当前位置:文档之家› 5-1提高气体间隙击穿电压的方法

5-1提高气体间隙击穿电压的方法

高电压绝缘技术第三章:气体间隙击穿电压

及提高方法

引言:击穿电压的影响因素

气体种类:空气和高介电强度气体

电压种类:持续作用电压(直流、交流);冲击电压(雷电冲击、操作冲击)

电场分布:当间隙距离相同时,电场越均匀击穿电压越高

气体状态:一般要折算到标准大气状态

分散性小:直流、交流、50%冲击击穿电压基本相同

均匀电场中空气的电气强度大致为

30kV(峰值)/cm

经验公式为:

d :间隙距离;:空气相对密度

一、持续作用电压下空气的击穿电压

1 均匀电场中的击穿电压

)

(08.622.24峰值kV d d U b δδ+=δ

一、持续作用电压下空气的击穿电压

2 稍不均匀电场中的击穿电压

一般规律:

极性效应不明显;

直流、交流、冲击电压

下击穿电压相同;

击穿电压和电场不均匀

程度有极大关系,越均

匀击穿电压越高。

球-球间隙和

球-板间隙

当不均匀程度增加时,不接地电极电场强;由于电晕起始电压=击穿电压,不接地电极为正时击穿电压高。

一、持续作用电压下空气的击穿电压

3 极不均匀电场中的击穿电压

一般规律:

间距很大时,电极影响不大,都接近于棒-板间隙;极性效应明显;

分散性很大,

不同电压波形下差异明显。

1)极性效应

直流电压:正棒负板<棒-棒<负棒正板。平均击穿场强:

正极性棒-板间隙:4.5kV/cm

负极性棒-板间隙:10kV/cm

正极性棒-棒间隙:4.8kV/cm

负极性棒-板间隙:5.0kV/cm

(略微不对称)

1)极性效应交流电压:棒-板间隙击穿总是

在棒的极性为正、电压达到峰值

时发生,击穿电压与直流正极性

击穿电压相近

平均击穿场强:

棒-棒间隙:3.8kV(有效值)/cm

5.36kV(峰值)/cm

棒-板间隙:3.35kV(有效值)/cm

4.8kV(峰值)/cm

2)饱和现象

工频电压:长间隙中棒-板间隙的“饱和”现象尤为明显

2)饱和现象

a 、雷电冲击电压波国标规定:

%

20s 50T t ±μ=%

30s 2.1T f ±μ=二、冲击电压作用下气隙的击穿特性

1、冲击电压波形

b 、操作冲击电压波

国标规定:

%

60s 2500T %

20s 250T t f ±μ=±μ=二、冲击电压作用下气隙的击穿特性

1、冲击电压波形

f S L t t t +=统计时延:从电压达到的瞬时起

到气隙出现第一个有效电子止

放电发展时间:从形成第一个有效电子的瞬时起到到气息完全击穿止升压时间:电压从零升到静态击穿电压的时间

s t 0U f t 0U 0t 二、冲击电压作用下气隙的击穿特性

2、放电时延

放电时延特点:a 、小间隙、均匀场:短,占主要部分b 、大间隙、极不均匀场:长,占主要部分C 、随着冲击电压幅值的不断升高,将越来越短

L t s t f t L t L t 间隙中出现一个能引起电离过程并最终导致击穿

的电子称为有效电子

统计时延服从统计规律的原因:1)、有效电子的出现具有统计特性,有些自由

电子被中和,有些可能扩散到间隙外。

2)、有些电子虽然也引起电离过程,但由于各种不利因素的巧合,电离可能中途衰亡而终止

3、伏秒特性

同一个气隙,在峰值较低但

延续时间较长的冲击电压作用下

可能击穿,而在峰值较高但延续

时间较短的冲击电压作用下可能

反而不击穿,因此:

气隙的耐电性能要用冲击电压峰

值和击穿时间两者共同来表示

两者配合,S 2可以保护S

1

两者不能配合,不能互相保护

4、伏秒特性的应用

二、冲击电压作用下气隙的击穿特性

5、雷电冲击

均匀电场和稍不均匀电场:50%

击穿电压接近持续电压下的数值

极不均匀电场:明显的极性效应,

在短距离内击穿电压与距离成正

二、冲击电压作用下气隙的击穿特性

6、操作冲击

均匀电场和稍不均匀电场:50%击穿电压接近持续电压下的数值

极不均匀电场:明显的极性效应;接地物体靠近间隙会降低其正极性击穿电压(临近效应);电极形状影响较大;电压波形影响很大;分散性大;“饱和”现象明显

正棒-负板50%击穿电压估算

MV d U 814.3%50+=

击穿电压的统计概率:和相对标准偏差%50U σ

相对标准偏差:%

50%84U U -=σ%

16%50U U -=工频:雷电冲击:操作冲击:(分散性越来越大)%50%50%50U )%8~4(U )%4~3(U %1≈σ≈σ≤σ%88.991)31(%

50-=-=P U σ耐受电压100%耐受电压很难找到

σσ

U 16%U 50%U 84%P(%)U 击

1008450

160不击穿击穿气隙击穿电压的正态分布三、击穿电压的统计概率

1、大气状态(气温、气压、湿度等因素)

对气隙击穿电压的影响

a 、空气密度的影响:气隙击穿电压与密度成正比

b 、空气湿度的影响:气隙击穿电压与湿度成正比实际状态气隙的击穿电压U 和其在标准状态下的击穿电压U 0有如下换算关系:

0n

d U K K U —空气密度修正系数;—湿度修正系数

四、击穿电压的修正

d K n K

五、提高气体间隙击穿电压的措施

1 改进电极形状以改善电场分布

雷电冲击电压实验

实验五雷电冲击电压实验 一、实验目的: 电气设备在电力系统运行中除承受正常运行的工频电压外,还可能受到暂时过电压及雷电过电压的袭击。本实验通过实验装置及控制平台模拟产生相应的雷电冲击波,观察长气隙击穿放电现象以及通过控制台观察冲击波的波形。进而了解冲击电压发生器的功能要求及技术要求,了解其工作原理、系统组成、具体结构、以及相关操作,明确冲击电压试验的有关注意事项,掌握完整的操作流程和操作技能,初步具备开展相关试验任务的能力。 二、实验项目: 通过雷击冲击电压发生器产生高压冲击波击穿长气隙放电。 三、实验说明: 1.冲击电压在系统中的存在形式和表现: 因雷电影响会在电力系统中产生大气过电压,有2种基本形式,即直击雷过电压和感应雷过电压,它们都表现为一段作用很短的过电压脉冲。这种过电压波一般会引起绝缘子闪络或避雷器动作,从而形成冲击截波。如果过电压幅值很大,其波头上升很快,引发的绝缘子闪络或避雷器动作就可能发生在波头部分,将形成冲击陡波。 因系统的倒闸操作、元件动作或发生故障等原因,是系统状态改变,引发过渡过程,可能产生涌动的电压升高,形成操作冲击波。它是一种作用时间较长的过电压波形。 2.冲击电压的特点: 雷电冲击电压波是一种作用时间很短的过电压脉冲波,具有单极性,一般为负极性,如果引起放电,其产生的冲击电流很强。 冲击截波对电感线圈类设备可能造成更加严重的威胁,而冲击陡波对冲击陡波对绝缘子内绝缘子内绝缘的威胁更大。 操作冲击波的能量来自系统内部,其作用时间比雷电波长得多,持续的能量累积造成的损害可能比雷电波更为严重。 3.冲击电压的波形及其参数: 大自然的雷电波或实际的操作波并不一致,但为了便于研究和工程应用,对统计结果进行优化和标准化,形成工程上应用的标准冲击波,主要包括以下4种:(1)雷电冲击电压全波 参数:T1/T2=1.2/50μs 精确要求:峰值≤±3% ,T1≤±30% , T2≤±20%

雷电冲击过电压的理论与试验1

雷电冲击过电压的理论与试验 一.引言 电能与人类的生存、发展有密切关系,而高电压与绝缘技术是其中一个很重要的知识体系,它是支撑电能应用的一根有力的支柱。 高电压技术是以试验研究为基础的研究高电压及其相关问题的应用技术。其内容主要涉及在高电压作用下各种绝缘介质的性能和不同类型的放电现象,高电压设备的绝缘结构设计,高电压试验和测量的设备及方法,电力系统的过电压与绝缘配合、高电压或大电流环境影响和防护措施,以及高电压、大电流的应用等。 目前,随着科技的发展、经济的需要,输电电压等级越来越高,输电距离越来越长,电网结构也越来越复杂。而高电压技术对于进一步发展超高压、特高压输电继续起着重要的推动作用。一些国家正在沿着传统的“外沿发展模式”,继续开展更高一级电压。 二.雷电冲击过电压理论 雷电冲击电压是有雷电放电形成电流通过被击物体流入大地,电流脉冲在被击物体阻抗上的压降形成冲击电压。雷电放电包括三个阶段:先导放电,主放电,余光放电。主放电电流幅值较小,但电流波前时间比第一分量小得多,易造成过电压。各分量中的最大电流和电流增长最大陡度是造成被击物体上过电压、电动力和爆破力的主要因素。在余光阶段流过较长时间的电流则是造成雷电热效应的重要因素之一。 波形组成 气隙的击穿有一个最低静态击穿电压Uo,但外加电压不小于Uo仅是气隙击穿的必要条件,欲使气隙击穿,还必须使该电压持续作用一定的时间。静态击穿电压U0 是使气隙击穿的最小电压。 雷电冲击电压分为:全波,截波--雷电冲击波被某处放电而截断的波形. (1) 全波:非周期性冲击电压,很快到峰值再逐渐下降 .如图1 作图:取峰值=1.0,0.9--B点,0.3--A点,0.5--Q点, 连AB线,交1.0于C点,交横轴O1点。 O1C--波前T=(t1-t2) t f=FO1--视在波前时间 t f/T=(1.0-0.0)/(0.9-0.3) t f=T/0.6=1.67T t t--视在半峰值时间

(完整版)变压器油的击穿电压

变压器油的击穿电压 将电压施加于绝缘油时,随着电压增加,通过油的电流剧增,使之完全丧失所固有的绝缘性能而变成导体,这种现象称为绝缘油的击穿。绝缘油发生击穿时的临界电压值,称为击穿电压,此时的电场强度,称为油的绝缘强度,表明绝缘油抵抗电场的能力。击穿电压U (kV)和绝缘强度E (kV/cm)的关系为 E=U/d (2-26) 式中d-电极间距离(cm)。 纯净绝缘油与通常含有杂质的绝缘油具有不同的击穿机理。 前者的击穿是由于游离所引起,可用气体电介质击穿的机理来解释,即在高电场强度下,油分子碰撞游离成正离子和电子,进而形成了电子崩。电子崩向阳极发展,而积累的正电荷则聚集在阴极附近,最后形成一个具有高电导的通道,导致绝缘油的击穿。 通常绝缘油总是或多或少含有杂质,在这种情况下,杂质是造成绝缘油击穿的主要原因。油中水滴、纤维和其他机械杂质的介电系数ε比油的要大得多(纤维的ε=7,水的ε=80,而变压器油的ε≈2.3),因此在电场作用下,杂质将被吸引到电场强度较大的区域,在电极间构成杂质“小桥”,从而使油的击穿强度降低。如杂质足够多,则还能构成贯通电极间隙的“小桥”,流过较大的泄漏电流,使之强烈发热,并使油和水局部沸腾和气化,结果击穿就沿此“气桥”而发生。

下面分别分析影响绝缘油击穿电压的各主要因素。 (1)测量绝缘油击穿强度时采用的电极材料、电极形状和电极面积对油的绝缘强度有影响。根据试验数据得知,在同样的试验条件下,不同电极材料测量的同种油样绝缘强度的排列顺序为Fe<黄铜

电缆电压降的计算

电流通过导体(或用电器)的时候,会受到一定的阻力, 但在电压的作用下,电流能够克服这种阻力顺利通过导体(或用电器), 但遗憾的是,流过导体(或用电器)后,电压再也没有以前那么高了,它下降了。而且电阻越大,电压下降的程度越大。 所以这种流过导体(或用电器)上(或两端)产生的电压大小的差别,就叫“电压降。 解决电压降的方法:增大导体的截面积。 如何计算电缆压降 问题1:电缆降压怎么算50kw300米采用vv电缆??? 25铜芯去线阻为R=0.0172(300/25)=0.2、其压降为U=0.2*100=20 也就是说单线压降为20V,2相为40V。 变压器低压端电压为400V400-40=360V,铝线R=0.0283(300/35)=0.25 其压降为U=0.25*100=25,末端为350V ,长时间运行对电机有影响 建议使用35铜芯或者50铝线25铜芯其压降为U=0.0172(300/35)=0.147(≈15V)15*2=30末端为370V 铝线U=0.0283(300/50)=0.1717*2=34末端为366V 可以正常使用(变压器电压段电压为400V) 50KW负荷额定电流I=P/1.732UcosΦ=50/1.732/0.38/0.8=50/0.53=94A 按安全载流量可以采用25平方毫米的铜电缆,算电压损失: R=ρ(L/S)=0.017X300/25=0.2欧、电压损失U=IR=94X0.2=18V 如果用35平方毫米的铜电缆,算电压损失: R=ρ(L/S)=0.017X300/35=0.15欧 电压损失U=IR=94X1.15=14V 选择导线的原则: 1)近距离按发热条件限制导线截面(安全载流量); 2)远距离在安全载流量的基础上,按电压损失条件选择导线截面,要保证 负荷点的工作电压在合格范围; 3)大负荷按经济电流密度选择。 为了保证导线长时间连续运行所允许的电流密度称安全载流量。 一般规定是:铜线选5~8A/mm2;铝线选3~5A/mm2。 安全载流量还要根据导线的芯线使用环境的极限温度、冷却条件、敷设

电压降计算方法80181

电缆电压降 对于动力装置,例如发电机、变压器等配置的电力电缆,当传输距离较远时,例如900m,就应考虑电缆电压的“压降”问题,否则电缆采购、安装以后,方才发觉因未考虑压降,导致设备无法正常启动,而因此造成工程损失。 一.电力线路为何会产生“电压降”? 电力线路的电压降是因为导体存在电阻。正因为此,所以不管导体采用哪种材料(铜,铝)都会造成线路一定的电压损耗,而这种损耗(压降)不大于本身电压的10%时一般是不会对线路的电力驱动产生后果的。 二.在哪些场合需要考虑电压降? 一般来说,线路长度不很长的场合,由于电压降非常有限,往往可以忽略“压降”的问题,例如线路只有几十米。但是,在一些较长的电力线路上如果忽略了电缆压降,电缆敷设后在启动设备可能会因电压太低,根本启动不了设备;或设备虽能启动,但处于低电压运行状态,时间长了损坏设备。 较长电力线路需要考虑压降的问题。所谓“长线路”一般是指电缆线路大于500米。 对电压精度要求较高的场合也要考虑压降。 三.如何计算电力线路的压降? 一般来说,计算线路的压降并不复杂,可按以下步骤: 1.计算线路电流I 公式:I= P/1.732×U×cosθ 其中: P—功率,用“千瓦”U—电压,单位kV cosθ—功率因素,用0.8~0.85 2 .计算线路电阻R 公式:R=ρ×L/S 其中:ρ—导体电阻率,铜芯电缆用0.01740代入,铝导体用0.0283代入

L—线路长度,用“米”代入 S—电缆的标称截面 3.计算线路压降 公式:ΔU=I×R 举例说明: 某电力线路长度为600m,电机功率90kW,工作电压380v,电缆是70mm2铜芯电缆,试求电压降。 解:先求线路电流I I=P/1.732×U×cosθ=90÷(1.732×0.380×0.85)=161(A) 再求线路电阻R R=ρ×L/S=0.01740×600÷70=0.149(Ω) 现在可以求线路压降了: ΔU=I×R =161×0.149=23.99(V) 由于ΔU=23.99V,已经超出电压380V的5%(23.99÷380=6.3%),因此无法满足电压的要求。 解决方案:增大电缆截面或缩短线路长度。读者可以自行计算验正。 例:在800米外有30KW负荷,用70㎜2电缆看是否符合要求? I=P/1.732*U*COS?=30/1.732*0.38*0.8=56.98A R=ρL/S=0.018*800/70=0.206欧 △U=IR=56.98*0.206=11.72<19V (5%U=0.05*380=19) 符合要求。 电压降的估算 1.用途

击穿耐压装置指标

1 影响绝缘材料击穿的主要原因 对于绝缘材料,在不损坏其绝缘性能的情况下施加高电压的过程称为耐压(抗电)试验;在破坏其绝缘时施加高电压的过程称为击穿试验,击穿时的电压值称为击穿电压。电气设备的质量检查是靠耐压试验完成的。若用连续均匀升压或逐级升压方法对厚度为d(mm)的绝缘材料试件施加高电压,当试件击穿时的电压值V(kV)就是击穿电压。试件在击穿时每单位厚度上所承受的电压值,或试 件的击穿电压值与两个电极间试件的平均厚度之比称为击穿强度:E b =V b /d(kV/m m),有的也称为绝缘强度或介质强度。影响介质击穿的主要客观因素有[1][2]: 1.1 施加电压的时间 多数绝缘材料的击穿电压与加电压的时间有关系,击穿电压随加电压的时间加长而明显下降,见图1,基本遵循下述经验公式: 式中,V t ——加电压时间视为无穷长时的最小击穿电压; V i ——加电压后t时刻的击穿电压; a——与材料和试验条件有关的常数; t——加电压的时间。 图1 击穿电压与加电压时间的关系

1.2 温度和湿度 在低温范围,击穿电压随温度的升降变化不大;在较高的温度范围,不管是绝缘材料本身还是周围环境温度升高和湿度增加,击穿电压都下降。对厚材料更为显著,见图2和图3。 图2 击穿电压与温度的关系图3 击穿电压与湿度的关系 1.3 电压频率 交流电压对绝缘材料的考验最严格。随着交频率的增加,击穿电压值下降见图4,这是因为频率增加时介质的热效应也增加,而且加速了局部放电的流破坏过程。 图4 击穿电压与交流频率的关系 在直流电压作用下,试件内部的局部放电过程容易自行衰减,而且介质损耗一般要比在交流电场中小,所以直流击穿电压要比交流击穿电压高。

一起 500kV电力变压器雷电冲击试验击穿故障分析

一起 500kV电力变压器雷电冲击试验击穿故障分析 发表时间:2019-11-15T09:12:45.267Z 来源:《中国电业》2019年14期作者:刘枝 [导读] 电力变压器是电力系统中最重要的电气设备之一,其运行状况直接影响着供电的安全性、可靠性。 摘要:电力变压器是电力系统中最重要的电气设备之一,其运行状况直接影响着供电的安全性、可靠性。在运行过程中,变压器不仅需要承受长期工作电压,还会遇到雷电过电压、操作过电压、工频过电压等情况,其绝缘强度会不断受到考验,近年来已发生数起500kV电力变压器绝缘故障,造成了重大的损失。究其原因,一个重要的方面是制造过程遗留的微小缺陷未能在出厂前及时发现,经过长时间运行后引起变压器内部局部放电,最终导致内部绝缘破坏等严重故障的发生。本文以一起500kV电力变压器雷电冲击试验击穿故障进行详细的分析。 关键词:电力变压器;雷电冲击;试验 1试验情况 1.1设备信息 实验变压器铁心采用单相四柱三框式结构,主柱绕组从内到外依次为低压绕组、中压绕组、高压绕组;激磁绕组和调压绕组位于旁柱上,采用线性调压的方式。调压绕组采用内外两层串联的结构。 1.2试验过程 按照试验方案,雷电冲击试验前完成了绕组对地绝缘电阻测量、绕组绝缘系统电容及介质损耗因数测量、套管试验、电压比测量及联结组别检定和绕组电阻测量等试验,试验结果均符合相关标准及技术协议要求。 雷电冲击试验首先在高压绕组线端进行,分别施加1次50%电压和3次100%电压下的雷电冲击。试验过程中无异常放电现象,电压波形波头、波尾时间、电压幅值、过冲等均符合标准要求,50%电压冲击波形与100%电压冲击波形相似,电流波形无截断,试验通过。 在中压进行试验时变压器位于1分接。施加50%冲击电压和首次施加100%冲击电压试验均顺利通过;第二次施加100%冲击电压试验时出现异常放电:试验人员听到清脆异响,电压异常降低,电流波形出现大幅振荡。试验未通过,初步判断变压器内部放生了绝缘击穿。 随后再次施加冲击电压,并利用局部放电超声波自动定位系统判断击穿位置。在油箱4个面的上部和下部分别布置2个传感器,施加70%电压试验,又发生击穿,听到内部放电声,冲击电压波形出现截断。此时,布置在变压器油箱侧面下部人孔附近的超声信号传感器测得的时域信号最超前,该处为铁心旁柱所在位置,怀疑调压绕组下部出线位置附近发生绝缘击穿。 冲击试验后对该变压器油样进行采集。三比值法编码为102,判断变压器内部发生了电弧放电。CO、CO2含量也发生突变,判断故障涉及固体绝缘材料。 1.3吊罩检查 首先工作人员对故障设备外观进行了全方位检查,油箱无变形,套管无裂纹,非电量保护装置正常无动作,无渗漏油。 外观检查后厂家组织吊罩检查。拆除套管等附件后将上节油箱吊起,发现油箱底部散落有瓦楞纸和绝缘纸碎片。进一步观察到内层调压绕组下部引线下部出头与托板槽口左侧、下侧贴合紧实,绝缘被击穿,引线出头沿托板对夹件腹板放电,有明显电弧灼烧痕迹,其他位置均无放电痕迹。 将绕组拔出,对主柱和旁柱主体进行检查:各组绕组排列整齐,间隙均匀;绕组间、绕组与铁心及铁心与轭铁间的绝缘垫,完整无松动;绝缘板绑扎紧固。绕组绑扎牢固,无移动变形现象,绝缘层完整,表面无变色、脆裂或击穿等缺陷。因此判断击穿仅发生在调压绕组下部引线位置。 剥除所有调压绕组下部引线外绝缘层发现放电点为调压绕组下部2分接出头,其余分接无放电痕迹,调压绕组其他位置无放电痕迹和损伤。调压绕组和励磁绕组之间的围屏以及内部励磁绕组未受损伤。 2原因分析 故障发生后,厂方与业主单位的专家及技术人员共同分析,从设计、制造工艺控制、关键点检查等方面归纳出故障原因。 2.1设计方面 针对击穿处的绝缘,未将绕组出头处沿垫板对地的爬距考虑在内。经实际测量发现,纸板沿面爬距为120mm。而变压器制造厂家均认可的设计绝缘距离为220kV等级引线表面包10mm绝缘时油中对地距离为190mm、沿纸板爬电距离为620mm。因此该部位绝缘裕度严重不足,是造成该变压器绝缘击穿及沿绝缘表面爬电的主要原因。 2.2制造工艺控制方面 与该变压器同批次生产的同类型变压器共三台,其中一台通过了全部出厂试验。为了与发生击穿的变压器进行对比,对通过所有出厂试验的变压器进行吊罩检查。发现该变压器调压绕组下部引线的挝弯位置明显高于故障变压器,且出线与槽口两边距离相当,其调压绕组下部出头与托板间有一定的油隙,该油隙可以提高引线出头与夹件间的耐电强度,使其顺利通过绝缘试验。但纸板沿面爬距仍不满足要求。因此制造过程中工艺控制不严谨、不规范也是造成变压器发生绝缘击穿的原因之一。 2.3关键点检查方面 在产品的生产过程中,厂方质量监督人员和业主驻厂监造人员均应当对绕组绕制、器身装配、绝缘包扎等关键环节,绕组出头放置、绝缘距离等关键尺寸进行现场核对。但双方在核对各部件接口时忽视了调压内层下部出线引线对铁心夹件的距离校核,没有及时发现该部位的绝缘距离不足,是造成变压器发生绝缘击穿的又一个原因。 3结果及建议 3.1整改措施 (1)改变外层调压绕组的下部出线方式,由原来的轴向出线方式改为辐向出线方式。进而有效提高外层调压绕组的出头位置,增加了与下夹件间的纸板沿面爬距,有效提升了绝缘强度。 (2)调整内层调压绕组的出头档位,使内层调压出线位置向远离夹件的方向转动1个档位,进一步拉开调压出线与下夹件的爬电距离。(3)改进内层调压绕组的出头包扎方式,首先在出线外包裹瓦楞纸板,再通过加包纸浆成型件,伸出托板辐向尺寸约200mm,并在调压绕组出线下部的两层托板间增加1层反角环。通过以上措施进一步分割油隙,增大爬距,进而起到增强绝缘的作用。通过更改设计方案和更换

电缆电压降计算方法

一、先估算负荷电流 1.用途 这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。电流的大小直接与功率有关,也与电压、相别、力率(又称功率因数)等有关。一般有公式可供计算。由于工厂常用的都是380/220伏三相四线系统,因此,可以根据功率的大小直接算出电流。 2.口诀 低压380/220伏系统每千瓦的电流,安。 千瓦、电流,如何计算? 电力加倍,电热加半。① 单相千瓦,4.5安。② 单相380,电流两安半。③ 3.说明 口诀是以380/220伏三相四线系统中的三相设备为准,计算每千瓦的安数。对于某些单相或电压不同的单相设备,其每千瓦的安数,口诀另外作了说明。 ①这两句口诀中,电力专指电动机。在380伏三相时(力率0.8左右),电动机每千瓦的电流约为2安.即将”千瓦数加一倍”(乘2)就是电流,安。这电流也称电动机的额定电流。 【例1】 5.5千瓦电动机按“电力加倍”算得电流为11安。 【例2】 40千瓦水泵电动机按“电力加倍”算得电流为80安。 电热是指用电阻加热的电阻炉等。三相380伏的电热设备,每千瓦的电流为1.5安。即将“千瓦数加一半”(乘1.5)就是电流,安。 【例1】 3千瓦电加热器按“电热加半”算得电流为4.5安。 【例2】 15千瓦电阻炉按“电热加半”算得电流为23安。 这句口诀不专指电热,对于照明也适用。虽然照明的灯泡是单相而不是三相,但对照明供电的三相四线干线仍属三相。只要三相大体平衡也可这样计算。此外,以千伏安为单位的电器(如变压器或整流器)和以千乏为单位的移相电容器(提

高力率用)也都适用。即时说,这后半句虽然说的是电热,但包括所有以千伏安、千乏为单位的用电设备,以及以千瓦为单位的电热和照明设备。 【例1】 12千瓦的三相(平衡时)照明干线按“电热加半”算得电流为18安。【例2】 30千伏安的整流器按“电热加半”算得电流为45安(指380伏三相交流侧)。 【例3】 320千伏安的配电变压器按“电热加半”算得电流为480安(指380/220伏低压侧)。 【例4】 100千乏的移相电容器(380伏三相)按“电热加半”算得电流为150安。 ②在380/220伏三相四线系统中,单相设备的两条线,一条接相线而另一条接零线的(如照明设备)为单相220伏用电设备。这种设备的力率大多为1,因此,口诀便直接说明“单相(每)千瓦4.5安”。计算时,只要“将千瓦数乘4.5”就是电流,安。 同上面一样,它适用于所有以千伏安为单位的单相220伏用电设备,以及以千瓦为单位的电热及照明设备,而且也适用于220伏的直流。 【例1】 500伏安(0.5千伏安)的行灯变压器(220伏电源侧)按“单相千瓦、4.5 安”算得电流为2.3安。 【例2】 1000瓦投光灯按“单相千瓦、4.5安”算得电流为4.5安。 对于电压更低的单相,口诀中没有提到。可以取220伏为标准,看电压降低多少,电流就反过来增大多少。比如36伏电压,以220伏为标准来说,它降低到1/6,电流就应增大到6倍,即每千瓦的电流为6*4.5=27安。比如36伏、60瓦的行灯每只电流为0.06*27=1.6安,5只便共有8安。 ③在380/220伏三相四线系统中,单相设备的两条线都是接到相线上的,习惯上称为单相380伏用电设备(实际是接在两相上)。这种设备当以千瓦为单位时,力率大多为1,口诀也直接说明:“单相380,电流两安半”。它也包括以千伏安为单位的380伏单相设备。计算时,只要“将千瓦或千伏安数乘2.5”就是电流,安。

科学计算_Dialectric Breakdown Strength(电介质击穿强度)

Dialectric Breakdown Strength(电介质击穿强度) 数据摘要: These data are the result of a study involving the analysis of performance degradation data from accelerated tests. The response variable is dialectric breakdown strength in kilo-volts, and the predictor variables are time in weeks and temperature in degrees Celcius. The study can be viewed as an 8 by 4 factorial experiment. 中文关键词: 伽马回归,离差模型,击穿强度,电介质, 英文关键词: two-way analysis of variance,nonlinear regression,gamma regression,dispersion modelling,breakdown strength,dialectric, 数据格式: TEXT 数据用途: The data can be used for statistics.

数据详细介绍: Dialectric Breakdown Strength Keywords: two-way analysis of variance, nonlinear regression, gamma regression, dispersion modelling Description These data are the result of a study involving the analysis of performance degradation data from accelerated tests. The response variable is dialectric breakdown strength in kilo-volts, and the predictor variables are time in weeks and temperature in degrees Celcius. The study can be viewed as an 8 by 4 factorial experiment. Variable Description Strength Dialectric breakdown strength in kilovolts Time Duration of testing in weeks (8 levels) Temperature Temperature in degrees Celsius (4 levels) Source

雷电冲击试验报告

绝缘液体雷电冲击击穿电压测定 一、试验目的 电力系统中的高压电气设备除承受长期工作电压(交流或直流)作用外,还受到大气感应造成的过电压的作用,为保证绝缘液体的绝缘质量,需对绝缘液体进行雷电冲击电压试验。变压器由多种材料组合而成,结构形状也极为复杂。绝缘结构任一局部范围内的破坏都会使整个设备丧失绝缘性能。因此,一般只能用可以耐受多高的试验电压(单位为KV)来表示设备的整体绝缘能力。绝缘耐压试验电压可表明设备耐受的电压水平,但并不等同于该设备所实际具有的绝缘强度。 二、试验原理 雷电击中架空线路导线或户外变电站将产生雷电过电压,其波形变化范围很大,人工模拟这种暂态电压,以研究和考验绝缘液体的绝缘强度。 三、试验仪器 试验容器欧姆表测微计或螺旋计或厚度规金相显微镜脉冲发生器电阻分压器峰值电压表 四、试验步骤 1.试验容器的准备:试验容器是一个带有垂直间隙的容器,其内可容纳液体的 体积约为300mL,限定只有两极和支撑的部分可以是金属材料,容器所用的绝缘材料必须具有高介电强度、在80o C下具有良好的热稳定性、能与被测绝缘液体相容,并耐溶剂、耐常用于被测液体的清洁剂;试验容器应易拆卸易清洗彻底,其尺寸应保证闪络电压至少为250kV。 2.试验容器的清洗:试验容器的所有零件包括球电极和唱针都应用试剂级的庚 烷脱脂,用洗涤剂洗涤,用热自来水彻底冲洗,然后用蒸馏水冲洗,用无油脱水的压缩空气干燥各零件。

3.液体取样:用待测液体彻底地清洗试样容器和电极,并慢慢地将试样注入试 验容器,切勿产生气泡,在试验前让液体静置至少5min。试验时试样的温度应与实验室温度相同,通常在15o C到30o C之间。 4.电极间隙的调整:轻轻使两电极接触,用欧姆表检测是否接触良好。然后用 一个测微计或螺旋计或厚度规使其中一个电极移开达期望的间隙值,其允许偏差为±0.1mm。 5.脉冲电压的校准:用一个精确标定的电阻分压器和一个峰值电压表,根据 GB/T 311.6-2005用球隙法校正测量系统,脉冲电压的峰值电压测量误差应已知且不超过3%。 6.试验过程: 6.1逐级试验:先使用15mm间隙,50kV其实电压和步进10kV升压1来 进行试验,每个电压等级下要加一个脉冲,在相邻两脉冲之间时间间 隔只是1min,直至击穿。按照所确定的起始电压、电压步进值和电 极间隙重复试验直至获得被试液体的五个击穿值2,取其平均值作为 被试液体的雷电脉冲击穿电压。 值及参数画出判定图,按照6.1的结论选择 6.2 连续试验:根据相应的P 一个脉冲电压峰值U 3并设定脉冲发生器,准备试验,施加第一个脉冲 到电极上,如果没有击穿,则在另一个脉冲前等待一分钟,然后继续加 脉冲直至发生击穿,在判定图上对脉冲和相应的击穿描点;重复试验, 至能进行判定为止4,当超85次脉冲数后还不能裁定时,则应在更低 水平上重复试验。 五、试验数据及处理

击穿电压强度高(10倍于Si)

摘要:随着电?力电?子变换系统对于效率和体积提出更?高的要求,SiC(碳化硅)将会是越来越合适的半导体器件。尤其针对光伏逆变器和UPS应?用,SiC 器件是实现其?高功率密度的?一种?非常有效的?手段。本?文主要介绍SiC技术优点、缺点及??目前应?用层?面的?一些瓶颈。 1.引?言 由于SiC相对于Si的?一些独特性,对于SiC技术的研究,可以追溯到上世界70年代。 简单来说,SiC主要在以下3个?方?面具有明显的优势: ? 击穿电压强度?高(10倍于Si) ? 更宽的能带隙(3倍于Si) ? 热导率?高(3倍于Si) 这些特性使得SiC器件更适合应?用在?高功率密度、?高开关频率的场合。当然,这些特性也使得?大规模?生产?面临?一些障碍,直到2000年初单晶SiC晶?片出现才开始逐步量产。??目前标准的是4英?寸晶?片,但是接下来6英?寸晶?片也要诞?生,这会导致成本有显着的下降。?而相?比之下,当今12英?寸的Si晶?片已经很普遍,如果预测没有问题的话,接下来4到5年的时间18英?寸的Si晶?片也会出现。Vincotech公司?十?几年前就已经采?用SiC?二极管来开发功率模块。SiC?二极管由于其卓越的反向恢复特性,可以有效的减?小它本?身的开关损耗和IGBT的开关损耗。SiC肖特基?二极管虽然已经应?用了很多年,但是还需要进?一步改善价格来获得更??广阔的市场。 最近?几年的主要研究和应?用是基于SiC的有源开关器件,?比如SiC MOSFET和SiC JFET. 从??目前电压等级4Kv以下的应?用来看,SiC MOSET有打败SiC JFET 的势头。SiC MOSFET有着卓越的开关损耗和超?小的导通损耗。SiC MOSFET ?大批量商业化的最?大障碍??目前还是由于其居?高不下的价格。然?而我们还是要综合评估整个系统成本,因为SiC MOSFET还是带来系统整个体积和其他成本的下降。?文本会介绍?一些SiC和Si在效率、损耗?方?面的对?比来证明SiC在?高频应?用上的优势。 2.采?用boost模型,对?比分析SiC和Si器件的损耗 我们来看?一下boost电路。像光伏逆变器的前级升压就会?用到这类电路。下图1是典型的boost电路拓扑。 图1: boost电路拓扑

试解释沿面闪络电压明显低于纯空气间隙的击穿电压的原因

1、试解释沿面闪络电压明显低于纯空气间隙的击穿电压的原因。答:当两电极间的电压逐渐升高时,放电总是发生在沿固体介质的表面上,此时的沿面闪络电压已比纯空气间隙的击穿电压低很多,其原因是原先的均匀电场发生了畸变。产生这种情况的原因有:(1)固体介质表面不是绝对光滑,存在一定的粗糙程度,这使得表面电场分布发生畸变。(2)固体介质表面电阻不可能完全均匀,各处表面电阻不相同。(3)固体介质与空气有接触的情况。(4)固体介质与电极有接触的状况。/ 2、简要解释小桥理论。答:工程实际中使用的液体电介质不可能是纯净的,不可避免地混入气体(即气泡)、水分、纤维等杂质。这些杂质的介电常数小于液体的介电常数,在交流电场作用下,杂质中的场强与液体介质中的场强按各自的介电常数成反比分配,杂质中场强较高,且气泡的击穿场强低,因此杂质中首先发生放电,放电产生的带电粒子撞击液体分子,使液体介质分解,又产生气体,使气泡数量增多,逐渐形成易发生放电的气泡通道,并逐步贯穿两极,形成“小桥”,最后导致击穿在此通道中发生。/3在测试电气设备的介质损失角正切值时什么时候用正接线,什么时候用反接线;正接线和反接线各有什么特点?答:使用西林电桥的正接线时,高压西林电桥的高压桥臂的阻抗比对应的低压臂阻抗大得多,所以电桥上施加的电压绝大部分都降落在高压桥臂上,只要把试品和标准电容器放在高压保护区,用屏蔽线从其低压端连接到低压桥臂上,则在低压桥臂上调节R3和C4就很安全,而且测量准确度较高。但这种方法要求被试品高低压端均对地绝缘。使用反接线时,即将R3和C4接在高压端,由于R3和C4处于高电位。桥体位于高压侧,抗干扰能力和准确度都不如正接线。现场试验通常采用反接线试验方法。/4、固体电介质的电击穿和热击穿有什么区别?答:固体电介质的电击穿过程与气体放电中的汤逊理论及液体的电击穿理论相似,是以考虑在固体电介质中发生碰撞电离为基础的,不考虑由边缘效应、介质劣化等原因引起的击穿。电击穿的特点是:电压作用时间短,击穿电压高,击穿电压与环境温度无关,与电场均匀程度有密切关系,与电压作用时间关系很小。电介质的热击穿是由介质内部的热不平衡过程所造成的。热击穿的特点是:击穿电压随环境温度的升高按指数规律降低;击穿电压与散热条件有关,如介质厚度大,则散热困难,因此击穿电压并不随介质厚度成正比增加;当电压频率增大时,击穿电压将下降;击穿电压与电压作用时间有关。/6、测试电容量较大的被试品的绝缘电阻时如何防止被试品反放电烧坏兆欧表?为什么要对被试品充分放电?答:测试电容量较大的被试品的绝缘电阻时一定要在停止摇动兆欧表之前,先解开被试品的接线。电容量较大的被试品在测完接地电阻时,根据电容充放电的原理,往往会带上大量的电荷,所以必须对其充分放电。7、测量绝缘材料的泄漏电流为什么用直流电压而不用交流电压?答:因为直流电压作用下的介质损失仅有漏导损失,而交流作用下的介质损失不仅有漏导损失还有极化损失。所以在直流电压下,更容易测量出泄漏电流。/8、什么是变压器的主绝缘、匝间绝缘和分级绝缘。答:主绝缘:发电机、变压器各点对地绝缘。匝间绝缘:变压器多匝绕组间的绝缘。分级绝缘:各个不同的电压等级采取不同的绝缘等级。/9、简述汤逊理论和流注理论的异同点,并说明各自的适用范围。答:汤逊理论和流注理论都是解释均匀电场的气体放电理论。前者适用于均匀电场、低气压、短间隙的条件下;后者适用于均匀电场、高气压、长间隙的条件下。不同点:(1)放电外形流注放电是具有通道形式的。根据汤逊理论,气体放电应在整个间隙中均匀连续地发展。(2)放电时间根据流注理论,二次电子崩的起始电子由光电离形成,而光子的速度远比电子的大,二次电子崩又是在加强了的电场中,所以流注发展更迅速,击穿时间比由汤逊理论推算的小得多。(3)阴极材料的影响根据流注理论,大气条件下气体放电的发展不是依靠正离子使阴极表面电离形成的二次电子维持的,而是靠空间光电离产生电子维持的,故阴极材料对气体击穿电压没有影响。根据汤逊理论,阴极材料的性质在击穿过程中应起一定作用。实验表明,低气压下阴极材料对击穿电压有一定影响。 10、局部放电是怎样产生的?在电力系统中常用什么方法进行测量,为什么?答:杂质存在导致电场分布不均匀,电压U 达到一定值时,会首先在气泡或杂质中产生放电,既局部放电。局部放电的检测方法:①直接用局部放电检测仪进行测量,用专用的无晕电源设备; ②油色谱分析:主要是检测绝缘油中乙炔气体的含量。/11、自持放电和非自持放电答:必须借助外力因素才能维持的放电称为非自持放电;不需其他任何加外电离因素而仅由电场的作用就能自行维持的放电称为自持放电。/12、吸收比和极化指数答:加压60秒的绝缘电阻与加压15秒的绝缘电阻的比值为吸收比。加压10分钟的绝缘电阻与加压1分钟的绝缘电阻的比值为极化指数。/13、反击和绕击答:雷击线路杆塔顶部时,由于塔顶电位与导线电位相差很大,可能引起绝缘子串的闪络,即发生反击。 雷电绕过避雷线击于导线,直接在导线上引起过电压,称为绕击。/14、保护角答:保护角是指避雷线与所保护的外侧导线之间的连线与经过避雷线的铅垂线之间的夹角。 15、极性效应答:在极不均匀电场中,高场强电极的不同,空间电荷的极性也不同,对放电发展的影响也不同,这就造成了不同极性的高场强电极的电晕起始电压的不同,以及间隙击穿电压的不同,称为极性效应。16、50%冲击放电电压答:工程上采用50%冲击击穿电压(U50%)来描述间隙的冲击击穿特性,即在多次施加同一电压时,用间隙击穿概率为50%的电压值来反映间隙的耐受冲击电压的特性。

电缆电压压降

电缆电压压降降计算公式为△U=(P*L)/(A*S) 其中:P为线路负荷;L为线路长度 A为导体材质系数(铜大概为77,铝大概为46) S为电缆截面 (一)电缆长度计算 电缆长度计算公式:L=(l+5.5G+a)×1.02 上式中, L-电缆计算长度(米);l-按直线距离统计的长度(横纵坐标的代数和); 5.5-穿越一个股道按5.5米长度计算,(当大于5.5米时,按实际距离计算); G-穿越股道的股道数;a-其它附加长度,具体规定如下: 1、信号楼内的电缆储备量按5米计算,楼内走行和电缆封头的长度,一般定为20米; 2、设备每端出、入土及做头为2米; 3、室外每端环状储备量为2米(20米以下为电缆为1米); 4、引向高出地面较大距离的设备,按实际长度计算。 1.02-电缆敷设时的自然弯曲度,以2%计算。 (二)电缆芯线分配原则 电缆芯线分配,采用双线直流回路,即一条去线ZQ,一条回线ZH。双线式回路最经济的分配比利为去线与回线等量,且均为总芯数的一半,即:ZQ=ZH=Z/2。如果电缆总芯数为奇数时,去线和回线芯数相差为一芯,这样可以使电路中芯线电阻最小。 (三)计算电缆最大控制长度 电缆最大控制长度计算公式:Lmax=△U/Ir×ZQZH/(nZQ+ZH) 式中:n-回线与去线内电流的倍数;△U-线路允许压降; I-回路中工作电流;r-每米芯线电阻。 上式表明,电缆芯线数可以通过电缆最大控制长度的计算来决定,其方法是根据线路允许压降、回路中工作电流,以及假定选用的回线和去线的电缆芯数,计算出Lmax. (四)电缆芯数计算公式 设电缆总芯数为Z=ZQ+ZH,由电缆分配原则可知ZQ+ZH,能使芯线电阻最小。所以电缆总芯线数的计算为:Z=4rL/R=4rLI/△U 上式表明:当线路允许压降△U,回路工作电流I及电缆计算长度确定之后,可以计算电缆总芯数。线路电压降计算公式为△U=(P*L)/(A*S) 其中:P为线路负荷;L为线路长度 A为导体材质系数(铜大概为77,铝大概为46);S为电缆截面 (五)电缆线路压降计算公式 计算公式为:△U=rLI×(ZQ+ZH)/(ZQ×ZH)

雷电冲击电压实验

雷电冲击电压实验 一、实验目的 电气设备在电力系统运行中除承受正常运行的工频电压外,还可能受到暂时过电压及雷电过电压的袭击。本实验通过实验装置及控制平台模拟产生相应的雷电冲击波,观察长气隙击穿放电现象以及通过控制台观察冲击波的波形,了解冲击电压发生器的功能要求及技术要求,了解其工作原理、系统组成、具体结构以及相关操作,明确冲击电压实验的有关注意事项,掌握完整的操作流程和操作技能,初步具备开展相关试验任务的能力。 二、试验项目 通过雷击冲击电压发生器产生高压冲击波击穿长气隙放电 三、实验说明 1、冲击电压在系统中的存在形式和表现 因雷电影响会在电力系统中产生大气过电压,有两种基本形式,即直击雷过电压和感应雷过电压,他们都表现为一段作用时间很短的过电压脉冲波。这种过电压波一般会引起绝缘子闪络或避雷器动作,从而形成冲击截波。如果过电压幅值很大,其波头上升很快,引发的绝缘子闪络或避雷器动作就可能发生在波头部分,将形成冲击陡波。 因系统的倒闸操作、元件动作或发生故障等原因,使系统状态改变,引发过渡过程,可能产生涌动的电压升高,形成操作冲击波。它是一种作用时间较长的过电压波。 2、冲击电压的特点 雷电冲击电压波是一种作用时间很短的过电压脉冲波,具有单极性,一般为负极性,如果引起放电,其产生的冲击电流很强。 冲击截波对电感线圈类设备可能造成更严重的威胁,而冲击陡波对绝缘子内绝缘的威胁更大。 操作冲击波的能量来自于系统内部,其作用时间比雷电波长的多,持续的能量累积造成的损害可能比雷电波更为严重 3、冲击电压发生器就是一种产生脉冲波的高电压发生装置。它被用于研究电力设备遭受大气过电压(雷电)时的绝缘性能。冲击电压的破坏作用不仅决定于波形、幅值、还与波形陡度有关。目前国内冲击电压发生器能产生8种冲击波形。下面简单介绍一下: GB311《高压输变电设备的绝缘配合-高电压试验技术》规定了三种标准冲击波形(1)1.2/50微妙标准雷电冲击全波 (2)1.2/2~5微妙标准雷电截波 过零系数0.25-0.35 (3)250/2500微妙的标准操作冲击波 Tf为20~250us90%持续时间≥200us 过零时间≥500us IEC517规定GIS组合电器现场冲击试验的二种标准冲击波形 (4)Tf<15微妙的振荡雷电冲击波 (5)Tcr>100微妙的振荡操作冲击波 图1雷电冲击电压全波波形 来源:网络转载

20课时 雷电冲击电压

第20课时 学习任务:雷电冲击电压 任务目标:1 了解雷电冲击电压标准波形 2了解雷电放电时延 3了解雷电雷电冲击50%击穿电压 4了解雷电伏秒特性 任务重点:雷电伏秒特性 任务难点:操作冲击电压下空气间隙的击穿电压任务实施: 一相关知识学习

(一)雷电冲击电压标准波形 雷电冲击电压标准波形如图2-48所示 (视在)波前时间T1:1.2us,偏差±30% (视在)半峰值时间T2:50us,偏差±20%

(二)放电时延 如图所示,当时间经过 t 0,电压升高到持续作用电压下的击穿电压U 0时,间隙并不立刻击穿,而需经过t d 后,才能完成击穿。 统计时延t s :从t 0开始,到 间隙中出现一个有效电子所需 的时间称为统计时延。 放电形成时延t f :从出现有 效电子引起强烈的电离过程, 到间隙完全击穿需要的时间, 称为放电形成时延。

全部放电时间t d由三部分组成: 放电时延t1: (1)短间隙中,放电形成时延小,统计时延成为主要因素。 (2)长间隙中,放电时延主要决定于放电形成时延。

(三)雷电冲击50%击穿电压 多次施加电压时,其中半数导致击穿的电压,称为50%冲击击穿电压(U50),以此来反映间隙的耐受冲击电压的特性。 冲击系数:50%冲击击穿电压和持续作用电压下击穿电压之比(均取峰值)称为冲击系数。

1、均匀电场和稍不均匀电场中的击穿电压 (1)击穿电压分散性小; (2)50%击穿电压和静态击穿电压(即持续作用电压下的击穿电压)相差很小,冲击系数近似等于1; (3)放电时延中,统计时延成主要因素; (4)击穿通常发生在波头峰值附近。

电缆压降计算公式

电缆压降计算公式 线路电压降计算公式为△U=(P*L)/(A*S) 其中:P为线路负荷;L为线路长度 A为导体材质系数(铜大概为77,铝大概为46) S为电缆截面 (一)电缆长度计算 电缆长度计算公式:L=(l+5.5G+a)×1.02 上式中, L-电缆计算长度(米);l-按直线距离统计的长度(横纵坐标的代数和); 5.5-穿越一个股道按5.5米长度计算,(当大于5.5米时,按实际距离计算); G-穿越股道的股道数;a-其它附加长度,具体规定如下: 1、信号楼内的电缆储备量按5米计算,楼内走行和电缆封头的长度,一般定为20米; 2、设备每端出、入土及做头为2米; 3、室外每端环状储备量为2米(20米以下为电缆为1米); 4、引向高出地面较大距离的设备,按实际长度计算。 1.02-电缆敷设时的自然弯曲度,以2%计算。 (二)电缆芯线分配原则 电缆芯线分配,采用双线直流回路,即一条去线ZQ,一条回线ZH。双线式回路最经济的分配比利为去线与回线等量,且均为总芯数的一半,即:ZQ=ZH=Z/2。如果电缆总芯数为奇数时,去线和回线芯数相差为一芯,这样可以使电路中芯线电阻最小。 (三)计算电缆最大控制长度 电缆最大控制长度计算公式:Lmax=△U/Ir×ZQZH/(nZQ+ZH) 式中:n-回线与去线内电流的倍数;△U-线路允许压降; I-回路中工作电流;r-每米芯线电阻。 上式表明,电缆芯线数可以通过电缆最大控制长度的计算来决定,其方法是根据线路允许压降、回路中工作电流,以及假定选用的回线和去线的电缆芯数,计算出Lmax. (四)电缆芯数计算公式 设电缆总芯数为Z=ZQ+ZH,由电缆分配原则可知ZQ+ZH,能使芯线电阻最小。所以电缆总芯线数的计算为:Z=4rL/R=4rLI/△U 上式表明:当线路允许压降△U,回路工作电流I及电缆计算长度确定之后,可以计算电缆总芯数。线路电压降计算公式为△U=(P*L)/(A*S) 其中:P为线路负荷;L为线路长度 A为导体材质系数(铜大概为77,铝大概为46);S为电缆截面 (五)电缆线路压降计算公式 计算公式为:△U=rLI×(ZQ+ZH)/(ZQ×ZH)

相关主题
文本预览
相关文档 最新文档