当前位置:文档之家› 理论力学

理论力学

理论力学
理论力学

一、计算题一(15分)

一平面力系如图所示。每方格边长为a,F1=F2=F,F3=F4=F。求力系向O点简化的结果以及最终简化结果。

二、计算题二(20分)

在图示平面构架中,已知F、a。求A、B两支座的反力

三、计算题三(15分)

图示机构中,凸轮半径为r,偏心距OO1=e。凸轮以匀角速度ω转动,求图示位置推杆AB上升的速度。

四、计算题四(20分)

OA以匀角速度ω绕O转动,已知OA长为l,AB长5l。在图示位置,OA与AB垂直,α=45o,求AB的角速度与角加速度。

五、计算题五(15分)

匀质绞车鼓轮半径为r,相对于转轴O的回转半径为ρ,质量为m0;重物A 质量为m1。在鼓轮上作用一常力偶矩M,使重物上升。应用动能定理求重物上升过程中的加速度。

六、计算题六(15分)

小球重P,由两绳悬挂如图所示,BC处于水平位置。如某瞬时AB绳突然被拉断,则小球开始进入运动。应用动静法,求开始运动瞬时,AC绳的拉力。

理论力学期末考试试卷(含答案)B

工程力学(Ⅱ)期终考试卷(A ) 专业 姓名 学号 题号 一 二 三 四 五 六 总分 题分 25 15 15 20 10 15 100 得分 一、填空题(每题5分,共25分) 1. 杆AB 绕A 轴以=5t ( 以rad 计,t 以s 计) 的规律转动,其上一小环M 将杆AB 和半径为 R (以m 计)的固定大圆环连在一起,若以O 1 为原点,逆时针为正向,则用自然法 表示的点M 的运动方程为_Rt R s 102 π+= 。 2. 平面机构如图所示。已知AB //O 1O 2,且 AB =O 1O 2=L ,AO 1=BO 2=r ,ABCD 是矩形板, AD =BC =b ,AO 1杆以匀角速度绕O 1轴转动, 则矩形板重心C '点的速度和加速度的大小分别 为v =_ r _,a =_ r 。 并在图上标出它们的方向。

3. 两全同的三棱柱,倾角为,静止地置于 光滑的水平地面上,将质量相等的圆盘与滑块分 别置于两三棱柱斜面上的A 处,皆从静止释放, 且圆盘为纯滚动,都由三棱柱的A 处运动到B 处, 则此两种情况下两个三棱柱的水平位移 ___相等;_____(填写相等或不相等), 因为_两个系统在水平方向质心位置守恒 。 4. 已知偏心轮为均质圆盘,质心在C 点,质量 为m ,半径为R ,偏心距2 R OC =。转动的角速度为, 角加速度为 ,若将惯性力系向O 点简化,则惯性 力系的主矢为_____ me ,me 2 ;____; 惯性力系的主矩为__2 )2(22α e R m +__。各矢量应在图中标出。 5.质量为m 的物块,用二根刚性系数分别为k 1和k 2 的弹簧连接,不计阻尼,则系统的固有频率 为_______________,若物体受到干扰力F =H sin (ωt ) 的作用,则系统受迫振动的频率为______________ 在____________条件下,系统将发生共振。 二、计算题(本题15分)

理论力学复习总结(重点知识点)

第一篇静力学 第 1 章静力学公理与物体的受力分析 1.1 静力学公理 公理 1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-F' 工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。 公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。 推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。 公理 3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。 推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。 公理 4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。 公理 5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。 1.2 约束及其约束力 1.柔性体约束 2?光滑接触面约束 3.光滑铰链约束

第2章平面汇交力系与平面力偶系 1. 平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和 方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=^ F 2. 矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。 3. 力对刚体的作用效应分为移动和转动。力对刚体的移动效应用力失来度量;力对刚体的转动效应 用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。(Mo ( F) =± Fh) 4. 把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶, 记为(F,F')。 例2-8 如图2.-17 (a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩 为500kN?m,求A、C两点的约束力。 解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17( b) 所示。 由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB) 构成一力偶与矩为M的力偶平衡(见图2-17 (c))。由平面力偶系的平衡方程刀Mi=0,得-Fad+M=0 500 则有FA=FB ' N=471.40N 由于FA、FB'为正值,可知二力的实际方向正为图2-17 ( c)所示的方向。 根据作用力与反作用力的关系,可知FC=FB '471.40N,方向如图2-17 ( b)所示。 第3章平面任意力系 1. 合力矩定理:若平面任意力系可合成为一合力。则其合力对于作用面内任意一点之矩等于力系中 各力对于同一点之矩的代数和。 2. 平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q的主矩同时 为零,即F R'=0,M O=0. 3. 平面任意力系的平衡方程:刀Fx=0,刀Fy=O,刀Mo(F)=0.平面任意力系平衡的解析条件是,力系 中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零 例3-1 如图3-8 (a)所示,在长方形平板的四个角点上分别作用着四个力,其中F仁4kN , F2=2kN , F3=F4=3kN,平板上还作用着一力偶矩为M=2kN ? m的力偶。试求以上四个力及 一力偶构成的力系向O点简化的结果,以及该力系的最后合成结果。 解(1)求主矢FR'建立如图3-8 (a)所示的坐标系,有 F 'Rx=刀Fx= - F2cos60° +F3+F4cos30 ° =4.598kN

理论力学期末试卷1(带答案)

三明学院 《理论力学》期末考试卷1答案 (考试时间:120分钟) 使用班级:学生数:任课教师:考试类型闭卷 一.判断题(认为正确的请在每题括号内打√,否则打×;每小题3分,共15分)(√)1.几何约束必定是完整约束,但完整约束未必是几何约束。 (×)2.刚体做偏心定轴匀速转动时,惯性力为零。 (×)3.当圆轮沿固定面做纯滚动时,滑动摩擦力和动滑动摩擦力均做功。 (√)4.质点系动量对时间的导数等于作用在质点系上所有外力的矢量和。 (√)5.平面运动随基点平动的运动规律与基点的选择有关,而绕基点转动的规律与基点选取无关。 二.选择题(把正确答案的序号填入括号内,每小题3分,共30分) 1.如图1所示,楔形块A,B自重不计,并在光滑的mm,nn平面相接触。若其上分别作用有大小相等,方向相反,作用线相同的二力P,P’,则此二刚体的平衡情况是(A )(A)二物体都不平衡(B)二物体都能平衡 (C)A平衡,B不平衡(D)B平衡,A不平衡 2.如图2所示,力F作用线在OABC平面内,则力F对空间直角坐标Ox,Oy,Oz轴之距,正确的是(C ) (A)m x(F)=0,其余不为零(B)m y(F)=0,其余不为零 (C)m z(F)=0,其余不为零(D)m x(F)=0, m y(F)=0, m z(F)=0 3.图3所示的圆半径为R,绕过点O的中心轴作定轴转动,其角速度为ω,角加速度为ε。记同 一半径上的两点A,B的加速度分别为a A,a B(OA=R,OB=R/2),它们与半径的夹角分别为α,β。 则a A,a B的大小关系,α,β的大小关系,正确的是(B ) (A) B A a a2 =, α=2β(B) B A a a2 =, α=β (C) B A a a=, α=2β(D) B A a a=, α=β 4.直管AB以匀角速度ω绕过点O且垂直于管子轴线的定轴转动,小球M在管子内相对于管子以匀速度v r运动。在图4所示瞬时,小球M正好经过轴O点,则在此瞬时小球M的绝对速度v,绝对加速度a 是(D ) (A)v=0,a=0 (B)v=v r, a=0 (C)v=0, r v aω 2 =,← (D)v=v r , r v aω 2 =, ← 5. 图5所示匀质圆盘质量为m,半径为R,可绕轮缘上垂直于盘面的轴转动,转动角速度为ω,则 图 5 图4 图3 y 图1

整理理论力学复习总结知识点教学提纲

此文档收集于网络,如有侵权,请联系网站删除 第一篇静力学 第1 章静力学公理与物体的受力分析 1.1 静力学公理 公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充 分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-F'工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。 公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡 力系,不改变原力系对刚体的效应。 推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。 公理3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于 同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。 推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。 公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。 公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平 衡状态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。1.2 约束及其约束力 1.柔性体约束 2.光滑接触面约束 3.光滑铰链约束

精品文档. 此文档收集于网络,如有侵权,请联系网站删除 第2章平面汇交力系与平面力偶系 1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即 FR=F1+F2+…..+Fn=∑F 2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。 3.力对刚体的作用效应分为移动和转动。力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。(Mo(F)=±Fh) 4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F')。 例2-8 如图2.-17(a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩为500kN?m,求A、C两点的约束力。 解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17(b)所示。 由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB'构成一力偶与矩为M的力偶平衡(见图2-17(c))。由平面力偶系的平,得衡方程∑Mi=0﹣Fad+M=0 则有FA=FB' N=471.40N 由于FA、FB'为正值,可知二力的实际方向正为图2-17(c)所示的方向。 根据作用力与反作用力的关系,可知FC=FB'=471.40N,方向如图2-17(b)所示。 第3章平面任意力系 1.合力矩定理:若平面任意力系可合成为一合力。则其合力对于作用面内任意一点之矩等于力系中各力对于同一点之矩的代数和。 2.平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q 的主矩同时为零,即FR`=0,Mo=0. 3.平面任意力系的平衡方程:∑Fx=0, ∑Fy=0, ∑Mo(F)=0.平面任意力系平衡的解析条件是,力系中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零. 精品文档. 此文档收集于网络,如有侵权,请联系网站删除

北大考研辅导班-北大理论物理考研接收优秀应届本科毕业生推免硕士专业目录 (校本部)

北大考研辅导班-北大理论物理考研接收优秀应届本科毕业生推免硕士专业目录(校本部) 理论物理是研究物质的基本结构和基本运动规律的一门学科,它既是物理学的理论基础,又与物理学乃至自然科学其它领域很多重大基础和前沿研究密切相关。展望二十一世纪,理论物理的发展将会有很好的前景。北京大学(原)理论物理研究室和(现)理论物理研究所是原高教部确定的全国高校理论物理学科的第一个研究室和研究所。北大理论物理是原国家教委确定的第一批重点学科之一。北大理论物理学科有优良的传统,王竹溪、彭桓武、胡宁、杨立铭等著名老一辈理论物理学家曾在这里长期执教。建国以来,北大理论物理专业为国家培养了两弹一星功臣于敏、周光召和15位中国科学院院士(于敏、周光召、冼鼎昌、甘子钊、苏肇冰、吴杭生、徐至展、霍裕平、张宗烨、陈难先、杨国桢、雷啸林、夏建白、周又元、赵光达)、3位第三世界科学院院士(苏肇冰、冼鼎昌、陈创天),以及许多在我国教育和科学研究领域有突出贡献的优秀专家学者。本学科点覆盖面广,优势突出。在理论物理的主流前沿方向上具有坚实的研究基础和较强的实力。本学科点队伍整齐、实力雄厚,凝聚了一批学术造诣精深和富有创造精神的专家学者,其中中科院院士二人,长江学者一人和国家杰出青年基金获得者三人。这一研究集体已作出在国际上有较大影响工作,目前继续招收研究生的研究方向主要有: 1.粒子物理理论 具体包括强子物理(如粲偶素物理、自旋物理、格点规范等)、标准模型和超出标准模型的新物理(如CP破坏、辐射修正、超对称的量子效应等)等。该方向研究集体是目前国家自然科学基金资助的全国唯一一个理论物理方面的“创新研究群体”。 2.原子核理论 具体包括如原子核内的夸克自由度、极端条件下的核结构、原子核的代数模型及微观基础、原子核的集体运动模式及其相变、超重核的结构及合成反应、核天体物理、相对论性重离子碰撞、强相互作用物质的成分、形态、相及相变等。 3.场论和宇宙学 包括如弦理论、共形场论、非对易几何、宇宙甚早期演化及宇宙结构等。 4.凝聚态理论和统计物理 包括介观体系输运性质和强关联系统统计模型、高温超导理论、强电磁场等极端条件下凝聚态物质的性质等。 5.计算物理及其应用 包括多粒子系统的研究方法、对称性理论和方法、模拟计算方法等。自1996年以来,本学科点在国际权威学术期刊发表高水平学术论文多篇,其中有一批在国际上有相当影响的工作。按照SCI和 SLAC-SPIRES的检索结果,本学科成员的论文被他人引用几千次,这充分说明了这些工作的原创性和影响力。本学科成员1996年以来出版专著和教材20余部。获得国家自然科学三等奖1项、国家优秀教材奖12项(其中一等奖3项)。承担了量子力学、电动力学、热力学与统计物理、理论力学、数学物理方法等本科生主干基础课和高等量子力学、量子场论、量子规范场论、量子场论专题、微分几何与拓扑学、粒子物理、广义相对论、宇宙学、中高能原子核理论、计算物理等十多门研究生核心课程的教学

理论力学考试知识点总结

《理论力学》考试知识点 静力学 第一章静力学基础 1、掌握平衡、刚体、力的概念以及等效力系与平衡力系,静力学公理。 2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束与球铰链的性质。 3、熟练掌握如何计算力的投影与平面力对点的矩,掌握空间力对点的矩与力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。 4、对简单的物体系统,熟练掌握取分离体并画出受力图。 第二章力系的简化 1、掌握力偶与力偶矩矢的概念以及力偶的性质。 2、掌握汇交力系、平行力系、力偶系的简化方法与简化结果。 3、熟练掌握如何计算主矢与主矩;掌握力的平移定理与空间一般力系与平面力系的简化方法与简化结果。 4、掌握合力投影定理与合力矩定理。 5、掌握计算平行力系中心的方法以及利用分割法与负面积法计算物体重心。 第三章力系的平衡条件 1、了解运用空间力系(包括空间汇交力系、空间平行力系与空间力偶系)的平衡条件求解单个物体与简单物体系的平衡问题。 2、熟练掌握平面力系(包括平面汇交力系、平面平行力系与平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力系平衡条件求解单个物体与物体系的平衡问题。 3、了解静定与静不定问题的概念。 4、掌握平面静定桁架计算内力的节点法与截面法,掌握判断零力杆的方法。 第四章摩擦 1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。 2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。 运动学 第五章点的运动 1、掌握描述点的运动的矢量法、直角坐标法与弧坐标法,能求点的运动方程。 2、熟练掌握如何计算点的速度、加速度及其有关问题。 第六章刚体的基本运动

理论力学期期末考试试卷

物理与电信工程学院2006 /2007学年(2)学期期末考试试卷 《理论力学》 试卷(A 卷) 专业 物理教育 年级 2005 班级 姓名 学号 一、 单项选择题 (每小题4分,共32分) 1 在自然坐标系中,有关速度的说法,正确的是( ) A 只有切向分量; B 只有法向分量; C 既有切向分量,又有法向分量; D 有时有切向分量,有时有切向分量。 2 确定刚体的位置需要确定( ) A 刚体内任意一点的位置; B 刚体内任意两点的位置; C 刚体内同一条直线上任意两点的位置; D 刚体内不在同一条直线上任意三点的位置 3 关于刚体惯量积,正确的说法是( ) A 有具体物理意义; B 跟所选坐标系无关; C 坐标轴选惯量主轴时惯量积也不为零; D 没有具体物理意义。 4 平面转动参考系的角速度为ω ,对运动质点产生牵连速度r ω? ,一质点相对该参考系速 度为v ' ,转动和相对运动相互作用而产生科里奥利加速度,则下列说法正确的是( ) A 牵连速度r ω? 改变相对速度v ' 的方向,相对速度v ' 也改变牵连速度r ω? 的方向从而 产生科里奥利加速度2v ω? ; B 牵连速度r ω? 改变相对速度为v ' 的方向而相对速度v ' 改变牵连速度r ω? 的大小从 而产生科里奥利加速度2v ω? ; C 牵连速度r ω? 改变相对速度为v ' 的大小,相对速度v ' 改变牵连速度r ω? 的方向从而 产生科里奥利加速度2v ω? ; D 牵连速度r ω? 改变相对速度v ' 的大小,相对速度v ' 也改变牵连速度r ω? 的大小从而 产生科里奥利加速度2v ω? 。 5关于质点组的机械能,下列说法正确的是:( ) A 所有内力为保守力时,总机械能才守恒; B 所有外力为保守力时,总机械能才守恒; C 只有所有内力和外力都为保守力时,总机械能才守恒; D 总机械能不可能守恒。

理论力学复习公式

静力学知识点 静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。 平面力系 本章总结 1. 平面汇交力系的合力 ( 1 )几何法:根据力多边形法则,合力矢为 合力作用线通过汇交点。 ( 2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 ( 1 )平衡的必要和充分条件: ( 2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 ( 3 )平衡的解析条件(平衡方程): 3. 平面内的力对点O 之矩是代数量,记为 一般以逆时针转向为正,反之为负。 或

4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。 力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系 平面任意力系是力的作用线可杂乱无章分布但在同一平面内的力系。当物体(含物体系)有一几何对称平面,且力的分别关于此平面对称时,可简化为平面力系计算。还有其他情况也可按平面任意力系计算。 本章用力的平移定理对平面任意力系进行简化,得到主矢主矩的概念,并进一步对力系简化结果进行讨论;然后得出平面任意力系的平衡条件,得出平衡方程的三种形式,并用平衡方程求解一些平衡问题;介绍静定超静定问题的概念,对物体系的平衡问题进行比较多的训练;最后介绍平面简单桁架的概念和内力计算。 常见问题 问题一不要因为这一章的内容简单,就认为理论力学容易学,而造成轻视理论力学的印象,这将给后面的学习带来影响。 问题二本章一开始要掌握好单个物体的平衡问题与解题技巧,这样才能熟练掌握物体系平衡问题的解法与解题技巧。 问题三在平时做题时,要注意解题技巧的训练,能用一个方程求解的就不用两个方程,但考试时则不一定如此。 第三章空间力系 本章总结 1. 力在空间直角坐标轴上的投影 ( 1 )直接投影法 ( 2 )间接投影法(图形见课本) 2. 力矩的计算 ( 1 )力对点的矩是一个定位矢量, ( 2 )力对轴的矩是一个代数量,可按下列两种方法求得: ( a )

理论力学基本概念总结大全

想学好理论力学局必须总结好好总结,学习 静力学基础 静力学是研究物体平衡一般规律的科学。这里所研究的平衡是指物体在某一惯性参考系下处于静止状态。物体的静止状态是物体运动的特殊形式。根据牛顿定律可知,物体运动状态的变化取决于作用在物体上的力。那么在什么条件下物体可以保持平衡,是一个值得研究并有广泛应用背景的课题,这也是静力学的主要研究内容。本章包括物体的受力分析、力系的简化、刚体平衡的基本概念和基本理论。这些内容不仅是研究物体平衡条件的重要基础,也是研究动力学问题的基础知识。 一、力学模型 在实际问题中,力学的研究对象(物体)往往是十分复杂的,因此在研究问题时,需要抓住那些带有本质性的主要因素,而略去影响不大的次要因素,引入一些理想化的模型来代替实际的物体,这个理想化的模型就是力学模型。理论力学中的力学模型有质点、质点系、刚体和刚体系。 质点:具有质量而其几何尺寸可忽略不计的物体。 质点系:由若干个质点组成的系统。 刚体:是一种特殊的质点系,该质点系中任意两点间的距离保持不变。 刚体系:由若干个刚体组成的系统。 对于同一个研究对象,由于研究问题的侧重点不同,其力学模型也会有所不同。例如:在研究太空飞行器的力学问题的过程中,当分析飞行器的运行轨道问题时,可以把飞行器用质点模型来代替;当研

分析飞行器在空间轨道上的对接问题时,就必须考虑飞行器的几何尺寸和方位等因素,可以把飞行器用刚体模型来代替。当研究飞行器的姿态控制时,由于飞行器由多个部件组成,不仅要考虑它们的几何尺寸,还要考虑各部件间的相对运动,因此飞行器的力学模型就是质点系、刚体系或质点系与刚体系的组合体。 二、 基本定义 力是物体间相互的机械作用,从物体的运动状态和物体的形状上看,力对物体的作用效应可分为下面两种。 外效应:力使物体的运动状态发生改变。 内效应:力使物体的形状发生变化(变形)。 对于刚体来说,力的作用效应不涉及内效应。刚体上某个力的作用,可能使刚体的运动状态发生变化,也可能引起刚体上其它力的变化。 例如一重为W 的箱子放在粗糙的水平地面上(如图1-1a 所示),人用力水平推箱子,当推力F 为零时,箱子静止,只受重力W 和地面支撑力BN AN F F ,的作用。当推力由小逐步增大时,箱子可能还保持 静止状态,但地面作用在箱子上的力就不仅仅是支撑力,还要有摩擦力Bf Af F F ,的作用(如图1-1b )。随着推力的逐步增大,箱子的运动状 态就会发生变化,箱子可能平行移动,也可能绕A 点转动,或既有移动又有转动。

理论力学期末考试

一.平面桁架问题 (1) 求平面桁架结构各杆的内力,将零力杆标在图中。已知P , l ,l 2。(卷2-4) (2)已知F 1=20kN ,F 2=10kN 。 ①、计算图示平面桁架结构的约束力;②、计算8杆、9杆、10杆的内力(卷4-3)。 (3)求平面桁架结构1、2、3杆的内力,将零力杆标在图中。已知P =20kN ,水平和竖杆长度均为m l 1 ,斜杆长度l 2。(卷5-4) (4) 三桁架受力如图所示,已知F 1=10 kN ,F 2=F 3=20 kN ,。试求桁架8,9,10杆的内力。 (卷6-3) (5)计算桁架结构各杆内力(卷7-3)

(6)图示结构,已知AB=EC,BC=CD=ED=a=0.2m,P=20kN,作用在AB中点,求支座A和E的约束力以及BD、BC杆的内力。(卷5-2) 二.物系平衡问题 (1)图示梁,已知m=20 kN.m,q=10 kN/m , l=1m,求固定端支座A的约束力。(卷1-2) (2)如图所示三铰刚架,已知P=20kN,m=10kN.m,q=10kN/m不计自重,计算A、B、C 的束力。(卷2-2) (3)图示梁,已知P=20 kN , q=10kN/m , l=2m ,求固定端支座A的约束力。(卷3-2) (4)三角刚架几何尺寸如图所示,力偶矩为M ,求支座A和B 的约束力。(卷3-3)

(5)图示简支梁,梁长为4a ,梁重P ,作用在梁的中点C ,在梁的AC 段上受均布载荷q 作用,在梁的BC 段上受力偶M 作用, 力偶矩M =Pa ,试求A 和B 处的支座约束力。(卷4-1) (6)如图所示刚架结构,已知P =20kN ,q =10kN /m ,不计自重,计算A 、B 、C 的约束力。(卷4-2) (7)已知m L 10=,m KN M ?=50,?=45θ,求支座A,B 处的约束反力(卷9-2) (8)已知条件如图,求图示悬臂梁A 端的约束反力。(卷9-3)

理论力学知识点总结—静力学篇

静力学知识点 第一章静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。 第二章平面力系 本章总结 1. 平面汇交力系的合力 ( 1 )几何法:根据力多边形法则,合力矢为

合力作用线通过汇交点。 ( 2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 ( 1 )平衡的必要和充分条件: ( 2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 ( 3 )平衡的解析条件(平衡方程): 3. 平面内的力对点O 之矩是代数量,记为 一般以逆时针转向为正,反之为负。 或 4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。

力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系 平面任意力系是力的作用线可杂乱无章分布但在同一平面内的力系。当物体(含物体系)有一几何对称平面,且力的分别关于此平面对称时,可简化为平面力系计算。还有其他情况也可按平面任意力系计算。 本章用力的平移定理对平面任意力系进行简化,得到主矢主矩的概念,并进一步对力系简化结果进行讨论;然后得出平面任意力系的平衡条件,得出平衡方程的三种形式,并用平衡方程求解一些平衡问题;介绍静定超静定问题的概念,对物体系的平衡问题进行比较多的训练;最后介绍平面简单桁架的概念和内力计算。 常见问题 问题一不要因为这一章的内容简单,就认为理论力学容易学,而造成轻视理论力学的印象,这将给后面的学习带来影响。 问题二本章一开始要掌握好单个物体的平衡问题与解题技巧,这样才能熟练掌握物体系平衡问题的解法与解题技巧。 问题三在平时做题时,要注意解题技巧的训练,能用一个方程求解的就不用两个方程,但考试时则不一定如此。 第三章空间力系 本章总结 1. 力在空间直角坐标轴上的投影 ( 1 )直接投影法

理论力学__期末考试试题(答案版)

理论力学 期末考试试题 1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面内,载荷如图所示。其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m 。试求固定端A 的约束力。 解:取T 型刚架为受力对象,画受力图. 1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布: 1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作用 力偶矩M=18kN.m 。求机翼处于平衡状态时,机翼根部固定端O 所受的力。 解:

1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。求固定端A处及支座C的约束力。

1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束力. 解: 1-5、平面桁架受力如图所示。ABC 为等边三角形,且AD=DB 。求杆CD 的内力。

1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。在节点E 和G 上分别作用载荷E F =10kN ,G F =7 kN 。试计算杆1、2和3的内力。 解:

2-1 图示空间力系由6根桁架构成。在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角。ΔEAK=ΔFBM。等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=DM。若F=10kN,求各杆的内力。

理论力学考试知识点总结

理论力学》考试知识点 静力学 第一章静力学基础 1、掌握平衡、刚体、力的概念以及等效力系和平衡力系,静力学公理。 2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束和球铰链的性质。 3、熟练掌握如何计算力的投影和平面力对点的矩,掌握空间力对点的矩和力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。 4、对简单的物体系统,熟练掌握取分离体并画出受力图。 第二章力系的简化 1、掌握力偶和力偶矩矢的概念以及力偶的性质。 2、掌握汇交力系、平行力系、力偶系的简化方法和简化结果。 3、熟练掌握如何计算主矢和主矩;掌握力的平移定理和空间一般力系和平面力系的简化方法和简化结果。 4、掌握合力投影定理和合力矩定理。 5、掌握计算平行力系中心的方法以及利用分割法和负面积法计算物体重心。 第三章力系的平衡条件 1、了解运用空间力系(包括空间汇交力系、空间平行力系和空间力偶系)的平衡条件求解单个物体和简单物体系的平衡问题。 2、熟练掌握平面力系(包括平面汇交力系、平面平行力系和平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力

系平衡条件求解单个物体和物体系的平衡问题。 3、了解静定和静不定问题的概念 4、掌握平面静定桁架计算内力的节点法和截面法,掌握判断零力杆的方法。 第四章摩擦 1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。 2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。 运动学 第五章点的运动 1、掌握描述点的运动的矢量法、直角坐标法和弧坐标法,能求点的运动方程。 2、熟练掌握如何计算点的速度、加速度及其有关问题。 第六章刚体的基本运动 1、掌握刚体平动和定轴转动的特征;掌握刚体定轴转动的转动方程、角速度和角加速度;掌握定轴转动刚体角速度矢量和角加速度矢量的概念以及刚体内各点的速度和加速度的矢积表达式。 2、熟练掌握如何计算定轴转动刚体的角速度和角加速度、刚体内各点的速度和加速度。 第七章点的复合运动 1、掌握运动合成和分解的基本概念和方法。 2、理解哥氏加速度的原理。 3、熟练掌握点的速度合成定理和牵连运动为平动时的加速度合成定理的应用。

理论力学基础知识

《理论力学教程》基础知识 第一章 质点力学 在求解平面曲线运动问题时,可采用平面极坐标系,常将速度矢量分解为径 副法向:0 F b R b o 7. 质心运动定理反映了质点组运动的总趋势,而质心加速度完全取决于作用在 1. 2. 向速度和横向速度,其表达式分别为: v r r : v 为径向加速度和横向加速度,其表达式分别为a r 求解线约束问题,通常用内禀方程,它的优点是 以分开解算,这套方程可表示为,切向: md t ;将加速度矢量分解 a r 2r 。 运动规律和约束反作用力可 2 v m F n R n : 3. 试写出直角坐标系表示的质点运动微分方程式 mx F x 、my F y 、mz F z o 4. 质点在有心力作用下,只能在 垂直于动量矩J 的平面内运动,它的两个动力 学特征是:(1)对力心的动量矩守恒:(2)机械能守恒 5. 牛顿运动定律能成立的参考系,叫做惯性系:牛顿运动定律不能成立的参考 系,叫做非惯性系,为了使得牛顿运动定律在此参考系中仍然成立,则需加 上适当的惯性力。 6. 在平面自然坐标系中,切向加速度的表达式为a d ,它是由于速度大小改 变产生的;法向加速度的表达式为a n 2 —,它是由于速度方向改变产生 2

质点组上的外力,而内力不能使质心产生加速度 8.一质量为m的小环穿在光滑抛物线状的钢丝上并由A点向顶点0运动,其 2 建立起的运动微分方程为:吩 mgsin ; m- R mgcos。 注:此题答案不唯一。 9.一物体作斜抛运动,受空气阻力为R mkv,若采用直角坐标系建立其在任意时刻的运动微分方程为:證 mkv x ;瞪 mg mkv y ;若采用自 mg cos 。 10 .动量矩定义表达式为J r mv,它在直角坐标系中的分量式为 J x m yz zy、J y m zx xz、J z m xy yx。 然坐标系建立其在任意时刻的运动微分方程为: dv m一 dt mkv mg sin ; 第9题图

理论力学复习总结(知识点)

第一篇静力学 第1 章静力学公理与物体的受力分析 1.1 静力学公理 公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-F’ 工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。 公理2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。 推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。 公理3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。 推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。 公理4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。 公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。 1.2 约束及其约束力 1.柔性体约束 2.光滑接触面约束 3.光滑铰链约束

第2章平面汇交力系与平面力偶系 1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和 方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=∑F 2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。 3.力对刚体的作用效应分为移动和转动。力对刚体的移动效应用力失来度量;力对刚体的 转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。(Mo(F)=±Fh) 4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称 为力偶,记为(F,F’)。 例2-8 如图2.-17(a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩为500kN?m,求A、C两点的约束力。 解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17(b)所示。 由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB’构成一力偶与矩为M的力偶平衡(见图2-17(c))。由平面力偶系的平衡方程∑Mi=0,得﹣Fad+M=0 则有FA=FB’N=471.40N 由于FA、FB’为正值,可知二力的实际方向正为图2-17(c)所示的方向。 根据作用力与反作用力的关系,可知FC=FB’=471.40N,方向如图2-17(b)所示。 第3章平面任意力系 1.合力矩定理:若平面任意力系可合成为一合力。则其合力对于作用面内任意一点之矩等于力系中各力对于同一点之矩的代数和。 2.平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q的主矩同时为零,即F R`=0,Mo=0. 3.平面任意力系的平衡方程:∑Fx=0, ∑Fy=0, ∑Mo(F)=0.平面任意力系平衡的解析条件是,力系中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零. 例3-1 如图3-8(a)所示,在长方形平板的四个角点上分别作用着四个力,其中F1=4kN,F2=2kN,F3=F4=3kN,平板上还作用着一力偶矩为M=2kN2m的力偶。试求以上四个力及一力偶构成的力系向O点简化的结果,以及该力系的最后合成结果。 解(1)求主矢FR’,建立如图3-8(a)所示的坐标系,有 F’Rx=∑Fx=﹣F2cos60°+F3+F4cos30°=4.598kN F’Ry=∑Fy=F1-F2sin60°+F4sin30°=3.768kN

北京大学理论力学讲义 LagrangeEq

第一章Lagrange 方程

本章主要内容 §1、约束,自由度和广义坐标 §2、虚功原理 §3、Lagrange方程

在矢量力学中,最基本、最重要的方程是F =m a 。 1、处理运动受到约束(即限制)的力学问题 一个质量为m 的质点,受到作用力F 已知,在3维空间中, t d /r md F 22 =这里包含3个标量方程,3个未知数(矢径的3个分量)。如果这个质点被限制在一个光滑的曲面f (r )=0上运动,f (r )=f (x,y,z )= 0 , 22/, F R md r dt += 在曲面上,df =0,由于曲面光滑,所以曲面对质点 的作用力R ∝,?n ? O ?r d r f (r )=0m =0?n 矢量力学的不足? 运动,运动方程是:方程为:?n 表示法向单位矢量。

同理,质点约束在光滑的曲线上运动, 独立变量减少了2个,但方程和未知量却增加2个。 但在分析力学中,情况却相反,质点的运动受到约束,描述质点运动的独立变量数减少, 方程和未知量的个数也随着减少, 使求解问题变得更简单。 2、描述质点运动的坐标 在F=m a中,r是我们要求解的重要变量, 但这种变量的形式太受局限,难于用来描述复杂的 物理体系,如电磁场、引力场,更不用说量子体系。 在分析力学中,r被广义坐标取代, 这种描述方法可直接推广到 电磁场、引力场、量子力学、量子场论, 可以用于自然界中的所有4种基本相互作用。

3、作用力 F是一个宏观量,在微观世界中没有这个量。 宏观量F与微观世界中的动量变化相联系。 在分析力学中,通常用能量、广义动量这类更基本的物理量,这样便于把分析力学推广到其它领域。 1788年,J. L. Lagrange写了一本名为“分析力学”的书,这就是现在的Lagrange形式的分析力学。1834年,W. Hamilton 建立了另一种形式的分析力学,就是现在的Hamilton形式的分析力学。 除这两种形式之外,分析力学还被表述为变分形式。我们现在所说的分析力学主要包括这3种表述形式。 分析力学比较抽象,不像矢量力学那样直观。 在Lagrange的分析力学中,没有一张图。 矢量力学则直观、图像清晰。

理论力学重点总结

理论力学重点总结

绪论 1.学习理论力学的目的:在于掌握机械运动的客 观规律,能动地改造客观世界,为生产建设服务。 2.学习本课程的任务:一方面是运用力学基本知 识直接解决工程技术中的实际问题;另一方面是为学习一系列的后继课程提供重要的理论基础,如材料力学、结构力学、弹性力学、流体力学、机械原理、机械零件等以及有关的专业课程。此外,理论力学的学习还有助于培养辩证唯物主义世界观,树立正确的逻辑思维方法,提高分析问题与解决问题的能力。 第一章静力学的基本公理与物体的受力分析 1-1静力学的基本概念 1.刚体:即在任何情况下永远不变形的物体。这 一特征表现为刚体内任意两点的距离永远保持不变。 2.质点:指具有一定质量而其形状与大小可以忽 略不计的物体。 1-3约束与约束力

1.

2.胶带、链条) 3.光滑接触面(线)约束:为单面约束,其约束 力常又称为法向约束力。光滑接触面(线)的约束力只能是压力,作用在接触处,方向沿着接触表面在接触处的公法线而指向物体,常用符号F N表示。 4.光滑圆柱形铰链约束:简称圆柱铰,是连接两 个构件的圆柱形零件,通常称为销钉。光滑圆柱铰链约束的约束力只能是压力,在垂直于圆柱销轴线的平面内,通过圆柱销中心,方向不定。 5.铰支座:用光滑圆柱销把结构物或构件与底座 连接,并把底座固定在支承物上而构成的支座称为固定铰链支座,简称铰支座。铰支座约束的约束力在垂直于圆柱销轴线的平面内,通过圆柱销中心,方向不定,通常表示为相互垂直的两个分力。 6.辊轴支座:将结构物或构件的铰支座用几个辊 轴支承在光滑的支座面上,就称为辊轴支座,亦称为可动铰链支座。辊轴支座约束的约束力应垂直于支承面,通过圆柱销中心,常用F N 表示。

相关主题
文本预览
相关文档 最新文档