ≡Φ,成立。

所以 ),(),()()()(21b a t t t A t t A ∈Φ≡Φ,

又由于)(t Φ是其基本解矩阵,所以0)(det ≠Φt ,即)(t Φ可逆,故

)(1t A ≡)(2t A ,),(b a x ∈.

10. 证明: 一个复值向量函数)()()(t iv t u t X +==?是(LH )的解的充要条件,它的实部)(t u 和虚部)(t v 都是(LH )的解。

证明:设)()()(t iv t u t X +==?是X t A dt

dX

)(=的解,)(t A 是实函数矩阵,

则:

))()()(())()((t iv t u t A t iv t u dt

d

+≡+, 从而

)()()()()()(t v t iA t u t A t v dt

d

i t u dt d +≡+, 所以

)()()(t u t A t u dt d ≡,且)()()(t v t A t v dt

d

≡ 即它的实部)(t u 和虚部)(t v 都是(LH )的解。

反之,若)()()(t u t A t u dt d ≡,)()()(t v t A t v dt

d

≡成立。则

)()()()()()(t v t iA t u t A t v dt

d

i t u dt d +≡+,

即向量函数)()()(t iv t u t +=?是(LH )的解。

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

常微分方程期中考试题

常微分方程期中测试试卷(1) 一、填空 1 微分方程 ) (2 2= + - +x y dx dy dx dy n 的阶数是____________ 2 若 ) , (y x M和) , (y x N在矩形区域R内是) , (y x的连续函数,且有连续的一阶偏导数,则 方程 ) , ( ) , (= +dy y x N dx y x M有只与y有关的积分因子的充要条件是 _________________________ 3 _________________________________________ 称为齐次方程. 4 如果 ) , (y x f___________________________________________ ,则 ) , (y x f dx dy = 存在唯 一的解 ) (x y? =,定义于区间h x x≤ - 0上,连续且满足初始条件 ) ( x y? = ,其中 = h_______________________ . 5 对于任意的 ) , ( 1 y x,) , ( 2 y x R ∈ (R为某一矩形区域),若存在常数)0 (> N N使 ______________________ ,则称 ) , (y x f在R上关于y满足利普希兹条件. 6 方程 2 2y x dx dy + = 定义在矩形区域R:2 2 ,2 2≤ ≤ - ≤ ≤ -y x上 ,则经过点)0,0(的解 的存在区间是 ___________________ 7 若 ) ,..... 2,1 )( (n i t x i = 是齐次线性方程的n个解,)(t w为其伏朗斯基行列式,则)(t w满足 一阶线性方程 ___________________________________ 8若 ) ,..... 2,1 )( (n i t x i = 为齐次线性方程的一个基本解组, )(t x为非齐次线性方程的 一个特解,则非齐次线性方程的所有解可表为 _________________________ 9若 ) (x ?为毕卡逼近序列{})(x n?的极限,则有≤ -) ( ) (x x n ? ? __________________ 10 _________________________________________ 称为黎卡提方程,若它有一个特解 ) (x y,则经过变换___________________ ,可化为伯努利方程. 二求下列方程的解 1 3 y x y dx dy + = 2求方程 2 y x dx dy + = 经过 )0,0(的第三次近似解 3讨论方程 2 y dx dy = , 1 )1(= y的解的存在区间 4 求方程 1 ) (2 2= - +y dx dy 的奇解

常微分方程知识点总结

常微分方程知识点总结 常微分方程知识点你学得怎么样呢?下面是的常微分方程知识 点总结,欢迎大家阅读! 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中 就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的 问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似, 也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。但是无论在方程

的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常 有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星 的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

常微分方程自学练习题

常微分方程自学习题及答案 一 填空题: 1 一阶微分方程的通解的图像是 维空间上的一族曲线. 2 二阶线性齐次微分方程的两个解 y 1(x);y 2(x)为方程的基本解组充分必要条件是________. 3 方程0'2''=+-y y y 的基本解组是_________. 4 一个不可延展解的存在区间一定是___________区间. 5 方程 21y dx dy -=的常数解是________. 6 方程0')('')(==+-x q x t p x t 一个非零解为 x 1(t) ,经过变换_______ 7 若4(t)是线性方程组X t A X )('=的基解矩阵, 则此方程组的任一解4(t)=___________. 8 一曲线上每一占切线的斜率为该点横坐标的2倍,则此曲线方程为________. 9 满足_____________条件的解,称为微分方程的特解. 10 如果在微分方程中,自变量的个数只有一个我们称这种微分方程为_________. 11 一阶线性方程)()('x q y x p y =+有积分因子(=μ ). 12 求解方程 y x dx dy /-=的解是( ). 13已知(0)()32 2 2 =+++dy x y x dx y x axy 为恰当方程,则a =____________. 14 ?????=+=0 )0(22y y x dx dy ,1:≤x R ,1≤y 由存在唯一性定理其解的存在区间是( ). 15方程0652 =+-??? ??y dx dy dx dy 的通解是( ). 16方程5 34 y x y dx dy =++?? ? ??的阶数为_______________. 17若向量函数)()();();(321x x x x n Y Y Y Y 在区间D 上线性相关,则它们的伏朗斯基行列式w (x)=____________. 18若P(X)是方程组Y =)(x A dx dy 的基本解方阵则该方程组的通解可表示为_________. 二 单项选择: 1 方程y x dx dy +=-31 满足初值问题解存在且唯一定理条件的区域是( ). (A)上半平面 (B)xoy 平面 (C)下半平面 (D)除y 轴外的全平面

3.1 常微分方程 课后答案

习题3.1 1 求方程dx dy =x+y 2通过点(0,0)的第三次近似解; 解: 取0)(0=x ? 20020012 1)()(x xdx dx y x y x x x ==++=??? 522200210220 121])21([])([)(x x dx x x dx x x y x x x +=+=++=???? dx x x x y x x ])20 121([)(252003+++=?? = 118524400 1160120121x x x x +++ 2 求方程dx dy =x-y 2通过点(1,0)的第三次近似解; 解: 令0)(0=x ? 则 20020012 1)()(x xdx dx y x y x x x ==-+=??? 522200210220 121])21([])([)(x x dx x x dx x x y x x x -=-=-+=???? dx x x x y x x ])20 121([)(252003--+=?? =118524400 1160120121x x x x -+- 3 题 求初值问题: ?????=-=0 )1(2y x dx dy R :1+x ≤1,y ≤1 的解的存在区间,并求解第二次近似解,给出在解的存在空间的误差估计; 解: 因为 M=max{22y x -}=4 则h=min(a,M b )=4 1 则解的存在区间为0x x -=)1(--x =1+x ≤4 1 令 )(0X ψ=0 ; )(1x ψ=y 0+?-x x x 0)0(2dx=31x 3+31;

)(2x ψ =y 0+])3131([2132?-+-x x x dx=31x 3-9x -184x -637x +4211 又 y y x f ??),(2≤=L 则:误差估计为:)()(2x x ψ-ψ≤32 2 )12(*h L M +=2411 4 题 讨论方程:31 23y dx dy =在怎样的区域中满足解的存在唯一性定理的条件, 并求通过点(0,0)的一切解; 解:因为y y x f ??),(=3221-y 在y 0≠上存在且连续; 而312 3y 在y 0 σ≥上连续 由 3123y dx dy =有:y =(x+c )23 又 因为y(0)=0 所以:y =x 2 3 另外 y=0也是方程的解; 故 方程的解为:y =?????≥00023 x x x 或 y=0; 6题 证明格朗瓦耳不等式: 设K 为非负整数,f(t)和g(t)为区间βα≤≤t 上的连续非负函数,

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程过点共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 2 1d d y x y -=)1,2 (πx x y x y +-=d d y x y =d d

(完整版)常微分方程的大致知识点

= + ?x = + ?x = + ?x 常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有 x 或 y 的项) y x 4、一阶线性非齐次方程 常数变易法,或 y = e ? a ( x )dx [? b (x )e -? a ( x )dx dx + C ] 5、伯努力方程 令 z = y 1-n ,则 dz = (1 - n ) y -n dy ,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 dx 6、全微分方程 若?M ?y 若 ?M ?y dx = ?N ,则u (x , y ) = C ,(留意书上公式) ?x ≠ ?N ,则找积分因子,(留意书上公式) ?x f (x f ( y , (二)毕卡序列 x y 1 y 0 0 x f (x , y 0 )dx , y 2 y 0 0 x f (x , y 1 )dx , y 3 y 0 0 f (x , y 2 )dx ,其余类推 (三)常系数方程 1、常系数齐次L (D ) y = 0 方法:特征方程 7、可降阶的二阶微分方程 d 2 y = , dy ) ,令 dy = d 2 y p ,则 = dy dx 2 d 2 y = dx dy ) ,令 dx dy = p ,则 dx 2 d 2 y dx = p dp dx 2 dx dx dx 2 dy 8、正交轨线族

? ? dy 单的实根, , y = C e 1x + C e 2 x 1 2 1 2 单的复根1, 2 = ± i , y = e x (C cos x + C 2 sin x ) 重的实根 = = , y = (C + C x )e x 1 2 1 2 重的复根1, 2 = ± i ,3, 4 = ± i , y = e x [(C + C 2 x ) c os x + (C 3 + C 4 x ) sin x ] 2、常系数非齐次L (D ) y = 方法:三部曲。 f (x ) 第一步求L (D ) y = 0 的通解Y 第二步求L (D ) y = f (x ) 的特解 y * 第三步求L (D ) y = f (x ) 的通解 y = Y + y * 如何求 y * ? 当 f (x ) = P m (x )e x 时, y * = x k Q (x )e x 当 f (x ) = P m (x )e ux cos vx + Q (x )e ux sin vx 时, y * = x k e ux (R (x ) cos vx + S m (x ) sin vx ) 当 f (x ) 是一般形式时, y * = ? x W (x ,) f ()d ,其中 W(.)是郎斯基行列式 x 0 W () (四)常系数方程组 方法:三部曲。 第一步求 dX dt = A (t ) X 的通解, Φ(t )C 。利用特征方程 A - I = 0 ,并分情况讨论。 第二步求 dX dt 第三步求 dX dt = A (t ) X + f (t ) 的特解, Φ(t )?Φ-1 (s ) f (s )ds ,(定积分与不定积分等价) = A (t ) X + f (t ) 的通解, Φ(t )C + Φ(t )?Φ-1 (s ) f (s )ds (五)奇点与极限环 ? dx = ax + b y dt ? ? = cx + dy 1、分析方程组? dt 的奇点的性质,用特征方程: A - I = 0 特征方程的根有 3 种情况:相异实根、相异复根、相同实根。第一种情况:相异实根,1 ≠ 2 1 1 m m m

考研高数基础练习题及答案解析

考研高数基础练习题及答案解析 一、选择题: 1、首先讨论间断点: 1°当分母2?e?0时,x? 2x 2 ,且limf??,此为无穷间断点; 2ln2x? ln2x?0? 2°当x?0时,limf?0?1?1,limf?2?1?1,此为可去间断点。 x?0? 再讨论渐近线: 1°如上面所讨论的,limf??,则x? x? 2 ln2 2 为垂直渐近线; ln2 2°limf?limf?5,则y?5为水平渐近线。 x??? x???

当正负无穷大两端的水平渐近线重合时,计一条渐近线,切勿上当。 2、f?|x4?x|sgn?|x| sgn?|x|。可见x??1为可导点,x?0和x?3为不可导点。 2011智轩高等数学基础导学讲义——第2章第4页原文: f???|??|,当xi?yj时 为可导点,否则为不可导点。注意不可导点只与绝对值内的点有关。 ?x ,x?0? 设f??ln2|x|,使得f不存在的最小正整数n是 ? ,x?0?0 x?0 1 2 3 limf?f?0,故f在x?0处连续。 f’?lim x?0

f?f ?0,故f在x?0处一阶可导。 x?0 当x?0时,f’?? ? ?x12x’ ‘????223 ?ln?lnlnxsgnx ? 12 ,则limf’?f’?0,故f’在x?0处连续。?23x?0ln|x|ln|x|f’’?lim x?0 f’?f’ ??,故f在x?0处不二阶可导。 x?0 a b x?0 对?a,b?0,limxln|x|?0。这是我们反复强调的重要结论。 3、对,该函数连续,故既存在原函数,又在[?1,1]内

常微分方程期末考试练习题及答案

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

常微分方程的大致知识点

常微分方程的大致知识点Last revision on 21 December 2020

常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有x y y x 或的项) 4、一阶线性非齐次方程 常数变易法,或])([)()(?+??=-C dx e x b e y dx x a dx x a 5、伯努力方程 令n y z -=1,则dx dy y n dx dz n --=)1(,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 6、全微分方程 若x N y M ??=??,则C y x u =),(,(留意书上公式) 若 x N y M ??≠??,则找积分因子,(留意书上公式) 7、可降阶的二阶微分方程 ),(22dx dy x f dx y d =,令dx dy dx y d p dx dy ==22,则 ),(22dx dy y f dx y d =,令dy dp p dx y d p dx dy ==22,则 8、正交轨线族 (二)毕卡序列 ?+=x x dx y x f y y 0),(001,?+=x x dx y x f y y 0),(102,?+=x x dx y x f y y 0),(203,其余类推 (三)常系数方程 1、常系数齐次0)(=y D L 方法:特征方程 单的实根21,λλ,x x e C e C y 2121λλ+= 单的复根i βαλ±=2,1,)sin cos (21x C x C e y x ββα+= 重的实根λλλ==21,x e x C C y λ)(21+= 重的复根i βαλ±=2,1,i βαλ±=4,3,]sin )(cos )[(4321x x C C x x C C e y x ββα+++=

高等数学微积分习题

《高等数学B(1)》教学大纲 二、课程描述 中文:高等数学B课程是我校经济、管理类学科各专业一门必修的重要基础理论课程,它能使学生获得微积分学方面的一些基本概念、基本理论和基本方法,并为学习后继课程和进一步获得数学知识奠定必要的数学基础。 高等数学课程安排上下两个学期讲授,其主要内容包括:函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、多元函数的微积分、无穷级数、常微分方程、差分方程等。 高等数学课程在传授知识的同时,将通过各个教学环节逐步培养学生具有抽象概括问题的能力、逻辑推理能力和自学能力,并注重培养学生具有比较熟练的运算能力以及综合运用所学知识去分析问题和解决问题的能力。

湖南大学的高等数学课程是国家级精品课程,课程的教学团队是国家级教学团队。 英文:Course Description: Advanced Mathematics B is an important pubic basic compulsory course for the students majoring in economics or management at Hunan university.In this course, students will learn the basic concepts,basic theories and basic principles in the differential and integral calculus to obtain the necessary mathematics fundamentals for further courses or advanced mathematics studies. Advanced Mathematics B is lectured in two semesters,covering functions,limits and continuity,derivative and differential,the mean value theorem of differential calculus and the application of derivatives,indefinite integral,definite integral and its applications,calculus of multivariate functions,infinite series,ordinary differential equation,difference equation,etc. In this course,the professor not only imparts knowledge,but also cultivates a student’s ability to draw abstraction and generalization,to make logical reasoning and to study independently.This course also focuses on enhancing a student’s ability to achieve relatively proficient calculation and the ability to analyze and solve the problems with all knowledge in hand. Advanced Mathematics B in Hunan University is listed in China Excellent Courses, whose faculty is a national teaching team. 三、课程内容 (一)课程教学目标

常微分习题解答

《常微分方程》习题解答东北师范大学微分方程教研室(第二版) 高等教育出版社

习题 1 求下列可分离变量微分方程的通解: (1) xdx ydy = 解:积分,得 12 22 121c x y += 即 c y x =-22 (2) y y dx dy ln = 解: 1, 0==y y 为特解,当1, 0≠≠y y 时, dx y y dy =ln , 积分,得0ln ,ln ln 11≠=±=+=c ce e e y c x y x x c ,即x ce e y = (3) y x e dx dy -= 解: 变形得 dx e dy e x y =积分,得c e e x y =- (4) 0cot tan =-xdy ydx 解:变形得 x y dx dy cot tan = ,0=y 为特解,当0≠y 时,dx x x dy y y cos sin sin cos =. 积分,得11cos sin ln ,cos ln sin ln c x y c x y =+-=, 即0,cos sin 1 ≠=±=c c e x y c 2.求下列方程满足给定初值条件的解: (1) 1)0(),1(=-=y y y dx dy 解: 1, 0==y y 为特解,当1, 0≠≠y y 时,dx dy y y =--)1 11( , 积分,得 0,1 ,1 ln 11≠=±=-+=-c ce e e y y c x y y x x c 将1)0(=y 代入,得 0=c ,即1=y 为所求的解。 (2) 1)0(,02)1(2 2 ==+'-y xy y x 解: 0,1 222 =--=y x xy dx dy 为特解,当0≠y 时, dx x x y dy 1 222--=, 积分,得 c x y +--=- 1ln 1 2

最新常微分方程期末考试题大全(东北师大)

证明题: 设()x f 在[)+∞,0上连续,且()b x f x =+∞ →lim ,又0>a ,求证:对于方程 ()x f ay dx dy =+的一切解()x y ,均有()a b x y x =+∞→lim 。 证明 由一阶线性方程通解公式,方程的任一解可表示为 ()()?? ????+=?-x at ax dt e t f C e x y 0, 即 ()()ax x at e dt e t f C x y ?+= 。 由于b x f x =+∞ →)(lim ,则存在X ,当X x >时,M x f >)(。因而 ()dt e M dt e t f dt e t f x X at X at x at ??? +≥0 )( ())(0 aX ax X at e e a M dt e t f -+ = ? , 由0>a ,从而有()∞=?? ????+?+∞→x at x dt e t f C 0lim ,显然+∞=+∞ →ax x e lim 。 应用洛比达法则得 ()()ax x at x x e dt e t f C x y ?+=+∞ →+∞ →0 lim lim ()ax ax x ae e x f +∞→=lim ()a b a x f x ==+∞ →lim 。 证明题:线性齐次微分方程组x A x )(t ='最多有n 个线性无关的解,其中)(t A 是定义在区间b t a ≤≤上的n n ?的连续矩阵函数。 证 要证明方程组x A x )(t ='最多有n 个线性无关的解,首先要证明它有n 个线性无关的解,然后再证明任意1+n 个解都线性相关。

2018年电大第三版常微分方程答案知识点复习考点归纳总结参考

习题1.2 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为:

dx dy =- y x y x +- 令x y =u 则dx dy =u+x dx du 代入有: -1 12++u u du=x 1 dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32+=0 解:原方程为:dx dy =y e y 2e x 3 2 e x 3-3e 2y -=c. 9.x(lnx-lny)dy-ydx=0 解:原方程为: dx dy =x y ln x y 令 x y =u ,则dx dy =u+ x dx du

常微分方程习题及答案.[1]

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2 ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 2 2 1xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。

7.x y 1 =所满足的微分方程是 。 8.x y y 2='的通解为 。 9. 0=+ x dy y dx 的通解为 。 10. ()25 11 2+=+- x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程32 3y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .22x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?=

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

常微分方程第三版课后习题答案#(精选.)

习题1.2 1. dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解: y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2 x +e c =cex 2 另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-1 1+x dx 两边积分: - y 1 =-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y= | )1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+3 1 x x + y y 21+dy=3 1 x x +dx 两边积分:x(1+x 2 )(1+y 2 )=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1 +dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0

解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -1 12++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x | |-2)(1x y - 则令 x y =u dx dy =u+ x dx du 2 11u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为: tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny= x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2 e x 3 2 e x 3-3e 2 y -=c. 9.x(lnx-lny)dy-ydx=0 解:原方程为: dx dy =x y ln x y

常微分方程期末试题知识点复习考点归纳总结参考

期末考试 一、填空题(每空2 分,共16分)。 1.方程22d d y x x y +=满足解的存在唯一性定理条件的区域是 . 2. 方程组 n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 维空间中的一条积分曲线. 3.),(y x f y '连续是保证方程),(d d y x f x y =初值唯一的 条件. 4.方程组???????=-=x t y y t x d d d d 的奇点)0,0(的类型是 5.方程2)(2 1y y x y '+'=的通解是 6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是 7.二阶线性齐次微分方程的两个解)(1x y ?=,)(2x y ?=成为其基本解组的充要条件是 8.方程440y y y '''++=的基本解组是 二、选择题(每小题 3 分,共 15分)。 9.一阶线性微分方程 d ()()d y p x y q x x +=的积分因子是( ). (A )?=x x p d )(e μ (B )?=x x q d )(e μ (C )?=-x x p d )(e μ (D )?=-x x q d )(e μ 10.微分方程0d )ln (d ln =-+y y x x y y 是( ) (A )可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程 11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( ). (A) 1±=x (B)1±=y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程222+-='x y y ( )奇解. (A )有一个 (B )有无数个 (C )只有两个 (D )无 三、计算题(每小题8分,共48分)。 14.求方程22 2d d x y xy x y -=的通解 15.求方程0d )ln (d 3=++y x y x x y 的通解 16.求方程2 221)(x y x y y +'-'=的通解

相关主题
文本预览
相关文档 最新文档