当前位置:文档之家› 高强度钢的抗拉强度定义

高强度钢的抗拉强度定义

高强度钢的抗拉强度定义
高强度钢的抗拉强度定义

高强度钢的抗拉强度定义.txt点的是烟抽的却是寂寞……不是你不笑,一笑粉就掉!人又不聪明,还学别人秃顶。绑不住我的心就不要说我花心!再牛b的肖邦,也弹不出老子的悲伤!活着的时候开心点,因为我们要死很久。请你以后不要在我面前说英文了,OK?1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。

2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。

3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。

5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。

6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。

7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。

8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。

9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。 10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。

11、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。

12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。

13、钴(Co):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料。

14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性无影响。

15、铝(Al):铝是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削加工性能。

16、硼(B):钢中加入微量的硼就可改善钢的致密性和热轧性能,提高强度。

17、氮(N):氮能提高钢的强度,低温韧性和焊接性,增加时效敏感性。

18、稀土(Xt):稀土元素是指元素周期表中原子序数为57-71的15个镧系元素。这些元素都是金属,但他们的氧化物很象“土”,所以习惯上称稀土。钢中加入稀土,可以改变钢中夹杂物的组成、形态、分布和性质,从而改善了钢的各种性能,如韧性、焊接性,冷加工性能。在犁铧钢中加入稀土,可提高耐磨性。

1、碳(C):碳影响屈服点和抗拉强度

2、硅(Si):影响抗腐蚀性和抗氧化

3、锰(Mn):影响钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

4、磷(P):使焊接性能变坏,降低塑性,使冷弯性能变坏。

5、硫(S):使钢产生热脆性,降低钢的延展性和韧性。

6、铬(Cr):铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。

7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。

8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能。

9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力。

10、钒(V):钒是钢的优良脱氧剂。

11、钨(W):可显著提高红硬性和热强性,作切削工具及锻模具用。

12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度

13、铜(Cu):铜能提高强度和韧性。

14、铝(Al):提高冲击韧性,铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削加工性能。

15、硼(B):钢中加入微量的硼就可改善钢的致密性和热轧性能,提高强度。

16、氮(N):氮能提高钢的强度,低温韧性和焊接性,增加时效敏感性。

硫元素:影响的是钢材的熔点。让钢材产生裂纹,简称”热脆“。

磷元素:影响的是钢材的硬度。让钢材变脆,简称“冷脆”。

锰元素:影想的是钢材的强度和硬度,并且使钢材的熔点升高达到1600左右。

硅元素:可以增强钢材的强度和硬度。但是不易含量过高一般在0.4%。

铬元素:起耐腐蚀作用,一般是用于防腐的钢材。

镍元素:起到的是耐腐蚀和耐热性。

钛元素:适用于耐热和抗氢腐蚀。

铜元素:起到了良好的导电,导热

拉伸试验的定义以及方法

拉伸试验的定义以及方法 测定材料在材料试验机拉伸载荷作用下的一系列特性的试验,又称抗拉试验。它是材料机械性能试验的基本方法之一,主要用于检验材料是否符合规定的标准和研究材料的性能。 性能指标:拉伸试验可测定材料的一系列强度指标和塑性指标。强度通常是指材料在外力作用下抵抗产生弹性变形、塑性变形和断裂的能力。材料在承受拉伸载荷时,当载荷不增加而仍继续发生明显塑性变形的现象叫做屈服。产生屈服时的应力,称屈服点或称物理屈服强度,用σS(帕)表示。工程上有许多材料没有明显的屈服点,通常把材料产生的残余塑性变形为0.2%时的应力值作为屈服强度,称条件屈服极限或条件屈服强度,用σ0.2表示。材料在断裂前所达到的最大应力值,称抗拉强度或强度极限,用σb(帕) 表示。 塑性是指金属材料在载荷作用下产生塑性变形而不致破坏的能力,常用的塑性指标是延伸率和断面收缩率。延伸率又叫伸长率,是指材料试样受拉伸载荷折断后,总伸长度同原始长度比值的百分数,用δ表示。断面收缩率是指材料试样在受拉伸载荷拉断后,断面缩小的面积同原截面面积比值的百分数,用ψ表示。 条件屈服极限σ0.2、强度极限σb、伸长率δ和断面收缩率ψ是拉伸试验经常要测定的四项性能指标。此外还可测定材料的弹性模量E、比例极限σp、弹性极限σe等。 试验方法:拉伸试验在材料试验机上进行。试验机有机械式、液压式、电液或电子伺服式等型式。试样型式可以是材料全截面的,也可以加工成圆形或矩形的标准试样。钢筋、线材等一些实物样品一般不需要加工而保持其全截面进行试验。试样制备时应避免材料组织受冷、热加工的影响,并保证一定的光洁度。 试验时,试验机以规定的速率均匀地拉伸试样,试验机可自动绘制出拉伸曲线图。对于低碳钢等塑性好的材料,在试样拉伸到屈服点时,测力指针有明显的抖动,可分出上、下屈服点(和),在计算时,常取。材料的δ和ψ可将试验断裂后的试样拼合,测量其伸长和断面缩小而计算出来。 拉伸曲线图:由试验机绘出的拉伸曲线,实际上是载荷-伸长曲线,如将载荷坐标值和伸长坐标值分别除以试样原截面积和试样标距,就可得到应力-应变曲线图。图中op部分呈直线,此时应力与应变成正比,其比值为弹性模量,Pp是呈正比时的最大载荷,p点应力为比例极限σp。继续加载时,曲线偏离op,直到e点,这时如卸去载荷,试样仍可恢复到原始状态,若过e点试样便不能恢复原始状态。e点应力为弹性极限σe。工程上由于很难测得真正的σe,常取试样残余伸长达到原始标距的0.01%时的应力为弹性极限,以σ0.01表示。继续加载荷,试样沿es曲线变形达到s点,此点应力为屈服点σS或残余伸长为0.2%的条件屈服强度σ0.2。过s点继续增加载荷到拉断前的最大载荷b点,这时的载荷除以原始截面积即为强度极限σb。在b点以后,试样继续伸长,而横截面积减小,承载能力开始下降,直到k点断裂。断裂瞬间的载荷与断裂处的截面的比值称断裂强度。

超高强度钢

超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域。 随着洁净化、微合金和控轧控冷等先进冶金技术在钢铁企业的逐步推广和应用,钢材的品质得到了大幅度提高,发达国家正在研制相当于目前常用钢材抗拉强度数倍的超高强度钢。这种钢具有超细化、超洁净、超均质的组织和成分的特征,以及超高强度和超高韧性的特点。超高强度钢与普通结构钢的强度的界限目前尚无统一规定,习惯上是将室温抗拉强度超过1,400MPa、屈服强度大于1,200MPa 的钢称为超高强度钢。超高强度钢除了要求其高的抗拉强度外,还要求具有一定塑性和韧性、尽可能小的缺口敏感性、高的疲劳强度、一定的抗蚀性、良好的工艺性能、符合资源情况及价格低廉等。超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域,而且其使用范围正在不断地扩大到建筑、机械制造、车辆和其它军事装备上。因此,超高强度钢不仅是钢铁材料研究的重要方向,而且具有广阔的应用和发展前景。 超高强度钢的发展 超高强度合金钢是为满足某些特殊要求发展起来的,按其物理冶金学特点,超高强度钢大体可以分为低合金超高强度钢、二次硬化超高强度钢和马氏体时效钢。典型的低合金超高强度钢是AISI 4340 和D6AC;典型的二次硬化型中,合金超高强度钢是HY180 和AF1410,由于马氏体时效钢属高合金钢,在这里将不拟述及。 1.低合金超高强度钢 低合金超高强度钢大多是AISI 4130、4140、4330 或4340的改进型钢种。AISI 4340 是最早出现的低合金超高强度钢,它于1950年开始研究,并于1955年开始用于飞机起落架。通过淬火和低温回火处理,AISI 4130、4140、4330 或4340钢的抗拉强度均可超过1,500MPa,而且缺口冲击韧性较高。 为了抑制低合金超高强度钢回火脆性,1952年美国国际镍公司开发了300M。该钢通过添加了1%至2%的硅来提高回火温度(260至315摄氏度),并可抑制马氏体回火脆性。另外,通过调整碳含量和添加少量钒,又开发了AMS 6434 和LadishD6AC钢。20世纪80年代,中国通过对AISI 4330的改进,研制开发了高强韧性能的685和686装甲钢。在AISI 4340 的基础上,中国还研制了新型超高硬度695装甲钢,其抗穿甲弹防护系数达到1.3以上。值得注意的是,尽管以4340和300M 钢为代表的低合金超高强度钢具有高强度,但它们的断裂韧性和抗应力腐蚀能力都比较差,因而其应用受到了一定的限制。 2.二次硬化超高强度钢 随着航空工业的快速发展,开发强度高、断裂韧性好、可焊接性好的新型航空材料成为发展方向。研究者于20 世纪70 年代开发了HY180钢。为了达到航空构件材料的损伤容限和耐久性,70 年代末Speich 和Chendhok 等在对Fe10Ni 系合金钢进行的研究基础上,对HYl80 进行了改进,开发了AF1410超高强度合金钢,该钢经830℃油淬正510℃时效后,σ0.2大于等于1517MPa,KⅠc大于等于154MPa m1/2。因此该钢以极高的强韧性、良好的加工性能和焊接性能成为受航空界欢迎的一种新型高强度钢。

材料强度定义

问题:什么是抗拉强度,延伸率,屈服强度? 球铁管是一种即有高强度和高弹性的输水管道,球铁管优秀的力学性能是它在种类繁多的输水管材中立于不败之地的保证,因而我们有必要对描述球铁管的各种力学性能做一番介 绍: 延伸率 延伸率主要衡量球墨铸铁塑性性能-即发生永久变形而不至于断裂的性能。 δ= (L-L0)/L0*100% δ---伸长率 L0----试样原长度 L----试样受拉伸断裂后的长度 1.强度 强度是金属材料在外力作用下抵抗永久变形和断裂的能力。工程上常用来表示金属材料强度 的指标有屈服强度和抗拉强度。 a.屈服强度是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。 δS=Fs/A O Fs----试样产生屈服现象时所承受的最大外力(N) A O----试样原来的截面积(mm2) δS---屈服强度(Mpa) b.抗拉强度是指金属材料在拉断前所能承受的最大应力,用δb=F O/A O F O----试样在断裂前的最大外力(N) A O----试样原来的截面积(mm2) δb---抗拉强度(Mpa) Table:三种不同材料之间的机械性能对比 退火球墨铸铁铸态球墨铸铁管灰口铁管 屈服强度≥300MPa 未定义未定义 抗拉强度≥420MPa ≤300MPa ≥200 MPa 延伸率≥10% ≥3% ≤3% 断裂形式塑性变形突然断裂突然断裂 对于球墨铸铁管而言,其试样实际就是取自插口处试样加工过后的试棒;对球墨铸铁管件而言,其试样通常是取自与管件同批的铁水铸出的Y型试块加工成的试棒。管材和管件的抗拉强度实验,就是用试棒拉断前的最大持续力除以试棒面积计算得出的抗拉强度。 把试棒断裂的两部分拼在一起测量伸长的标距,用伸长标距与初始标距之比求得伸长率。不同的管材之间因为力学性能实验方法有别,所以某些管材宣传他们的力学性能甚至优 于铸铁管是毫无根据的。

超高强度钢定义

超咼强度钢定乂 超高强度钢 超高强度钢一般是指屈服强度大于1380MPa的高强度结构钢。20世纪40年代中期,美国用AISI4340结构钢通过降低回火温度,使钢的抗拉强度达到1600?1900MPa 50年代以后,相继研制成功多种低合金和中合金超高强度钢,如300M D6AC和H 一11钢等。60年代研制成功马氏体时效钢,逐步形成18Ni马氏体时效钢系列,70年代中期,美国研制成功高纯度HP310钢,抗拉强度达到2200MPa法国研制的35NCD16钢,抗拉强度大于1850MPa而断裂韧度和抗应力腐蚀性能都有明显的改进。80年代初,美国研制成功AF1410二次硬化型超高强度钢,在抗拉强度为1860MPS时,钢的断裂韧度达

到160 MP a m以上,AF1410钢是目前航空和航天工业部门正在推广应用的一种新材料。 中国于50年代初研制成功30CrMnSiNi2A超高强度钢,抗拉强度为1700MPa 70年代初,结合中国资源条件,研制成功32Si2M n2MoVA和 40CrMnSiMoVA(G(一4)钢。1980 年以来,从国 外引进新技术,采用真空冶炼新工艺,先后研制 成功45CrNiMoVA (D6AC)、34Si2MnCrMoVA

(406A) 、35CrNi4MoA、40CrNi2Si2MoVA(300M) 和18Ni马氏体时效钢,成功地用于制做飞机起落架、固体燃料火箭发动机壳体和浓缩铀离心机简体等。目前超高强度钢已形成不同强度级别系列,在国防工业和经济建设中发挥着重要的作用。 现在,以改变合金成分提高超高强度钢的强 度和韧性已很困难。发展超高强度钢的主要方向是开发新工艺、新技术,提高冶金质量,如采用真空冶炼技术,最大限度降低钢中气体和杂质元素含量,研制超纯净超高强度钢;通过多向锻造和形变热处理,改变钢的组织结构和细化晶粒尺寸,从而提高钢的强度和韧性,例如正在发展的相变诱发塑性钢(TRIP钢)等。 超高强度钢的合金成分、组织和特性 (1)中碳低合金超高强度钢此类钢是通过淬火和回火处理获得较高的强度和韧性,钢的强度主要取决于钢中马氏体的固溶碳浓度。含碳量增加,钢的强度升高;而塑性和韧性相应降低。因此,在保证足够强度的原则下,尽可能降低钢中含碳量,一般含碳量在0?30?0. 45% o钢中合

金属材料抗拉测试

金属材料抗拉测试 1范围 本欧洲标准确定了金属材料抗拉测试的方法,并定义了可以由周围温度确定的机械性能. 注:参考附件A 简要说明了电脑控制测试设备的补充推荐.基于生产商与使用方长远的发 展,附件A 在本标准下版将成为正式条款. 2参考标准 本标准由其它过期及未过期的参考文件组成。这些参考文件在本文的适当地方作了标注,包括出版情况。对过时的文件,本标准通过修改或修订,将其纳入本规范.对未过时的文件,其最新版本适用. EN10002-4 EN20286-2 EN ISO377 EN ISO2566-1 EN ISO2566-2 EN ISO7500-1 3.原则 测试包括试棒拉力测试,通常是断裂,以决定第4款里定义的一个或多个机械性能. 这个测试在10到35摄氏度的温度下进行,除非另有说明.在受控条件下执行的测试,温度应为23±5摄氏度. 4条件与定义 对本标准,下列定义与条款适用. 4.1塞规长度(L) 进行延伸测试的试棒有圆柱或棱形部分的长度.特别,有如下述两条区别: 4.1.1原始塞规长度(L 0) 拉前块长度 4.1.2最终塞规长度(L U ) 试棒断裂后块长度(见11.1) 4.2平行长度((L C ) 试棒棒减小区域的并行部分 注:平行长度的概念由非加工试棒夹具间的距离的取代. 4.3延伸 测试时,任何时候原始块长度L 0的增加 4.4永久延伸率 用原始长度L 0的百分比来表示的延伸 4.4.1永久延伸率 特定应力移除后,试棒原始块长度的增加(见4.9),用原始长度L 0的百分比来表示 4.4.2断裂后延伸率(A) 断裂后,块长度永久延伸(L U -L 0),用原始块长度(L 0)的百分比来表示 注:如果是均衡试棒,仅当原始块长度不同于5.65(S 0) 1/2 1),其中S 0是平行长度原始截面,A 应由所用的均衡系数作补充,比如: A 11.3=块长度(L 0)11.3(S 0) 1/2 的延伸率 如果是非均衡试棒,A 应由所用的原始块长度指数作补充,用毫米表示,比如: A 80mm =块长度(L 0)80毫米的延伸率

超高强度钢

超高强度钢 随着潜艇、机、箭、天器和兵器的发展,对超高强度钢的需求显著增长。根据钢中的合金含量可以将超高强度钢分为低合金超高强度钢、合金超高强度钢和高合金超高强度钢。据合结钢的物理冶金学特点可以将超高强度钢分为低合金超高强度钢、次硬化超高强度钢和马氏体时效钢。低合金超高强度钢大多是 AISI4130、4140、4330或4340的改进型钢;HY180和AF1410是典型的二次硬化型中合金超高强度钢;高合金超高强度钢的典型代表是马氏体时效钢。AISI4340是最早出现的低合金超高强度钢。它于1950年开始研究,并于1955年应用于飞机起落架。通过淬火和低温回火处理,AISI413041404330或4340钢的屈服强度可以超过1500MPa,然而缺口冲击韧性降低。在钢中添加1%~2%的硅可以抑制回火时ε-碳化物生长及Fe3C形成,提高回火温度(260-315℃)来消除热应力和相变应力以提高韧性,同时又可避免马氏体回火脆性。坩埚熔炼Hy-Tuf和300M便是利用上述原理开发的高硅低合金超高强度钢。1952年美国国际镍公司开发的300M钢是在4340钢中添加硅和钒元素。300M钢在300℃回火可获得最佳的强度和韧性配合。通过调整碳含量和添加钒,开发了AMS6434和LadishD6AC钢。通过对AISI4330的改进,我国开发了高性能685和686装甲钢。在工艺性能相当的条件下,高性能685装甲钢的抗枪弹和抗炮弹性能优于目前我国大量应用的前苏联2п和43пCM装甲钢。在AISI4340的基础上,我国还研制了高硬度695装甲钢,其抗穿甲弹防护系数达到1.3以上。值得注意的是,尽管以4340和300M钢为代表的低合金超高强度钢具有高强度,但它们的断裂韧性和抗应力腐蚀能力较差。马氏体时效钢强化作用是通过马氏体相变和等温时效析出金属间化合物Ni3Mo来达到的。马氏体时效钢的基本化学成分是18%Ni-8%Co-5%Mo。随着钛含量从0.20%提高到1.4%,屈服强度可以在1375-2410MPa之间变化。为了获得高韧性,应尽量降低钢中的磷、、和氮含量。目前马氏体时效钢的发展方向是:为了获得更高的强度和韧性,开发更高洁净度的马氏体时效钢;为了降低成本,开发经济的无钴马氏体时效钢。 除了广泛应用的AF1410等二次硬化超高强度钢之外,为了获得更高的强度和韧性配合,美国SRG在二次硬化钢的物理冶金学研究基础上,开发了高洁净度的AerMet钢。高洁净度保证了Aer-Met100钢 (0.23%C-3%Cr-11.1%Ni-13.4%Co-1.2%Mo)具备目前最佳的强度和韧性配Met100

强度定义

强度定义 1、材料、机械零件和构件抵抗外力而不失效的能力。强度包括材料强度和结构强度两方面。强度问题有狭义和广义两种涵义。狭义的强度问题指各种断裂和塑性变形过大的问题。广义的强度问题包括强度、刚度和稳定性问题,有时还包括机械振动问题。强度要求是机械设计的一个基本要求。 材料强度指材料在不同影响因素下的各种力学性能指标。影响因素包括材料的化学成分、加工工艺、热处理制度、应力状态,载荷性质、加载速率、温度和介质等。 按照材料的性质,材料强度分为脆性材料强度、塑性材料强度和带裂纹材料的强度。①脆性材料强度:铸铁等脆性材料受载后断裂比较突然,几乎没有塑性变形。脆性材料以其强度极限为计算强度的标准。强度极限有两种:拉伸试件断裂前承受过的最大名义应力称为材料的抗拉强度极限,压缩试件的最大名义应力称为抗压强度极限。②塑性材料强度:钦钢等塑性材料断裂前有较大的塑性变形,它在卸载后不能消失,也称残余变形。塑性材料以其屈服极限为计算强度的标准。材料的屈服极限是拉伸试件发生屈服现象(应力不变的情况下应变不断增大的现象)时的应力。对于没有屈服现象的塑性材料,取与0.2%的塑性变形相对应的应力为名义屈服极限,用σ0.2表示。③带裂纹材料的强度:常低于材料的强度极限,计算强度时要考虑材料的断裂韧性(见断裂力学分析)。对于同一种材料,采用不同的热处理制度,则强度越高的断裂韧性越低。 按照载荷的性质,材料强度有静强度、冲击强度和疲劳强度。材料在静载荷下的强度,根据材料的性质,分别用屈服极限或强度极限作为计算强度的标准。材料受冲击载荷时,屈服极限和强度极限都有所提高(见冲击强度)。材料受循环应力作用时的强度,通常以材料的疲劳极限为计算强度的标准(见疲劳强度设计)。此外还有接触强度(见接触应力)。

超高强度钢

超高强度钢 超高强度钢一般是指屈服强度大于1380MPa的高强度结构钢。20世纪40年代中期,美国用AISI4340结构钢通过降低回火温度,使钢的抗拉强度达到1600~1900MPa。50年代以后,相继研制成功多种低合金和中合金超高强度钢,如300M、D6AC和H一11钢等。60年代研制成功马氏体时效钢,逐步形成18Ni马氏体时效钢系列,70年代中期,美国研制成功高纯度HP310钢,抗拉强度达到2200MPa。法国研制的35NCDl6钢,抗拉强度大于1850MPa,而断裂韧度和抗应力腐蚀性能都有明显的改进。80年代初,美国研制成功AFl410二次硬化 型超高强度钢,在抗拉强度为1860MPa时,钢的断裂韧度达到160 MPa·m以上,AFl410 钢是目前航空和航天工业部门正在推广应用的一种新材料。 中国于50年代初研制成功30CrMnSiNi2A超高强度钢,抗拉强度为1700MPa。70年代初,结合中国资源条件,研制成功32Si2Mn2MoVA和40CrMnSiMoVA(GC一4)钢。1980年以来,从国外引进新技术,采用真空冶炼新工艺,先后研制成功45CrNiMoVA (D6AC)、34Si2MnCrMoVA (406A)、35CrNi4MoA、40CrNi2Si2MoVA(300M)和18Ni马氏体时效钢,成功地用于制做飞机起落架、固体燃料火箭发动机壳体和浓缩铀离心机简体等。目前超高强度钢已形成不同强度级别系列,在国防工业和经济建设中发挥着重要的作用。 现在,以改变合金成分提高超高强度钢的强度和韧性已很困难。发展超高强度钢的主要方向是开发新工艺、新技术,提高冶金质量,如采用真空冶炼技术,最大限度降低钢中气体和杂质元素含量,研制超纯净超高强度钢;通过多向锻造和形变热处理,改变钢的组织结构和细化晶粒尺寸,从而提高钢的强度和韧性,例如正在发展的相变诱发塑性钢(TRIP钢)等。 一超高强度钢的合金成分、组织和特性 (1)中碳低合金超高强度钢此类钢是通过淬火和回火处理获得较高的强度和韧性,钢的强度主要取决于钢中马氏体的固溶碳浓度。含碳量增加,钢的强度升高;而塑性和韧性相应降低。因此,在保证足够强度的原则下,尽可能降低钢中含碳量,一般含碳量在0.30~0.45%。钢中合金元素总量约在5%左右,Cr、Ni和Mn在钢中的主要作用是提高钢的淬透性,以保证较大的零件在适当的冷却条件下获得马氏体组织,Mo、W和v的主要作用是提高钢的抗回火能力和细化晶粒等。几种典型钢种的化学成分如表2·12.1。 该类钢通过淬火处理,在Ms点温度以下发生无扩散相变,形成马氏体组织。采用适宜的温度进行回火处理,析出ε—碳化物,改善钢的韧性,获得强度和韧性的最佳配合。提高回火温度(250—450℃回火)时,板条马氏体的ε—碳化物发生转变和残留奥氏体分解形成Fe3C渗碳体,钢的韧性明显下降,此现象称为回火马氏体脆性。产生此种回火脆性的原因主要是由于钢中的硫、磷等杂质元素在奥氏体晶界偏聚和渗碳体沿晶界分布,降低了晶界结合强度。300M钢等含有1.5%硅,能有效地仰制ε—碳化物转变和残留奥氏体分解,使钢的回火马氏体脆性温度提高到350~500℃。硅在钢中只能提高回火马氏体脆性区的温度,但

超级高强度钢

高强度钢 “超高强度钢”的定义是相对于时代要求的技术进步程度而在变化的。一般讲,屈服强度在 1 370MPa(140 kgf/mm2)以上,抗拉强度在 1 620 MPa(165 kgf/mm2)以上的合金钢称超高强度钢。按其合金化程度和显微组织分为低合金中碳马氏体强化超高强 度钢、中合金中碳二次沉淀硬化型超高强度钢、高合金中碳Ni—Co型超高强度钢、超 低碳马氏体时效硬化型超高强度钢、半奥氏体沉淀硬化型不锈钢等。 低合金中碳马氏体强化型超高强度钢(MART)是在低合金调质钢的基础上发展起来的,合金元素总量一般不超过6%。主要牌号包括传统的镍铬钼调质钢4340(40CrNiMo),碳含量0.45%的镍铬钼钒钢D6AC(45 CrNiMoV),碳含量0.30%的铬锰硅镍钢(30CrMnSiNi2A),在4340钢基础上通过加入硅( 1.6%)和钒(0.1%)而研制成的300M 钢(43CrNiSiMoV)以及不含镍的硅锰钼钒或硅锰铬钼钒等。通过真空熔炼降低钢中杂 质元素含量,改善钢的横向塑性和韧性,由于钢中合金元素含量较低,成本低,生产工 艺简单,广泛用于飞机大梁、起落架、发动机轴、高强度螺栓、固体火箭发动机壳体和 化工高压容器等。 中合金中碳二次沉淀硬化型超高强度钢是从5%Cr型模具钢移而来的。由于它在高 温回火状态下有很高的强度和较满意的塑性和韧性,抗热性好,组织稳定,用于飞机起 落架、火箭壳体等。典型钢种为H11和H13等。其主要成分为: C 0.32%--0.45%;Cr 4.75%--5.5%;Mo 1.1%--1.75%;Si 0.8%--1.2%。 高合金中碳Ni—Co(9Ni--4Co--××)型超高强度钢,是在具有高韧性、低脆性转 变温度的9%Ni型低温钢的基础上发展起来的。在9%Ni钢中添加钻是为了提高钢的Ms (马氏体转变)温度,减少钢中的残余奥氏体,同时,钻在镍钢中起固溶强化作用,还 通过加钻来获得钢的自回火特性,从而使这类钢具有优良的焊接性能。碳在这类钢中起 强化作用。钢中还含有少量铬和钼,以便在回火时产生弥散强化效应。主要牌号有 HP9-4-25,HP9-4-30,HP9-4-45以及改型的AF1410 (0.16%C-10%Ni-14%Co-1%Mo-2%Cr-0.05%V)等。这类钢综合力学性能高。抗应力腐蚀 性好,具有良好的工艺性能和焊接性能,广泛用于航空、航天和潜艇亮体等产品上。 超低碳马氏体时效硬化型超高强度钢,通常称马氏体时效钢。钢的基体为超低碳的 铁镍或铁镍钴马氏体。其特点是,马氏体形成时不需要快冷,可变温及等温形成;具有 体心立方结构;硬度约为HRC20,塑性很好;再加热时不出现像在低碳马氏体中发生的 回火现象,并有很大的逆转变温度迟滞,因而可以在较高温度进行马氏体基体内的时效 硬化。在这样的高镍马氏体中含有能引起时效强化的合金元素,借助于时效强化,从过 饱和的马氏体中析出弥散分布的金属间化合物,使钢获得高强度和高韧性。按镍含量, 马氏体时效钢分为25%Ni、20%Ni、18%Ni和12%Ni等类型.18%Ni型应用较广,为含有钼、钛等强化原素的超低碳铁-镍(18%)-钻(8.5%)合金,包括3个牌号:18%Ni(200)、18%Ni(250)、和18%Ni(300)(200、250、300为抗拉强度等级,单位为Ksi)。这种钢是通过金属间化合物的析出使钢强化。借无碳的马氏体基体取得高塑性,最后达到

力学性能定义

力学性能 - 定义 力学性能: 材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征一般来说金属的力学性能分为十种: 1.脆性脆性是指材料在损坏之前没有发生塑性变形的一种特性。它与韧性和塑性相反。脆性材料没有屈服点,有断裂强度和极限强度,并且二者几乎一样。铸铁、陶瓷、混凝土及石头都是脆性材料。与其他许多工程材料相比,脆性材料在拉伸方面的性能较弱,对脆性材料通常采用压缩试验进行评定。 2.强度:金属材料在静载荷作用下抵抗永久变形或断裂的能力.同时,它也可以定义为比例极限、屈服强度、断裂强度或极限强度。没有一个确切的单一参数能够准确定义这个特性。因为金属的行为随着应力种类的变化和它应用形式的变化而变化。强度是一个很常用的术语。 3.塑性:金属材料在载荷作用下产生永久变形而不破坏的能力.塑性变形发生在金属材料承受的应力超过塑性极限并且载荷去除之后,此时材料保留了一部分或全部载荷时的变形. 4.硬度:金属材料表面抵抗比他更硬的物体压入的能力 5.韧性:金属材料抵抗冲击载荷而不被破坏的能力. 韧性是指金属材料在拉应力的作用下,在发生断裂前有一定塑性变形的特性。金、铝、铜是韧性材料,它们很容易被拉成导线。 6.疲劳强度:材料零件和结构零件对疲劳破坏的抗力 7.弹性弹性是指金属材料在外力消失时,能使材料恢复原先尺寸的一种特性。钢材在到达弹性极限前是弹性的。 8.延展性延展性是指材料在压应力的作用下,材料断裂前承受一定塑性变形的特性。塑性材料一般使用轧制和锻造工艺。钢材既是塑性的也是具有延展性的。 9. 刚性刚性是金属材料承受较高应力而没有发生很大应变的特性。刚性的大小通过测量材料的弹性模量E来评价。 10.屈服点或屈服应力屈服点或屈服应力是金属的应力水平,用MPa度量。在屈服点以上,当外来载荷撤除后,金属的变形仍然存在,金属材料发生了塑性变形。以上,当外来载荷撤除后,金属的变形仍然存在,金属材料发生了塑性变形。 钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。①抗拉强度(σb)试样在拉伸过程中,在拉断时所承受的最大力(Fb),出以试样原横截面积(So)所得的应力(σ),称为抗拉强度(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为:式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。②屈服点(σs)具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为N/mm2(MPa)。上屈服点

拉伸强度

拉伸强度拉伸强度(tensile strength)是指材料产生最大均匀塑性变形的应力。也就是抵抗拉抻变形的能力. (1)在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa 表示。有些错误地称之为抗张强度、抗拉强度等。 (2)用仪器测试样拉伸强度时,可以一并获得拉伸断裂应力、拉伸屈服应力、断裂伸长率等数据。 (3)拉伸强度的计算:σt = p /( b×d) 式中,σt为拉伸强度(MPa),p为最大负荷(N),b为试样宽度(mm),d为试样厚度(mm)。 注意:计算时采用的面积( b×d)是断裂处试样的原始截面积,而不是断裂后端口截面积。(4)在应力应变曲线中,即使负荷不增加,伸长率也会上升的那一点通常称为屈服点,此时的应力称为屈服强度,此时的变形率就叫屈服伸长率;同理,在断裂点的应力和变形率就分别称为断裂拉伸强度和断裂伸长率。 拉伸强度表征材料抵抗(拉伸)破坏的极限能力 塑性变形(Plastic Deformation),的定义是物质-包括流体及固体在一定的条件下,在外力的作用下产生形变,当施加的外力撤除或消失后该物体不能恢复原状的一种物理现象。 弯曲强度就是材料在受弯曲作用的时候最大弯矩截面上所能抵抗的最大正应力。或者说是物体抵抗弹性变形(塑性变形)的能力,也叫做物体的刚性。 弯曲模量又称挠曲模量。是弯曲应力比上弯曲产生的形变。材料在弹性极限内抵抗弯曲变形的能力。弯曲强度除与材料的抗拉强度有关系外,还与材料的截面形状有关系。 很多材质相同,也就是抗拉强度一样,由于截面形状不同,就具有了不同的弯曲强度 模量=应力/应变 拉伸模量即拉伸的应力与拉伸所产生的形变之比弯曲模量即弯曲应力与弯曲所产生的形变之比 拉伸强度是表征材料的强度,伸长率是表征刚度,弯曲模量和弯曲强度都是表征弯曲特性的,弯曲模量和弯曲强度越小,说明材料越脆,柔韧性就越差 至于为什么要测量拉伸强度、弯曲强度和弯曲模量呢?我认为,根据这些数据可以决定材料做什么产品。许多制品的实际使用寿命与拉伸强度和弯曲强度有较好的相关性,例如,传送带,电缆 耐热性,指物质在受热的条件下仍能保持其优良的物理机械性能的性质。

什么是屈服强度和抗拉强度(知识参考)

什么是屈服强度和抗拉强度 要说这两个概念,先从材料是如何被破坏的说起。任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。单位面积上受的力,这是一个强度的表述,单位是帕斯卡(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。 所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。抗拉强度是材料单位面积上所能承受外力作用的极限。超过这个极限,材料将被解离性破坏。 那什么是屈服强度呢?屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。比如各类金属材料、塑料、橡胶等等,都有弹性,都有屈服强度。而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。 弹性材料在受到恒定持续增大的外力作用下,直到断裂。究竟发生了怎样的变化呢? 首先,材料在外力作用下,发生弹性形变,遵循胡克定律。什么叫弹性形变呢?就是外力消除,材料会恢复原来的尺寸和形状。当外力继续增大,到一定的数值之后,材料会进入塑性形变期。材料一旦进入塑性形变,当外力,材料的原尺寸和形状不可恢复!而这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉力而言,这个临界点的拉力值,叫屈服点。从晶体角度来说,只有拉力超过屈服点,材料的晶体结合才开始被破坏!材料的破坏,是从屈服点就已经开始,而不是从断裂的时候开始的! 弄清楚这两个强度怎么来的了,所以说,屈服强度高的材料,能承受的破坏力就大,这是正确的。

我国超高强度钢标准化现状分析

收稿日期:2004-11-25 作者简介:戴强,男,工程师,长期从事钢铁产品标准的制修订工作。 我国超高强度钢标准化现状分析 戴 强 (冶金工业信息标准研究院 北京 100730) 摘 要:通过对国内超高强度钢标准化现状的分析,找出目前我国超高强度钢标准通用化、系列化的主要问题,提出建议方案及需做的工作。关键词:超高强度钢;分析;建议 中图分类号:TG142.7 文献标识码:B 文章编号:1003-0514(2005)01-0021-04 Analyzed the situation of u ltra -high strength steel in China DAN Qiang (China Metallurgical Information &Standardization Research Insti tute,Beijing 100730,China) Abstract :After analyzed the situation of ul tra-high s trength steel in China,the main problems of the generalization and seriation of ul tra-high strength steel standards in China have been found out ,and work plans have been proposed.Key words :ultra-stren gth;steel;analyse;suggesti on 超高强度钢是在合金结构钢的基础上发展起来的一种高强度、高韧性合金钢,目前已被航空、航天部 门广泛采用,是制造国防尖端武器的关键材料。如用于制作飞机的起落架,可以承受飞机的全部重量和起落时的振动与冲击载荷;用于制作固体火箭发动机壳体,保证了极高的稳定性和可靠性;用于制作新型战术导弹的侵彻弹弹体,可以高达700~900m/s 的速度撞击混凝土目标,并穿入至一定深度后才爆炸,从而达到破坏敌方机场跑道,摧毁敌方地下设施,遏制敌方战斗力的效果。1 我国超高强度钢的现状 我国超高强度钢的发展是随着国防建设的需要而逐步发展起来的。从50年代末研制第一个超高强度钢32Si M nMoV 钢(32钢)到现在已经过了50多年,大体上经历了两个阶段,即: 从50年代末到70年代末的第一阶段,是我国超高强度钢的创业和发展阶段。在这一阶段,主要是仿制、消化和发展前苏联武器用钢的牌号,在此基础上 结合我国资源,研制了不含镍、铬的低合金超高强度钢,如32SiMnMoV 钢(32钢)、40SiMnCr MoVRE 钢 (406)、37SiMnCrNiMo 钢等,质量达到前苏联当时的设计要求及产品实物水平,并已用于制造飞机起落架和固体火箭发动机壳体等重要部件。 从80年代至今的第二阶段,是我国超高强度钢的提高阶段。由于采用真空冶炼等先进的生产工艺和技术,提高了钢的纯洁度,均匀性等综合性能,先后研制成功40C rNi2Si2MoVA,45CrNi M o1VA,18Ni 马氏体时效钢和9Ni-4Co 型高断裂韧性超高强度钢等,并能严格按照欧美体系的技术标准进行试制和生产,保证了新型武器装备的需求。 经过这一阶段的工作使我国超高强度钢的生产工艺和质量水平上了一个新台阶,接近或基本达到西方发达国家的水平。 随着我国超高强度钢各种牌号的不断研制成功、应用领域的不断扩大及生产工艺的进一步稳定。我国从1994年开始制定超高强度钢标准,为规范超高强度钢生产及应用起到了关键作用。截止到目前我

屈服强度与抗拉强度

屈服强度与抗拉强度的定义屈服强度又称为屈服极限,常用符号δs,是材料屈服的临界应力值。(1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。 抗拉强度(tensile strength) 试样拉断前承受的最大标称拉应力。对于塑性材料,它表征材料最大均匀塑性变形的抗力;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 抗拉强度的定义及符号表示: 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横

截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为:σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。抗拉强度(Rm)指材料在拉断前承受最大应力值。万能材料试验机当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:extensional rigidity. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定。

超高强度钢研究进展及其在军事上的应用

超高强度钢研究进展及其在军事上的应用 随着洁净化、微合金和控轧控冷等先进冶金技术在钢铁企业的逐步推广和应用,钢材的品质得到了大幅度提高,发达国家正在研制相当于目前常用钢材抗拉强度数倍的超高强度钢。这种钢具有超细化、超洁净、超均质的组织和成分的特征,以及超高强度和超高韧性的特点。超高强度钢与普通结构钢的强度的界限目前尚无统一规定,习惯上是将室温抗拉强度超过1400MPa、屈服强度大于1200MPa的钢称为超高强度钢。超高强度钢除了要求其高的抗拉强度外,还要求具有一定塑性和韧性、尽可能小的缺口敏感性、高的疲劳强度、一定的抗蚀性、良好的工艺性能、符合资源情况及价格低廉等。超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域,而且其使用范围正在不断地扩大到建筑、机械制造、车辆和其它军事装备上。因此,超高强度钢不仅是钢铁材料研究的重要方向,而且具有广阔的应用和发展前景。 超高强度钢的发展 超高强度合金钢是为满足某些特殊要求发展起来的,按其物理冶金学特点,超高强度钢大体可以分为低合金超高强度钢、二次硬化超高强度钢和马氏体时效钢。目前,典型的低合金超高强度钢是AISI4340和D6AC;典型的二次硬化型中,合金超高强度钢是HY180和AF1410,由于马氏体时效钢属高合金钢,在这里将不拟述及。 1低合金超高强度钢 低合金超高强度钢大多是AISI4130、4140、4330或4340的改进型钢种。AISI4340是最早出现的低合金超高强度钢,它于1950年开始研究,并于1955年开始用于飞机起落架。通过淬火和低温回火处理,AISI4130、4140、4330或4340钢的抗拉强度均可超过1500MPa,而且缺口冲击韧性较高。 为了抑制低合金超高强度钢回火脆性,1952年美国国际镍公司开发了300M。该钢通过添加了1%~2%的硅来提高回火温度(260~315℃),并可抑制马氏体回火脆性。另外,通过调整碳含量和添加少量钒,又开发了AMS6434和LadishD6AC钢。20世纪80年代,我国通过对AISI4330的改进,研制开发了高强韧性能的685和686装甲钢。在工艺性能相当的条件下,高性能685装甲钢的抗枪弹和抗炮弹性能优于目前我国大量应用的前苏联2П和43ПСМ装甲钢。在AISI4340的基础上,我国还研制了新型超高硬度695装甲钢,其抗穿甲弹防护系数达到1.3以上。值得注意的是,尽管以4340和300M钢为代表的低合金超高强度钢具有高强度,但它们的断裂韧性和抗应力腐蚀能力都比较差,因而其应用受到了一定的限制。国外典型的低合金超高强度钢的化学成分见表1。 表1国外常用低合金超高强度钢合金的化学成分(mass%) 2二次硬化超高强度钢 随着航空工业的快速发展,开发强度高(1586~1724MPa)、断裂韧性好(125MPa·m1/2)、可

力学性能相关定义(精)

单向应力状态下材料的力学行为 如图是脆性材料的应力--应变曲线。 如图是韧性金属材料的应力--应变曲线。

如图是聚合物(工程塑料)的应力--应变曲线。 拉伸曲线的四个阶段 观察韧性金属材料拉伸曲线的四个阶段。如图,第一个阶段是弹性阶段,这个阶段分为两种,当应力小于σp 时,应力和应变成正比,此时应力最大值叫做这种材料的比例极限;超过比例极限后,应力和应变虽然不保持正比关系,但变形依然是弹性的,卸载后变形完全恢复为零。

第二个阶段是屈服阶段,超过弹性极限后,应力不增加,应变大幅度增加,应力应变曲线上出现一个平台,此时即使不加载,试样的变形依然在增加,此时的应力值叫屈服强度或者屈服应力。 第三个阶段强化阶段,过了屈服阶段后,应力继续增加,此时构件又能承受载荷。 第四个阶段是断裂阶段,构件发生断裂。

弹性行为 所以,从这四个阶段可以看出材料在单向拉伸时有这样几种行为。第一种行为是弹性行为,所有的变形都是弹性的,有两个指标,一个是比例极限,一个是弹性极限。 屈服行为 第二种行为是屈服行为,这时的应力值就叫做屈服强度或屈服应力。

对于没有屈服平台的材料的应力应变曲线,用条件屈服强度(条件屈服应力)来表示其屈服行为,即当加载后再卸载,若在试样上还存在着0.2%的塑性应变,这时的应力值就叫做条件的屈服强度,用σ0.2 表示。 硬化与软化行为 第三种行为是硬化和软化行为,当材料超过屈服阶段时,要产生变形就必须继续加力,这种现象就叫做强化现

象,在强化阶段的最后试样上出现紧缩,即某一个截面突然变小。 紧缩之后试样发生断裂,这就是所谓的断裂行为。断裂行为 刚才介绍的是韧性材料的断裂行为,现在看脆性材料的断裂行为。脆性材料没有屈服、强化和软化行为,只有

高强度螺栓定义及表示方法

带M字头的都是螺栓,并非专指高强螺栓。 一般的六角头螺栓的标定一边为下述格式 M30*300-10.9-tZn 其中M30标示螺纹规格,也就是螺纹外径为30mm,300为螺栓可用长度,也就是公称长度,10.9级标示螺栓的使用性能等级,tZn为表面处理方式。 其他的形式的螺栓也有其自己的的表达方法,不过一般带螺纹的都要以"M"开头,螺母也一样。 重点讲性能等级。 螺栓的性能等级从小到大分为3.6、4.6、4.8、5.6、5.8、6.8、8.8、10.9、12.9这么多等级。 这种标记方法意思以10.9为例 10标示该螺栓抗拉强度的1/100,也就是说该等级螺栓的抗拉强度必须达到1000MPa等级,实际可能高于1000MPa。 GB/T3098.1规定该等级螺栓的最小抗拉强度必须要大于1040MPa。 小数点后面的标示屈强比,也就是螺栓的(屈服强度/抗拉强度)=0.9 即屈服强度=1000*0.9=900MPa,该等级螺栓的屈服强度必须要高于900MPa 才算合格。 通常我们将8.8、10.9、12.9这三个等级的螺栓称为高强螺栓。 要注意的是,GB/T3098.1中对这三个等级的螺栓都没有给出屈服强度的具体数值,这是因为对高强螺栓而言0.8、0.9都是该等级所规定的最小屈强比,由于高强螺栓都用于非常重要的链接,市面上没有现货出售,必须向螺栓生产厂家预定,因此具体的屈强比一般都是由购买方提出具体数值来生产的。 螺栓强度等级标记代号由“?”隔开的两部分数字组成。标记代号中“?”前数字部分的含义表示公称抗拉强度,如4.8级的“4”表示公称抗拉强度400N/MM2 的1/100。标记代号中“?”和点后数字部分的含义表示屈强比,即公称屈服点或公称屈服强度与公称抗拉强度之比。如4.8级产品的屈服点为320 N/mm2。 碳钢:公制螺栓机械性能等级可分为:3.6、4.6、4.8、5.6、5.8、6.8、8.8、9.8 8.8级螺栓的前一个8的含义是每平方毫米的抗拉强度是800牛也就是80公斤的拉力,后一个八的意思是8.8级产品的屈服点为6400N/mm2 至于8.8s是高强钢螺栓,与普通8.8级螺栓的区别是安装时需加载一定预紧力,不可重复使用。 螺栓概念螺栓:由头部和螺杆(带有外螺纹的圆柱体)两部分组成的一类紧固件,需与螺母配合,用于紧固连接两个带有通孔的零件。 这种连接形式称螺栓连接。

相关主题
文本预览
相关文档 最新文档