当前位置:文档之家› 抑郁症信号转导通路研究_李爱师

抑郁症信号转导通路研究_李爱师

抑郁症信号转导通路研究_李爱师
抑郁症信号转导通路研究_李爱师

2012年12月第2卷第24期·综 述·抑郁症信号转导通路研究

李爱师

海军机关门诊部,北京 100841

[摘要] 长期给予抗抑郁剂可以增加脑内cAMP依赖性PKA的表达水平,继而激活cAMP反应元件结合蛋白。CREB可以调节脑源性神经生长因子的表达。大量的研究表明cAMP 和BDNF是多种抗抑郁剂的共同通路,现就此进行综述,探讨其与抗抑郁剂之间的关系,为精神药理和新药研发提供依据。

[关键词]抑郁症;抗抑郁剂;cAMP反应元件结合蛋白;脑源性神经生长因子

[中图分类号]?R749.4 [文献标识码]?A [文章编号]?2095-0616(2012)24-31-03

Recent progress in sigal transduction research of major depression

LI?Aishi

Navy Headquarters Clinics of PLA,Beijing 100841,China

[Abstract] It is known that long-term antidepressant administration increases the expression of cAMP-dependent PKA and thereby the activity of the transcription factor cAMP response element binding protein (CREB), which leads to enhanced transcription of genes containing a cAMP-responsive element in their promotor. One of the target genes of CREB is brain-derived neurotrophic factor (BDNF),which play a central role in the mechanism of antidepressant action. Several lines of evidence suggest that cAMP response element binding protein(CREB)and brain derived neurotrophic factor(BDNF)are common targets of different classes or antidepressants.The present review will explore these two signal transduction pathways involved in antidepressant action and their possible use in psychopharmacogenomics and drug discovery.

[Key words] Depression;Antidepressant;cAMP response element binding protein;Brain derived neurotrophic factor

抑郁症(depression)是一种慢性、反复发作的情感性精神疾病,其临床表现多样,如食欲和睡眠障碍,情绪低落,悲观厌世,甚至具有自杀倾向。随着生活节奏的加快和社会竞争的日益激烈,抑郁症的发病率逐渐升高。据世界卫生组织推测,目前全球约有3.4亿抑郁症患者,且这个数字以每年113%的增长率快速递增,预计到2020年,抑郁症可能成为仅次于心脏病的第2大疾病[1]。Schildkraut和Bunney等在1965年几乎同时提出抑郁症发病的“单胺假说(monoamine hypothesis)”,该学说认为,抑郁症的生物学基础主要是由于脑内单胺递质5-羟色胺(5-hydroxytryptamine,5-HT)和(或)去甲肾上腺素(norepinephrine,NE)的缺乏。目前临床使用的抗抑郁药(antidepressant)绝大多数是基于“单胺策略”的药物,即通过增强5-HT和(或)NE的神经传递发挥作用的。而抑郁症是基因与环境相互作用的结果,发病机制复杂,临床上仍然有30%患者对单一靶点抗抑郁剂治疗无效,并且临床使用的抗抑郁剂大多存在“延迟起效”“有效率不高”“不良反应严重”等亟待解决的问题[2-3]。目前大多数研究认为,单胺水平的降低所引起的受体以及受体后信号转导通路的适应性变化是抑郁症发生的关键因素,本研究就此作一综述。

目前研究发现,长期给予5-HT重吸收抑制剂以及其他种类的抗抑郁剂,可以导致cAMP第二信使通路在多个水平上的适应性改变,包括CREB表达增强[4]。转录因子CREB的上调表明长期抗抑郁剂可以调节特异性基因靶标,而且这些基因靶标本身可以介导抗抑郁剂的活性。多种基因靶标能够被CREB所调控,例如BDNF以及它的跨膜受体蛋白酪氨酸B(trkB)。长期给予5-HT重吸收抑制剂以及其他种类的抗抑郁剂,可以增加海马中BDNF和trkB的表达[5]。这些研究证均提示:长期的抗抑郁治疗可以上调cAMP通路及BDNF-trkB水平,这为抗抑郁剂的发展提供了新的信息。

1?抗抑郁剂与cAMP第二信使通路

1.1?抗抑郁剂调节cAMP水平

有许多5-HT受体的亚型可以调节cAMP功能,其中5-HT4、5-HT5 A、5-HT6、5-HT7受体亚型可以刺激cAMP产生,而5-HT1A、5-HT1B、5-HT1D、5-HT1E受体亚型则抑制cAMP产生,这些受体被腺苷酸环化酶(adenylyl cyclase,AC)耦联,该酶分别经刺激型G蛋白(Gs)和抑制型G蛋白(Gi)分解ATP成cAMP。G蛋白有三个亚基,α、β、γ,与该受体相互作用的激动剂可以导致这些亚基的分离,产生自由状态的、具有生物活性的α、β、γ,用来调节腺苷酸环化酶的活性。抗抑郁剂可以影响cAMP系统的首次依据是发现抗抑郁治疗可以降低β肾上腺素受体产生cAMP的水平,后来多项研究也证实,除5-HT重吸收抑制剂外,其他种类的抗抑郁剂均可以产生同样结果。长期抗抑郁治疗可以增加cAMP系统的受体后成分,包括AC酶活性的提高,PKA酶水平的提高,CREB 和特定的靶标基因功能及表达的增强[6]。长期给予一些种类的抗抑郁剂而非5-HT重吸收抑制剂可以增加AC的GTP活性,原因可能是由于GS与AC耦联活性的增加而导致的,而非GS 与AC表达的增加。

CHINA MEDICINE AND PHARMACY 31

2012年12月第2卷第24期·综 述·

1.2?AMP依赖性蛋白激酶(cyclic?AMP-dependent?protein?kinase,PKA)和cAMP反应元件结合蛋白CREB

cAMP水平的提高可以通过激活PKA来调节细胞功能,PKA由调节亚单位和催化亚单位组成,通过磷酸化许多种类的蛋白质,包括受体、离子通道、神经递质合成及降解酶、转录因子、结构蛋白等来行使调节细胞的功能。长期抗抑郁治疗可以影响PKA的功能及细胞分布,有研究显示,长期抗抑郁治疗可以增加额叶特定部位PKA水平,但是却降低了该脑区胞浆内的酶活性,而核内PKA水平上调,提示抗抑郁治疗可以诱导PKA从胞浆到胞核的跨膜转运[7]。另一研究证实,长期的抗抑郁治疗可以增加PKA的特定表达水平,但是在这种情况下,效应发生在微管相关蛋白,同时伴随有磷酸化的微管相关蛋白表达增强。这两个研究的不同结论归因于亚细胞结构的不同分布以及这些结构具有不同的纯度,尚需进一步探索的是长期的抗抑郁治疗时PKA的细胞分布是否发生改变,目前已有研究发现,长期ECS或三环类抗抑郁治疗可以增强海马部位胞浆内该酶的活性,但并不清楚是否其他种类的抗抑郁剂也可以影响该酶的水平。

去磷酸化状态的CREB可以结合到cAMP反应元件(CRE)上介导低水平的转录反应,当CREB的Ser123被PKA磷酸化后,其转录活性明显提高,如果Ser123发生变异后则可以通过cAMP系统来阻断CREB的活性。CREB除可以被PKA调节之外,还可以被PKC及Ca2+/钙依赖性蛋白激酶所磷酸化而激活。也就是说,CREB不仅能被与cAMP通路相耦联的受体所调节,而且也可以被那些影响第二信使系统的受体来调节(此第二信使系统能调节这些蛋白激酶)。长期给予一些种类的抗抑郁剂,包括5-HT重吸收抑制剂,可以增加海马CREB mRNA表达水平和免疫反应性。原位杂交及免疫组化分析证实:长期抗抑郁治疗可以导致海马主要细胞层CA3、CA1、齿状回的CREB的表达增加,而长期给予非抗抑郁剂的其他精神类药物并不影响海马CREB的表达,所以可以说这种增加海马CREB mRNA反应具有药理学特异性[8]。抗抑郁剂可以上调cAMP-CREB通路,包括增加了GTP结合蛋白与AC的偶联,增加了特异性cAMP 依赖性蛋白激酶的表达,增加了CREB的表达及其磷酸化程度,更有趣的是在基础条件下,祖细胞所定位的SGZ区及其附近有磷酸化的CREB的高表达。PDE4可以降解神经元的cAMP,抑制PDE(rolipram)可以产生抗抑郁样效应,增加海马中BDNF 的表达,长期给予rolipram可以增加海马中成熟神经元再生以及磷酸化CREB水平,类似于抗抑郁剂的治疗效果[9]。

抑郁症发生与CREB的关系:(1)长期的抗抑郁治疗可以上调CREB的功能及其表达水平。(2)用HSV介导的基因转导技术证明,海马中过表达CREB可以对实验动物产生抗抑郁样效应。(3)抑郁症发生时,皮层CREB的表达水平下降,而抗抑郁治疗可以使之上调。

2?抗抑郁与BDNF调节

2.1?BDNF神经生物学

BDNF在成熟海马及皮层中高水平表达,在这些脑区中,BDNF可以影响神经元存活分化、形态学;BDNF也可以调节细胞功能性表型标志的表达水平,包括神经递质合成酶和神经肽。它功能的行使是通过与trkB受体的结合及对MAPK通路的调节来完成的,trkB受体具有内在酪氨酸激酶活性,该酶激活后可以自身磷酸化,调节MAPK通路从而产生后续效应。2.2?BDNF在抑郁症发生中的作用

(1)慢性应激可减少啮齿动物海马DG和锥体细胞层BDNF水平。作为一种主要的神经生长因子,BDNF对于神经细胞的存活和功能维持很重要。研究发现,BDNF在长时程增强时发挥重要作用。长时程增强是研究学习记忆中主要的研究方法,证实这个神经生长因子能够影响神经可塑性[10]。(2)应激降低CA3锥形神经元BDNF表达和齿状回颗粒细胞表达,下调的BDNF导致海马CA3区神经元的萎缩,或导致这些神经元对其他刺激因素(例如肾上腺糖皮质激素)更加敏感[11]。(3)脑成像实验证明:抑郁或创伤后应激失调患者由于BDNF水平下降,CA3神经元萎缩甚至死亡,海马容量显著下降[12]。

2.3?抗抑郁剂可以增加BDNF表达

长期给予一些种类的抗抑郁剂包括5-HT重吸收抑制剂,可以增海马中BDNF和trkB的表达。而给予其他种类的精神治疗药物并未增加海马区域BDNF、trkB的表达[13]。原位杂交分析也证明:抗抑郁治疗也可增加BDNF的mRNA表达,并且与CREB上调所出现的海马细胞层一致。由于BDNF可增强海马LTP和突触可塑性,抗抑郁剂诱导BDNF上升可能促进海马功能,这也能很好的解释抗抑郁药物的突触延迟效应部分是因为BDNF水平逐渐升高至发挥活性需要足够时间[14]。

2.4?BDNF增强的功能性意义

通过行为学,神经化学,形态学的研究中可以初步得出这样下结论:BDNF在抗抑郁研究中发挥作用,长期给予BDNF,可以在动物模型上(强迫游泳和学习无助)产生抗抑郁样活性[15]。BDNF注入中脑可以对5-HT神经元产生神经营养因子作用,而抗抑郁治疗可以使得BDNF水平升高[16],5-HT神经递质功能增强,故5-HT与BDNF之间是一种正性关系,意即长期抗抑郁治疗可以增加BDNF水平,并且上调的BDNF可以增加5-HT 的神经功能。长期的ECS可以增加海马中BDNF的水平,降低大鼠强迫游泳的不动时间。

2.5?CREB调节BDNF表达

有这样一种可能:BDNF及trkB表达的增加是经由cAMP 通路和CREB上调来介导的,其理由如下:(1)CREB和BDNF/ TrkB表达增加出现在同一细胞层,而且所出现的时间是相似的。(2)注入抗CREB抗体降低了基础条件下及ECS诱导的海马BDNF水平的提高。(3)长期给予PDE抑制剂,可以增加CREB、BDNF表达。另外有实验证明:在培养细胞中,cAMP 通路的激活可以增加BDNF/trkB表达。这些实验证明:BDNF/ trkB的表达被cAMP通路及CREB正性调节。由于CREB和BDNF的上调出现在多种抗抑郁治疗剂之后,初步提示这样一种可能:cAMP-CREB通路的激活和BDNF是抗抑郁剂普遍的受体后靶标[17],是可以调节神经元再生的特异性基因靶标。

综上所述,提高脑内BDNF水平可能产生抗抑郁活性,尽管目前还没有这样的新药或化合物被研发出来,但是研发调节营养因子或其信号通路的小分子化合物是主要的新药发展方向之一。由于BDNF基因在整体和离体水平被CREB所诱导。

32

CHINA MEDICINE AND PHARMACY

2012年12月第2卷第24期·综 述·

而且各类抗抑郁剂可增加海马等脑区CREB的功能及表达。尸检证明,抑郁患者颞皮层和海马CREB下降。海马齿状回直接注射编码CREB的病毒载体,可以增加该区CREB活性,在强迫游泳和获得性无助模型上产生抗抑郁活性。CREB的这些效应是通过包括BDNF在内的许多靶基因所介导,这些研究为抑郁症治疗带来新策略。

[参考文献]

[1] L uppa M, Heinrich S,Angermeyer MC,et al.Cost-of-illness studies of

depression:a systematic review[J].J Affect Disord,2007,98(1-2):29-43. [2] C rown WH,Finkelstein S,Berndt ER,et al.The impact of treatment-resistant

depression on health care utilization and costs[J]. J Clin Psychiatry,2002,63(11):963-971.

[3] P apakostas GI.The efficacy,tolerability and safety of contemporary

antidepressants[J].J Clin Psychiatry,2010,71(Suppl): E1-3.

[4] G ibon J,Deloulme JC,Chevallier T,et al.The antidepressant hyperforin

increases the phosphorylation of CREB and the expression of TrkB in a tissue-specific manner[J].Int J Neuropsychopharmacol,2012,9:1-10.

[5] L iebenberg N,Müller HK,Fischer CW,et al.An inhibitor of cAMP-dependent

protein kinase induces behavioural and neurological antidepressant-like effects in rats[J].Neurosci Lett,2011,498(2):158-161.

[6] B?er U,Noll C,Cierny I,et al.A common mechanism of action of the selective

serotonin reuptake inhibitors citalopram and fluoxetine:reversal of chronic psychosocial stress-induced increase in CRE/CREB-directed gene transcription in transgenic reporter gene mice[J].Eur J Pharmacol,2010,633(1-3):33-38.

[7] C hen L,Zhao YN,Dai JG,et al.Hippocampal cAMP response element binding

protein and antidepressant treatments[J].Sheng Li Xue Bao,2010,62(6):489-494.

[8] R en X,Dwivedi Y,Mondal AC,et al.Cyclic-AMP response element binding

protein (CREB) in the neutrophils of depressed patients[J].Psychiatry Res,2011,185(1-2):108-112.

[9] D euschle M, Gilles M, Scharnholz B,et al. Changes of serum concentrations

of brain-derived neurotrophic factor (BDNF)during treatment with venlafaxine and mirtazapine: role of medication and response to treatment[J].

Pharmacopsychiatry,2012,on publish.

[10] B arkus C.Genetic mouse models of depression[J].Curr Top Behav Neurosci,

2012,15

[11] N eto FL,Borges G,Torres-Sanchez S,et al.Neurotrophins role in depression

neurobiology: a review of basic and clinical evidence[J].Curr Neuropharmacol,2011,9(4):530-552.

[12] Y ang D,Chen M,Russo-Neustadt A.Antidepressants are neuroprotective

against nutrient deprivation stress in rat hippocampal neurons[J].Eur J Neurosci,2012,36(5):2573-2587.

[13] A utry AE,Monteggia LM.Brain-derived neurotrophic factor and

neuropsychiatric disorders[J]. Pharmacol Rev,2012,64(2):238-258. [14] M asi G,Brovedani P.The hippocampus, neurotrophic factors and depression:

possible implications for the pharmacotherapy of depression[J].CNS Drugs,2011,25(11):913-931.

[15] Q iao H, An SC, Xu C. Research progress of BDNF and depression[J].Sheng

Li Ke Xue Jin Zhan,2011 ,42(3):195-200.

[16] S chmidt HD, Duman RS. Peripheral BDNF produces antidepressant-like

effects in cellular and behavioral models[J].Neuropsychopharmacology,2010,35(12):2378-2391.

[17] F ernandes BS, Gama CS, Ceresér KM, et al. Brain-derived neurotrophic

factor as a state-marker of mood episodes in bipolar disorders: a systematic review and meta-regression analysis[J].J Psychiatr Res,2011,45(8):995-1004.

(收稿日期:2012-08-23)

(上接第30页)

[14] H alefoglu AM.Magnetic resonance cholangiopancreatography:a useful tool

in the evaluation oI pancreatic and binary disorders[J].World JG astroenter,2007,13(18):2529-2534.

[15] 姜战武,童赛雄.梗阻性黄疸几种影像学诊断方法的评价[J].中国普通

外科杂志,2003,12(8):607-608.

[16] B ahra M,Jacob D.Surgical palliation of advanced pancreatic cancer[J].Recent

Results Cancer Res,2008,117(1):111-120.

[17] G entileschi P,Kini S,Ganger M.Palliative laparoscopic hepatico and

gastrojejunostomy for advanced pancreatic head cancer[J].JSLS,2002,6(4):331-338.

[18] M achado MA,Rocha JR,Herman P,et al.Termative technique of laparoscopic

hepaticojejunostomy for advanced pancreatic head cancer[J].SLEPT,2000,10(3):174-177.

[19] A li AS,Ammori BJ. Concomitant laparoscopic gastric and biliary bypass and

bilateral thoracoscopic splanchnotomy.The full package of mininally invasive palliation for pancreatic cancer[J].Surg Endosc,2003,17(12):2028-2031. [20] C hen JH,Sun CK,Liao CS,et a1.Self-expandable metallic stents for

malignant biliary obstruction:efficacy on proximal and distal tumors[J].World

J Gastroenterol,2006,12(1):119-122.

[21] C ovey AM,Blown KT.Palliative pereutaneotu;drainage in malignant biliary

obstruction.Part 1:indications and preproceclm evaluation[J].J Support Oaeol,2006,4(6):269-273.

[22] S ededund C,lander S.Covered metal versus plastic stents malignant common

bile duet stenosis:a prospective,randomized,controlled trial[J].Gastrointest Endosc,2006,63(7):986-995.

[23] I aayama H,Komatsu Y,Tsujino T,et a1.A proquocfive randomised study

of“covered”versus“uncovered”diamond stents for the management of distal malignant biliary obstruction[J].Gut,2004,53(5):729-734.

[24] B rugge WR.Endoscopic techniques to diagnose and manage biliary tumors[J].

J Clin Oncol,2005,23(20):4561.

[25] 周毅,宋一民,栾瑞.放射性镍钛合金内支架治疗晚期恶性胆管梗阻[J].

中华肝胆外科杂志,2003,9(3):157-160.

[26] S uk KT,Kim JW,Kim HS,et a1.Human application ofm metallic stent

covecd with a paclitaxel-incorporated newbrane for malignant biliary obstyaction:mwltcenter pilot study[J].Gast Rointest Endosc,2007,66(4):798-803.

(收稿日期:2012-02-24)

CHINA MEDICINE AND PHARMACY 33

白介素IL信转导及其通路研究概述

白介素IL-6信号转导及其通路研究概述 细胞因子是一类参与免疫系统的细胞之间通信的蛋白质,除此之外,许多细胞因子在免疫系统之外也具有调节功能。1986年白介素IL-6作为B细胞刺激因子被Kishimoto组分子克隆。IL-6在免疫系统外的活性还有肝细胞刺激因子和骨髓细胞分化诱导蛋白。 白介素IL-6含有184个氨基酸,属于糖基化蛋白质。IL-6可以由多种类型细胞合成和分泌,包括单核细胞、T细胞、成纤维细胞和内皮细胞。IL-6结合受体有两种,一种是特异性受体IL-6R(80kDa I型跨膜蛋白),另一种是gp130,是IL-6家族细胞因子的所有成员的常见受体亚单位。gp130可以在所有细胞表达,但IL-6R的表达受到更多的限制,主要发现于肝细胞、嗜中性粒细胞、单核细胞和CD4+ T细胞。 白介素IL-6受体gp130的二聚化会导致两种细胞内信号通路的启动:经典信号通路和反式信号通路(见下文)。白介素IL-6的受体IL-6R可以在细胞膜经过蛋白质水解,形成可溶性的IL-6R(sIL-6R),在人类中,也可以在翻译阶段进行剪接mRNA,进而产生sIL-6R。在经典信号通路中,IL-6与膜上的IL-6R结合,随后与结合在细胞膜上的gp130结合,启动细胞内信号传导。在IL-6反式信号通路中,IL-6与sIL-6R结合,IL-6和sIL-6R的复合物与细胞膜结合的gp130结合,从而引发细胞内信号。 白介素IL-6是最重要的炎症细胞因子之一。IL-6在通过膜结合和可溶性受体的信号传导中是独特的。有趣的是,这两种途径的生物学后果有很大差异,通过膜结合受体的经典IL-6信号通路主要是再生和保护性的,可溶性IL-6R的IL-6反式信号通路是促炎症的。响应于受体激活的IL-6的细胞内信号传导是通过STA T依赖和STAT独立的信号模块,其由复杂的调节网络调节。IL-6的复杂生物学对该细胞因子的治疗靶向具有影响。 白介素IL-6胞内信号通路可以简单的概述为:IL-6与受体复合物结合后,激活JAK1。JAK1磷酸化gp130细胞质部分内的酪氨酸残基,这些磷酸酪氨酸基序是STAT转录因子,SOCS3反馈抑制剂和衔接蛋白和磷酸酶SHP2的募集位点。SHP2连接到MAPK级联,使Gab1磷酸化,磷酸化的Gab1转移到质膜上,协调正在进行的MAPK和PI3K活化。Src家族激酶独立于受体磷酸化并激活Y AP。 白介素IL-6信号转导第一步:激活JAK。 大多数细胞因子受体缺乏胞内激酶活性,生长因子的受体例外。白介素IL-6胞内信号转导首先激活Janus激酶(JAK),开启酶促反应。通过JAK N末端的同源结构域内(JH)

p38MAPK信号转导通路与细胞凋亡研究进展.

综述与进展 p38M APK信号转导通路与细胞凋亡研究进展 王誉霖1,张励才2 作者单位:1.安徽省宣城市人民医院麻醉科242000;2江苏徐州医学院作者简介: 王誉霖(1978,女,吉林市人,住院医师,硕士。研究方向:疼痛信号转导及调控。 主题词p38丝裂原活化蛋白激酶类;细胞凋亡;综述 中图分类号R345文献标识码A文章编号1674 8166(201012 1665 03 丝裂原活化蛋白激酶(mitog en2activated pr otein kinase,MA PK级联是细胞内广泛存在的丝/苏氨酸蛋白激酶超家族,是将细胞质的信号传递至细胞核并引起细胞核发生变化的重要物质。目前在人类已鉴定了4条MAPK途径:细胞外信号调节蛋白 激酶(ex tra cellular sig nal regulated protein kinase,ERK途径,C Jun 基末端激酶(c Jun N term inal kinase,JN K/应激活化蛋白(stress activated protein kinase,SAPK途 径,ERK5/大丝裂素活化蛋白激酶1(big MAP MAP kinase,BM K1途径和p38M APK(p38mitogen activated protein kinases,p38MA PK 传导途径[1]。p38 信号途径是 MAPK家族中的重要组成部分,多种炎症因子和生长因子及应激反应可使p38MAPK的酪氨酸和苏氨酸双磷酸化,从而激活p38M APK,使它在炎症、细胞应激、凋亡、细胞周期和生长等多种生理和病理过程中起重要作用。因此,p38MAPK 通路参与了多种刺激引起的信号级联反应,表明它在引起多种细胞反应中起重要作用,并且,p38在细胞凋亡中也有着重要的调节效应。1 p38M APK信号转导通路 丝裂原活化蛋白激酶(m ito gen activated pr otein kinase,MA PK级联是细胞内重 要的信号转导系统之一。在哺乳动物细胞M APK通路主要有:细胞外信号调节激酶(extracellular signal r eg ulated kinase,ERK ffi路、p38MA PK 通路、c jun 氨基末端激酶(c jun N term inal kinase,JNK通路和ERK5 通路[1]。其中,p38MAPK 是M APK 家族中的重要成员。

常见的信号通路

1JAK-STAT信号通路 1)JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。(1)酪氨酸激酶相关受体(tyrosinekinaseassociatedreceptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生 长激素)、EGF(表皮生长因子)、PDGF(血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2)酪氨酸激酶JAK(Januskinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosinekinase,RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Januskinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸、JAK1个成员:4蛋白家族共包括JAK结构域的信号分子。SH2化多个含特定

JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAKhomologydomain,JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3)转录因子STAT(signaltransducerandactivatoroftranscription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。 2)JAK-STAT信号通路 与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传 递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(dockingsite),同时含有SH2结构域的STAT蛋白被招募到这个“停泊位点”。最后,激酶JAK 催化结合在受体上的STAT蛋白发生磷酸化修饰,活化的STAT蛋白以二 聚体的形式进入细胞核内与靶基因结合,调控基因的转录。值得一提的是,一种JAK激酶可以参与多种细胞因子的信号转导过程,一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分子却具有一定的选择性。例如IL-4激活STAT6,而IL-12 。STAT4却特异性激活

(完整版)细胞信号转导研究方法

细胞信号转导途径研究方法 一、蛋白质表达水平和细胞内定位研究 1、信号蛋白分子表达水平及分子量检测: Western blot analysis. 蛋白质印迹法是将蛋白质混合样品经SDS-PAGE后,分离为不同条带,其中含有能与特异性抗体(或McAb)相应的待检测的蛋白质(抗原蛋白),将PAGE胶上的蛋白条带转移到NC膜上此过程称为blotting,以利于随后的检测能够的进行,随后,将NC膜与抗血清一起孵育,使第一抗体与待检的抗原决定簇结合(特异大蛋白条带),再与酶标的第二抗体反应,即检测样品的待测抗原并可对其定量。 基本流程: 检测示意图:

2、免疫荧光技术 Immunofluorescence (IF) 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素制成荧光标记物,再用这种荧光抗体(或抗原)作为分子探针检查细胞或组织内的相应抗原(或抗体)。在细胞或组织中形成的抗原抗体复合物上含有荧光素,利用荧光显微镜观察标本,荧光素受激发光的照射而发出明亮的荧光(黄绿色或桔红色),可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 采用流式细胞免疫荧光技术(FCM)可从单细胞水平检测不同细胞亚群中的蛋白质分子,用两种不同的荧光素分别标记抗不同蛋白质分子的抗体,可在同一细胞内同时检测两种不同的分子(Double IF),也可用多参数流式细胞术对胞内多种分子进行检测。 二、蛋白质与蛋白质相互作用的研究技术 1、免疫共沉淀(Co- Immunoprecipitation, Co-IP)

Co-IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A”能特异性地结合到免疫球蛋白的FC片段的现象而开发出来的方法。目前多用精制的protein A预先结合固化在agarose的beads 上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原抗体达到沉淀抗原的目的。 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。进一步进行Western Blot 和质谱分析。这种方法常用于测定两种目标蛋白质是否在体内结合,也可用于确定一种特定蛋白质的新的作用搭档。缺点:可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用。 2、GST pull-down assay GST pull-down assay是将谷胱甘肽巯基转移酶(GST)融合蛋白(标记蛋白或者饵蛋白,GST, His6, Flag, biotin …)作为探针,与溶液中的特异性搭档蛋白(test protein或者prey被扑获蛋白)结合,然后根据谷胱甘肽琼脂糖球珠能够沉淀GST融合蛋白的能力来确定相互作用的蛋白。一般在发现抗体干扰蛋白质-蛋白质之间的相互作用时,可以启用GST沉降技术。该方法只是用于确定体外的相互作用。

细胞信号通路大全

1 PPAR信号通路:过氧化物酶体增殖物激活受体( PPARs) 是与维甲酸、类固醇 和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。它们作为脂 肪传感器调节脂肪代谢酶的转录。PPARs由PPARα、PPARβ和PPARγ 3种亚型组成。PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生 长发育等。另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与 凋亡。PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶( ERK-和p38.M APK) ,蛋白激酶A和C( PKA,PKC) ,AM PK和糖原合成酶一3( G SK3) 等调控。调控PPARa生长信号的酶报道有M APK、PKA和G SK3。PPARβ广泛表达于各种组织,而PPAR γ主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。PPAR-γ在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用, 而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。鉴于目前人 们对PPAR—γ信号通路尚不甚清,PPARs通常是通过与9-cis维甲酸受体( RXR)结合实现其转录活性的。 2 MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activated protein kinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等)。 MAPKs家族的亚族 :ERKs(extracellular signal regulated kinase):包括ERK1、ERK2。生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。 JNKs(c-Jun N-terminal kinase)包括JNK1、JNK2、JNK3。此亚族成员能使 Jun转录因子N末端的两个氨基酸磷酸化而失活,因此称为Jun N末端激酶(JNKs)。物理、化学的因素引起的细胞外环境变化以及致炎细胞因子调节此通路。P38 MAPKs:丝氨酸/络氨酸激酶,包括p38 α、p38β、p38γ、p38δ。p38 MAP K参与多种细胞内信息传递过程 ,能对多种细胞外刺激发生反应,可磷酸化其它细胞质蛋白,并能从胞浆移位至细胞核而调节转录因子的活性来改变基因的表达水平 ,从而介导细胞生长、发育、分化及死亡的全过程。 ERK5:是一种非典型的MAPK通路,也叫大MAPK通路,只有一个成员。它可被各种刺激因素激活。不仅可以通过磷酸化作用使底物活化,并且通过C端的物理性结合作用激活底物。 3 ERBB信号途径:ErbB 蛋白属于跨膜酪氨酸激酶的 EGF 受体家族成员。ErbB 的命名来源于在禽红白血病 B( v-Erb-B) 发现的 EGF 受体的突变体,因而 EGF 受体 亦称为“ ErbB1”。人源 ErbB2 称为HER2, 特指人的 EGF 受体。ErbB 家族的

干货 细胞信号通路图解之MAPK通路【值得珍藏】

干货细胞信号通路图解之MAPK通路【值得珍藏】 科研小助手原创,转载请注明来源。公众号内回复“Cell Signaling Pathway”获取全套信号通路图本文由百度贴吧nosce吧吧主黄杰投稿一、MAPK信号通路: (1)有丝分裂原激活的蛋白激酶(MAPK)是一族在真核生物中非常保守的丝/苏氨酸蛋白激酶,在许多细胞活动中起作用,如生长增殖,细胞分化,细胞运动或死亡。MAPK级联信号传导由3 个不同层次的分子所组成。MAPK被MAPK的激 酶( MAPKK)磷酸化后激活,MAPKK被MAPKK的激酶(MAPKKK )磷酸化而激活。而MAPKKK通过与小GTPase 和/或其他蛋白酶相互作用而被激活,从而将MAPK和细胞 表面的受体以及胞外的信号联系在一起。 (2)许多参与生长和分化的受体都能够激活MAPK/ERK信号通路,比如说受体酪氨酸激酶(RTK),整合素,和离子通道。响应特定信号所涉及到的具体分子会相差很大,但通路的结构是一致的,那就是接头分子(adaptor,如Shc, GRB2, Crk等)将鸟苷酸交换因子(SOS, C3G 等)和受体连接在一起,然后把信号向小GTP 结合蛋白(Ras, Rap1)传递,后者又激活核心的级联反应,这是由一个MAPKKK( Raf) ,一个MAPKK( MEK1/2)和MAPK( Erk)所构成的。活化的ERK 二聚体能调节胞浆中的目标分子,也可以转移到细胞核中,然

后对一系列转录因子进行磷酸化以调节基因表达。SciRes(3)很多外部的刺激都能够激活G蛋白偶联受体(GPCR)。在受体活化以后,G 蛋白将GDP 转换成GTP ,然后结合了GTP的α和β/γ亚基从受体脱离开,启动信号向胞内的传导。与不同亚型的异质三聚体G 蛋白结合的受体可以采取不同 的手段激活小G 蛋白/MAPK级联反应,至少有三个不同家族的酪氨酸激酶参与其中。Src家族激酶响应活化的PI3Kγ,而后者被β/γ亚基激活。它们还能够响应受体的内化,受体酪氨酸激酶的交叉活化,以及有Pyk2 和/或FAK参与的整 合素途径信号。GPCRs同样可以通过PLCβ去激活PKC 和CaMKII ,对下游的MAPK通路可以有激活或抑制的影响。SciRes(4)压力激活的蛋白激酶(Stress-activated protein kinase, SAPK)或称Jun氨基端激酶(Jun amino-terminal kinase, JNK) 是MAPK的家族成员,能被一系列的环境压力,炎症细胞因子,生长因子和GPCR激动剂所激活。压力信号通过Rho家族的小GTP 酶(small GTPase)向这条级联通路传导,这些小GTP酶包括(Rac, Rho, cdc42) 。和其他的MAPK情况一样,靠近膜的激酶是一个MAPKKK,一般 是MEKK1-4 ,或者是一个混合激酶去磷酸化并激活 MKK4(SEK)或MKK7,它们是SAPK/JNK的激酶。另外,MKK4/7也可以被生发中心激酶(germinal center kinase, GCK)以一种GTPase 依赖的方式激活。活化后的

ERK信号转导通路

ERK信号转导通路 在MAPK家族中,ERK是最先被发现并被了解最多的成员。ERK包括了两种异构体ERKl 和ERK2(分别为P44和P42)。两个磷酸化受体位点即酪氨酸和苏氨酸被谷氨酸残基分隔开来,故其磷酸化位点基序是TEY。目前认为,P38和JNK属于“应激诱导”的MAPK,而ERK被认为是与细胞增殖、转化和分化相关的MAPK。 ERK级联反应包括典型的3个层次MAPKs的序贯激活过程。Raf蛋白(MAPKKK)的激活能磷酸化MEKl/2(MAPKK),并使后者激活,从而使随后的ERKl/2(MAPK)发生双重磷酸化而被缉获。ERK的激活对于Ras诱导的细胞反应、转录因子(如Elkl、cEtsl和c—Ets2)的激活以及激酶(如P90rskl、MNKl和MNK2)的激活是至关重要的。 ERK通路的激活包括了以下3种方式:酪氨酸激酶受体对Ras的激活、Ca2+对Ras的激活以及PKC对ERK通路的激活。生长因子与细胞表面的受体酪氨酸激酶(RTK)结合,诱发生长因子受体胞质中的酪氨酸残基自身磷酸化,导致受体二聚体化与活化。细胞表面的生长因子受体具有募集Grb2和SOS复合物的能力。SOS在与生长因子受体结合的过程中移位至胞质,并与Ras相互作用,促进Ras与GTP结合,使Ras活化。此外,Ca2+可通过不同的作用机制激活Ras蛋白:①通过l型电压依赖性的钙离子通道流人细胞内,经由Src家族蛋白激酶的介导,导致表皮生长因子受体(EGFR)酪氨酸磷酸化,进而通过Shc—Grb2—SOS复合物激活Ras;②通过Ca2+敏感性的Ras鸟嘌呤核苷酸释放因子(Ras—GRF)和Ca2+—钙调蛋白复合物与Ras—GRF结合,通过诱导Ras进行GTP交换而激活Ras;③在大鼠嗜铬细胞瘤PCI2细胞中,胞质Ca2+的升高,可诱发酪氨酸磷酸化,激活蛋白酪氨酸激酶(PYK2)。PYK2与Grb2和SOS形成复合物,同时伴随着Shc的激活。活化的PYK2通过直接募集Srb2—SOS复合物,或间接通过Shc而激活Ras。Ras是一种G蛋白,可通过与Grb2—SOS复合物发生相互作用而被激活。在这一过程中,SOS催化鸟嘌吟二磷酸盐发生转位,从而形成Ras—GTP复合体,使Ras激活,成为具有功能活性的Ras蛋白。Ras被激活后将Raf募集于细胞膜,随后Raf 发生磷酸化作用和寡聚化作用。PKC的同工酶也可以磷酸化并激活Raf—1蛋白激酶,使Raf —1发生自身磷酸化。 Raf家族属于MAPKKK,是高度保守的丝氨酸—苏氨酸激酶,通过与Ras蛋白的相互作用而被缉获。Raf家族成员包括A—Raf、B—Raf和Raf—1(即c—Raf或c—Raf—1)。每一异构体包括3个保守区域,称为CRl、CR2和CR3。前面的两个保守区域位于氨基末端,并含有调节Raf催化区域的部分,其激酶区域位于CR3。Raf被激活后使MEKl/2磷酸化,最终使ERKl/2发生磷酸化而被激活。激活的ERKl/2转位至核内,通过使P90RSK、MSK以及转录因子ELK—1、Stat3磷酸化而激活转录,引起细胞生长、增殖与分化。

细胞常见信号通路图片合集

目录 actin肌丝 (5) Wnt/LRP6 信号 (7) WNT信号转导 (7) West Nile 西尼罗河病毒 (8) Vitamin C 维生素C在大脑中的作用 (10) 视觉信号转导 (11) VEGF,低氧 (13) TSP-1诱导细胞凋亡 (15) Trka信号转导 (16) dbpb调节mRNA (17) CARM1甲基化 (19) CREB转录因子 (20) TPO信号通路 (21) Toll-Like 受体 (22) TNFR2 信号通路 (24) TNFR1信号通路 (25) IGF-1受体 (26) TNF/Stress相关信号 (27) 共刺激信号 (29) Th1/Th2 细胞分化 (30) TGF beta 信号转导 (32) 端粒、端粒酶与衰老 (33) TACI和BCMA调节B细胞免疫 (35) T辅助细胞的表面受体 (36) T细胞受体信号通路 (37) T细胞受体和CD3复合物 (38) Cardiolipin的合成 (40) Synaptic突触连接中的蛋白 (42) HSP在应激中的调节的作用 (43) Stat3 信号通路 (45) SREBP控制脂质合成 (46) 酪氨酸激酶的调节 (48) Sonic Hedgehog (SHH)受体ptc1调节细胞周期 (51) Sonic Hedgehog (Shh) 信号 (53) SODD/TNFR1信号 (56) AKT/mTOR在骨骼肌肥大中的作用 (58) G蛋白信号转导 (59) IL1受体信号转导 (60) acetyl从线粒体到胞浆过程 (62) 趋化因子chemokine在T细胞极化中的选择性表达 (63) SARS冠状病毒蛋白酶 (65) SARS冠状病毒蛋白酶 (67) Parkin在泛素-蛋白酶体中的作用 (69)

参与细胞信号转导通路的蛋白简写及全拼

参与细胞信号转导通路的蛋白简写及全拼 4E-BP eIF4E binding protein Abl Ableson protein tyrosine kinase ACTR A histone acetyltransferase AIF Programmed cell death protein 8 ANT Adenine nucleotide translocation channel Apaf-1 Apoptotic protease activating factor 1 APP beta-Amyloid precursor protein APPs Acute phase proteins ASIP Agouti switch protein ASK Apoptosis signal-regulating kinase (e.g., ASK1) ATF-2 Activating transcription factor 2 ATM Ataxia telangiectasia?mutated protein kinase ATR ATM and Rad3?related protein kinase Bam32 B-cell adaptor molecule 32 kDa BCAP B-cell adaptor for PI3K Bcl-10 B-cell leukemia 10 protein Bfl-1 Bcl-2-related protein A1 Bid A BH3 domain?only death agonist protein Bimp1 B-lymphocyte-induced maturation protein 1 BLNK B-cell linker protein BRCA Breast cancer growth suppressor protein Btk Brutonís tyrosine kinase C3G Guanine nucleotide?releasing factor 2 CAD Caspase-activated deoxyribonuclease Cam Calmodulin CaMK Calcium/calmodulin-dependent kinase CAP c-Cbl-associated protein Cas p130CAS, Crk-associated substrate Caspase Cysteine proteases with aspartate specificity CBL Cellular homologue of the v-Cbl oncogene CBP CREB binding protein CD19 B-lymphocyte antigen CD19 CD22 B-cell receptor CD22 CD40 B-cell surface antigen CD40 CD45 Leukocyte common antigen, a phospho-tyrosine phosphatase CD5 Lymphocyte antigen CD5 cdc2 Cell division cycle protein 2, CDK1 cdc34 Cell division cycle protein 34, a ubiquitin conjugating (E2) enzyme cdc42 Cell division cycle protein 42, a G-protein CDK Cyclin-dependent kinase Chk Checkpoint kinase CHOP C/EBP homologous protein 10

肿瘤常见信号通路

1 JAK-STAT 信号通路 1) JAK 与STAT 蛋白 JAK-STAT 信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体( tyrosine kinase associated receptor ) 许多细胞因子和生长因子通过JAK-STAT 信号通路来传导信号,这包括白介素2?7 (IL-2?7 )、GM-CSF (粒细胞/巨噬细胞集落刺激因子)、GH (生长激素)、EGF (表皮生长因子)、PDGF (血小板衍生因子)以及IFN (干扰素)等等。这些细胞 因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK 的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK ( Janus kinase ) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体( receptor tyrosine kinase, RTK ),而JAK 却是一类非跨膜型的酪氨酸激酶。JAK 是英文Janus kinase 的缩写,Janus 在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定 SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH ),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3) 转录因子STAT ( signal transducer and activator of transcription ) STAT 被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性 的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具 有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“ GTFLLRFSS ”。 2) JAK-STAT 信号通路 与其它信号通路相比,JAK-STAT 信号通路的传递过程相对简单。信号传递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残 基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位

mTOR信号通路图

mTOR信号通路图 mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP 酶Rheb(Ras-homolog enriched in brain)的抑制剂,而Rheb是mTOR活化所必需的刺激蛋白,因此TSC-1/TSC-2在正常情况下抑制mTOR的功能。当Akt活化后,它可磷酸化TSC-2的Ser939和Thr1462,抑制了TSC-1/TSC-2复合物的形成,从而解除了对Rheb 的抑制作用,使得mTOR被激活。活化的mTOR通过磷酸化蛋白翻译过程中的某些因子来参与多项细胞功能,其中最主要的是4EBP1和P70S6K。

在整个PI3K/Akt/mTOR信号通路中,有一条十分重要的负反馈调节剂就是10号染色体上缺失与张力蛋白同源的磷酸酶基因(phosphatase and tensin homology deleted on chromosome 10, PTEN)。PTEN是一个肿瘤抑制基因,位于人染色体10q23。它有一个蛋白酪氨酸磷酸酶结构域,在这条通路中可以将PI-3,4-P2与PI-3,4,5-P3去磷酸化,从而负调节PI3K下游AKt/mTOR信号通路的活性。 本信号转导涉及的信号分子主要包括 IRS-1,PI3K,PIP2,PIP3,PDK1,PTEN,Akt,TSC1,TSC2,Rheb,mTOR,Raptor,DEPTOR,GβL,p70S6K,ATG13,4E-BP1,HIF-1,PGC-1α,PPARγ,Sin1,PRR5,Rictor,PKCα,SGK1,PRAS40,FKBP12,Wnt,LRP,Frizzled,Gαq/o,Dvl,Erk,RSK,GSK-3,REDD1,REDD2,AMPK,LKB1,RagA/B,RagC/D等。

第九章 细胞信号转导知识点总结

第九章细胞信号转导 细胞通讯:一个信号产生细胞发出的信息通过介质(又称配体)传递到另一个靶细胞并与其相应的受体相互作用,然后通过信号转导产生靶细胞内一系列的生理生化变化,最终表现为靶细胞整体的生物学效应。 信号传导:是指信号分子从合成的细胞中释放出来,然后进行传递。信号传导强调信号的产生、分泌与传送。 信号转导:是指信号的识别、转移与转换,包括配体与受体的结合、第二信使的产生及其后的级联反应等。信号转导强调信号的接收与接收后信号转换的方式与结果。 受体:是一类能够结合细胞外特异性信号分子并启动细胞反应的蛋白质。 第二信使:细胞外信号分子不能进入细胞,它作用于细胞表面受体,经信号转导,在细胞内产生非蛋白类小分子,这种细胞内信号分子称为第二信使。 分子开关:细胞信号传递级联中,具有关闭和开启信号传递功能的分子。 信号通路:细胞接受外界信号,通过一整套特定机制,将胞外信号转化为胞内信号,最终调节特定基因表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。 G蛋白偶联受体:指配体-受体复合物与靶细胞的作用是要通过与G蛋白的偶联,在细胞内产生第二信使,从而将细胞外信号跨膜传递到胞内影响细胞行为的受体。 cAMP信号通路:细胞外信号与细胞相应受体结合,导致细胞内第二信使cAMP 水平的变化而引起细胞反应的信号通路。 (磷脂酰肌醇信号通路)双信使系统:胞外信号分子与细胞表面G蛋白偶联受体结合,激活膜上的磷脂激酶C,使质膜上的PIP2分解成IP3和DAG两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激活两种不同的信号通路,即IP3-Ca2+和DAG-PKC途径,实现对胞外信号的应答,因此将这种信号通路称为“双信使系统”。 钙调蛋白:真核细胞中普遍存在的Ca2+应答蛋白。 Ras蛋白:Ras基因的产物,分布于质膜胞质侧,结合GTP时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。

细胞凋亡信号转导通路研究

细胞凋亡信号转导通路研究 细胞凋亡(apoptosis)是一种正常的生理性细胞死亡,它是在各种细胞因子的参与和严格控制下,有步骤的裂解过程,是为了维持机体内环境的稳定。细胞凋亡不足引起的疾病有肿瘤、自身免疫病等;凋亡过度引起的疾病有心肌缺血、心力衰竭、神经退行性疾病、病毒感染等;动脉粥样硬化是由于细胞凋亡过度与不足并存引起的疾病。由于细胞凋亡和这些重大疾病紧密相连,近些年来被广泛关注。研究最多的主要是细胞凋亡过程中的蛋白因子和通路。目前,凋亡通路一般认为有3条:死亡受体、线粒体和内质网通路。 标签:凋亡;caspases;死亡受体;线粒体;内质网 1死亡受体通路 死亡受体是一类跨膜蛋白,属肿瘤坏死因子受体(TNFR)超家族,该家族也被称为神经生长因子受体(NGFR)超家族。已知的死亡受体有TNFRI、Fas、DR3、DR4和DR5、CAR1。其相应的配体分别为TNF、FasL、Apo-3、Apo-2L、ASLV,这些配体构成了TNF超家族。它们由胞外区,跨膜区和胞内区组成,死亡受体与相应的配体结合后,可以通过一系列的信号转导过程,将凋亡信号传向细胞内部,最终引起caspases级联反应,引起细胞凋亡。 1.1 Fas/FasL介导的細胞凋亡FasL与Fas结合后,诱导Fas分子聚集成三聚体,通过Fas胞浆内死亡结构域DD与适配蛋白FADD结合,FADD的死亡效应结构域DED连接caspase-8的DED部分,形成死亡诱导信号复合体DISC,caspase-8经过加工以活性形式从DISC中释放出来。活化的caspase-8 可以绕开线粒体直接激活caspases家族其他成员caspase-3、6、7等引起细胞凋亡。目前,caspase-8激活下游的caspases诱导凋亡主要存在两种信号通路,这两种途径的激活主要由caspase-8的量决定:当DISC中caspase-8足量时,通过第一条信号途径,激活caspase-3、6、7,引起细胞裂解而凋亡;而当caspase-8少量时,通过第二条信号途径,caspase-8将胞浆中bcl-2家族的促凋亡蛋白分子bid裂解成一个含BH3结构域的tBid和一个小片段jBid[1]。tBid被运送到线粒体,与Bcl-2/Bax 的BH3结构域形成复合物,导致CytC释放,并与Apaf-1结合并活化Apaf-1激活caspase-9,随之激活caspase-3等引起凋亡。最新的研究表明,Fas的DD结构域还可以直接结合DAXX,激活JNK途径引起细胞凋亡。Fas/FasL细胞凋亡最重要的不同就是没有细胞核的参与和基因的活化。 1.2 TNFR1/TNF-α介导的细胞凋亡TNFR1含有3个功能域C端死亡域、ASD 和NSD,前两者在凋亡中起重要作用。 生理条件下,跨膜形式和可溶性TNF-α前体都是以三聚体的形式发挥作用的。TNF-α三聚体与TNFR1相互交联后诱导TNFR1的DD区聚集。TNFR1的DD区与TRADD的DD区相互作用,引起细胞裂解而凋亡或者导致线粒体释放CytC和Smac,活化线粒体凋亡途径。TRADD还可直接与TANK结合,激活JNK

常见的信号通路

1 JAK-STAT信号通路 1) JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体(tyrosine kinase associated receptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF(表皮生长因子)、PDGF (血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK(Janus kinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosine kinase, RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Janus kinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3) 转录因子STAT(signal transducer and activator of transcription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3

关于信号转导研究的若干问题

关于信号转导研究的若干问题 郑仲承 (中国科学院上海生物化学研究所) 目录 第一节信号以及细胞传递信号的主要“设备” 第二节信号转导系统的特征 第三节二聚作用是调节信号转导的一个重要机制 第四节信号转导的生物学效应 第五节以信号转导为靶的疾病治疗 第六节走向未来 打信号(Signalling)是生物结间通消息的一种最基本,最原始和最重要的方式。比如,老虎沿着一个圈撒了一泡尿。这个圈所划定的范围就成为这只老虎的"领地"。别的老虎经过时,闻到这种味道就"识相"地悄悄离去,免遭麻烦。孙悟空用金箍棒在地上划了一个圈,让唐僧、八戒、沙僧和小龙马待在里面。妖怪来了,想抓走唐僧,却被这个圈发出的万道金光所逼退。又如,我国古代的烽火台,在外敌入侵时,狼烟四起,发出警报。交战双方下的战书,包括哀的美登书,都传递了作战的消息。写信、打电话、打手电。发暗示、对口令、对暗号、发SOS求救信号也是发消息,同情报的手段。美好的事情也要用信号来传达。如,蜜蜂告诉伙伴什么地方有美味的花粉时,就在伙伴们面前飞舞。以各种不同的优美舞姿指示食物的方向、方位、品种、数量和距离等等。鸟类在求偶时,相互欢快地仆翼,顶喙;蛇类在交欢时纠缠盘结的双蛇快步舞;昆虫的鸣叫等等。愉悦的信号还有下课的铃声、睡觉的号声、开饭的钟声、空调机的马达声等,当然,还有无线电的歌声,电视机的笑声等等。总之,生物的生命活动离不开信号。 生物的细胞每时每刻都在接触着来自细胞内或者细胞外的各种各样信号。有的信号激奋高昂,促进细胞增殖;有的信号谆谆劝诱,使细胞向一定的方向分化;有的信号如此迷惘,使得细胞误入歧途,无节制地分裂,"疯长";有的信号哀徊低荡,让细胞心甘情愿地去死亡! 虽然,我们身居闹市,经常在车辆的轰隆声和不绝耳的喇叭声、小贩的叫卖声、鸟叫蝉鸣、打击碰撞、潺潺流水、电话电视……中煎熬,但是,我们总能我自岿然不动地处变不惊,在这些杂乱无章的信号中找到自己需要的信号,作出正确的反应,安然地生活。即对有些信号置之不理,对有些信号听之任之,对有些信号一关了之,都有些信号则照此办理,作出反应。细胞也有一个接受、归纳、分析、筛选、放大、传达、处理和答复(响应)信号的过程与机制,使得细胞最终决定:是增殖分裂;是分化成熟;是变异追求一时的痛快,求己之生存而不顾其载体的死活,最后落个鸡飞蛋打,统统死光光;还是干干脆脆地自作了断,一死了之。 可见,信号只是个诱因,生理反应是信号作用于细胞的最终结果。相同的信号作用于不同的细胞可以引发完全不同的生理反应;不同的信号作用于同一种细胞却可以引发出相同的生理反应。细胞的一切生命活动都与信号有关,信号是细胞一切活动的始作俑者。因此,对信号转导的研究非常重要,非常有用。无怪乎近几年你也打信号,我也打信号,他、她也打信号,信号转导研究成为一个发烫的热点。 第一节信号以及细胞传递信号的主要“设备” 可以将细胞内的信号转导与电子计算机作比较。那些起着细胞内信号转导通路作用的分子可以视作为细胞内集成电路的分子转换器(开关),它们放电时就与适当的信号接受器相连接。想象一下吧,尽管有些差异,电子计算机的操作过程与细胞内信号转导事件何其相似乃而!二者都有信息的定向流动;二者都有编纂过的语言,并通过它们将信息加以译释;二者又都有一套套的反应系统,通过这些反应就可以对它们所接受到的输入信号作出响应。当然,有生命的细胞比之电子计算机要高明得多。设想一下,在任何时刻,会有多少不同的细胞外刺激同时施加于细胞之上!它们驱动了多少细胞内信号转导通路!但是,在细胞内,所有这些信号通路都有严密的协调关系。显然,细胞内信号转导是一个有严密组织的,并且是高度网络的过程。 一作用于细胞的信号 生物细胞所接受的信号有多种多样,从这些信号的自然性质来说,可以分为物理信号、化学信号和生物学信号等几大

细胞信号传导通路

细胞信号传导通路 1. 信息传导通路的基本组成 人体细胞之间的信息转导可通过相邻细胞的直接接触来实现,但更重要的也是更为普遍的则是通过细胞分泌各种化学物质来调节自身和其他细胞的代谢和功能,因此在人体中,信息传导通路通常是由分泌释放信息物质的特定细胞、信息物质(包含细胞间与细胞内的信息物质和运载体、运输路径等)以及靶细胞 (包含特异受体等)等构成。 信号转导通常包括以下步骤: 释放信息物质→信息物质经扩散或血循 环到达靶细胞→与靶细胞的受体特异性 结合→受体对信号进行转换并启动细胞 内信使系统→靶细胞产生生物学效应 【1】。通过这一系列的过程,生物体对外界刺激作出反应。 3. 信息物质及其分类 信息物质可分为细胞间信息物质与细胞内信息分子。 凡由细胞分泌的调节靶细胞生命活动的化学物质统称为细胞间信息物质,即第一信使,按照细胞分泌信息物质的方式又可将细胞间信息物质分为神经递质、内分泌激素、局部化学介质和气体信号分子。在细胞内传递细胞调控信号的化学物质称为细胞内信息物质,其组成多样化。通常将Ca2+、cAMP、cGMP、DAG、IP3、Cer、花生四烯酸及其代谢物等这类在细胞内传递信息的小分子化合物称为第二信使。责细胞核内外信息传递的物质称为第三信使,能与靶基因特异序列结合,发挥着转录因子或转录调节因子的作用。 研究发现一些信息物质能与位于分泌细胞自身的受体结合而起调节作用,称为自分泌信号。如肝癌细胞能分泌多种血管生成因子,其中VEGF是目前发现的刺激肿瘤血管形成最重要的促进因子,研究表示,肿瘤细胞分泌的VEGF除选择性作用于肿瘤血管内皮细胞上的特异性VEGF受体(Flt-1和KDR),通过酪氨酸激酶介导的信号转导,调控内皮细胞分化和血管形成外,肿瘤细胞自身也有VEGF受体的表达,而且针对VEGF及其受体的干预措施可以改变这些肿瘤细胞的体外增殖活性和其他生物学特征,这些研究表示肿瘤中存在VEGF的自分泌机制【2】。自分泌所产生的信息物质也具有其独特而重要的生理功能。4. 受体分类及与受体相关的信息转导途径 受体是细胞膜上或细胞内能识别生物活性分子并与之结合的成分,他能把识别和接受的信号正确无误地放大并传递到细胞内部,进而引起生物学效应。存在于细胞质膜上的受体称为膜受体,化学本质绝大部分是糖镶嵌蛋白;位于胞液和细胞核中的受体称为胞内受体,它们

相关主题
文本预览
相关文档 最新文档