当前位置:文档之家› 统计近似抽样法产生正态分布随机数的程序

统计近似抽样法产生正态分布随机数的程序

统计近似抽样法产生正态分布随机数的程序
统计近似抽样法产生正态分布随机数的程序

统计近似抽样法产生正态分布随机数的程序:

统计近似抽样法,ξi为(0,1)均匀分布随机数,η就服从(μη,ση2)正态分布随机数,

12

η=μη+ση(ξi?6)

i=1

也就是每12个均匀分布的随机数产生一个正态分布的数。

程序及结果如下(可执行文件xiti12见文件夹中):

n=1000;

for i=1:n

x=rand(12);

sum=x(1);

for k=2:12

sum=sum+x(k);

end

y(i)=2+1.5*(sum-6);

end

histfit(y);

hold on

M=mean(y);%计算出y的平均值

N=std(y);%计算出y的标准差

xlabel('随机数');

ylabel('出现的次数');

title('均值为2,标准差为1.5的正太分布随机数');

>> M

M =

2.0528

>> N

N =

1.5044

第五章+统计学教案(假设检验)

第五章+统计学教案(假设检验)参数估计和假设检验是统计推断的两个组成部分,它们分别从不同的角度利用样本信息对总体参数 进行推断。前者讨论的是在一定的总体分布形式下,借助样本构造的统计量,对总体未知参数作出估计 的问题;后者讨论的是如何运用样本信息对总体未知参数的取值或总体行为所做的事先假定进行验证, 从而作出真假判断。通俗地、简单地说,前者是利用样本信息估计总体参数将落在什么范围里;而后者 则是利用样本信息回答总体参数是不是会落在事先假定的某一个范围里。 通过本章学习,要求学生在充分理解有关抽样分布理论的基础上,理解掌握假设检验的有关基本概 念;明确在假设检验中可能犯的两种错误,以及这两种错误之间的联系;熟练掌握总体均值和总体成数 的检验方法,主要是 Z 检验和 t 检验;对于非参数的检验,也应有所了解,包括符号检验、秩和检验与游程检验等。 2 一、假设检验概述与基本概念 1、假设检验概述 2、假设检验的有关基本概念 二、总体参数检验 1、总体平均数的检验 2、总体成数的检验

3、总体方差的检验 三、总体非参数检验 1、符号检验 2、秩和检验 3、游程检验 一、假设检验的有关基本概念; 二、总体平均数与总体成数的检验; 三、非参数检验; 一、假设检验的基本思路与有关概念; 二、两类错误的理解及其关系; 一、假设检验概述 假设检验:利用统计方法检验一个事先所作出的假设的真伪,这一假设称为统计假设,对这一假设 所作出的检验就是假设检验。 基本思路:首先,对总体参数作出某种假设,并假定它是成立的。然后,根据样本得到的信息(统 计量),考虑接受这个假设后是否会导致不合理的结果,如果合理就接受这个假设,不合理就拒绝这个 假设。 所谓合理性,就是看是否在一次的观察中出现了小概率事件。 小概率原理:就是指概率很小的事件,在一次试验中实际上是几乎不可能出现。这种事件可以称其 为“实际不可能事件”。 二、假设检验的基本概念

MAAB产生各种分布的随机数

MATLAB产生各种分布的随机数 1,均匀分布U(a,b): 产生m*n阶[a,b]均匀分布U(a,b)的随机数矩阵:unifrnd (a,b,m, n) 产生一个[a,b]均匀分布的随机数:unifrnd (a,b) 2,0-1分布U(0,1) 产生m*n阶[0,1]均匀分布的随机数矩阵:rand (m, n) 产生一个[0,1]均匀分布的随机数:rand 4,二类分布binornd(N,P,mm,nn)如binornd(10,,mm,nn) 即产生mm*nn均值为N*P的矩阵 binornd(N,p)则产生一个。而binornd(10,,mm)则产生mm*mm的方阵,军阵为N*p。5,产生m*n阶离散均匀分布的随机数矩阵: unidrnd(N,mm,nn)产生一个数值在1-N区间的mm*nn矩阵 6,产生mm nn阶期望值为的指数分布的随机数矩阵: exprnd( ,mm, nn) 此外,常用逆累积分布函数表?

函数名调用格式函数注释? norminvX=norminv(P,mu,sigma)正态逆累积分布函数? expinvX=expinv(P,mu)指数逆累积分布函数? weibinvX=weibinv(P,A,B)威布尔逆累积分布函数? logninvX=logninv(P,mu,sigma)对数正态逆累积分布函数? Chi2invX=chi2inv(P,A,B)卡方逆累积分布函数? BetainvX=betainv(P,A,B)β分布逆累积分布函数 随机数的产生 4.1.1 二项分布的随机数据的产生 命令参数为N,P的二项随机数据 函数 binornd 格式 R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。 R = binornd(N,P,m) %m指定随机数的个数,与R同维数。 R = binornd(N,P,m,n) %m,n分别表示R的行数和列数 例4-1

正态分布随机数生成算法

概率论与数理统计课程设计 题目:正态分布随机数生成算法 要编程得到服从均匀分布的伪随机数是容易的。C语言、Java语言等都提供了相应的函

数。但是要想生成服从正态分布的随机数就没那么容易了。 得到服从正态分布的随机数的基本思想是先得到服从均匀分布的随机数,再将服从均匀分布的随机数转变为服从正态分布。接下来就先分析三个从均匀分布到正态分布转变的方法。然后编程实现其中的两个方法并对程序实现运作的效果进行统计分析。 1、 方法分析 (1) 利用分布函数的反函数 若要得到分布函数为F(x)的随机变量Y 。 可令1()Y F u -=, 其中u 是服从均匀分布的随机变量,有 1 ()(())() P Y y P U F y F y -≤=≤= 因而,对于任意的分布函数,只要求出它的反函数,就可以由服从均匀分布的随机变量实例来生成服从该分布函数的随机变量实例。 现在来看正态分布的分布函数,对于2 ~(,)X N μσ,其分布函数为: 2 2()21 ()t x F x e μσ ---∞ = ? 显然,要想求其反函数是相当困难的,同时要想编程实现也很复杂。可见,用此种方法来生成服从正态分布的随机变量实例并不可取。 (2) 利用中心极限定理 第二种方法利用林德伯格—莱维(Lindeberg —Levi)中心极限定理:如果随机变量序列 12,,,,n X X X 独立同分布,并且具有有限的数学期望和方差 ()()2 ,0(1,2,),i i E X D X i μσ ==>= 则对一切x R ∈有 2 2 1lim t n x i n i P X n x dt μ- -∞ →∞ =? ?? -≤= ????? ∑? 因此,对于服从均匀分布的随机变量i X ,只要n 充分大, 11 n i i X n μ=? -? ?∑就服从()0,1N 。我们将实现这一方法。 (3) 使用Box Muller 方法 先证明2 2 2x e dx π-∞-∞ =? : 令2 2 x I e dx -∞-∞ = ? ,则

统计学抽样与抽样分布练习题

第6章 抽样与抽样分布 练习题 6.1 从均值为200、标准差为50的总体中,抽取100=n 的简单随机样本,用样本均值x 估计总体均值。 (1) x 的数学期望是多少? (2) x 的标准差是多少? (3) x 的抽样分布是什么? (4) 样本方差2 s 的抽样分布是什么? 6.2 假定总体共有1000个单位,均值32=μ,标准差5=σ。从中抽取一个样本量为30的简单随机样本用于获得总体信息。 (1)x 的数学期望是多少? (2)x 的标准差是多少? 6.3 从一个标准差为5的总体中抽出一个样本量为40的样本,样本均值为25。样本均值的抽样标准差x σ等于多少? 6.4 设总体均值17=μ,标准差10=σ。从该总体中抽取一个样本量为25的随机样本,其均值为25x ;同样,抽取一个样本量为100的随机样本,样本均值为100x 。 (1)描述25x 的抽样分布。 (2)描述100x 的抽样分布。 6.5 从10=σ的总体中抽取样本量为50的随机样本,求样本均值的抽样标准差: (1)重复抽样。 (2)不重复抽样,总体单位数分别为50000、5000、500。 6.6 从4.0=π的总体中,抽取一个样本量为100的简单随机样本。 (1)p 的数学期望是多少? (2)p 的标准差是多少? (3)p 的分布是什么? 6.7 假定总体比例为55.0=π,从该总体中分别抽取样本量为100、200、500和1000的样本。

(1) 分别计算样本比例的标准差p σ。 (2) 当样本量增大时,样本比例的标准差有何变化? 6.8 假定顾客在超市一次性购物的平均消费是85元,标准差是9元。从中随机抽取40个顾 客,每个顾客消费金额大于87元的概率是多少? 6.9 在校大学生每月的平均支出是448元,标准差是21元。随机抽取49名学生,样本均值 在441~446之间的概率是多少? 6.10 假设一个总体共有8个数值:54,55,59,63,64,68,69,70。从该总体中按重复 抽样方式抽取2=n 的随机样本。 (1) 计算出总体的均值和标准差。 (2) 一共有多少个可能的样本? (3) 抽出所有可能的样本,并计算出每个样本的均值。 (4) 画出样本均值的抽样分布的直方图,说明样本均值分布的特征。 (5) 计算所有样本均值的平均数和标准差,并与总体的均值和标准差进行比较,得 到的结论是什么? 6.11 从均值为5.4=μ,方差为25.82=σ的总体中,抽取50个由5=n 个观测值组成的 随机样本,结果见Book6.11。 (1) 计算每一个样本的均值。 (2) 构造50个样本均值的相对频数分布,以此代表样本均值x 的抽样分布。 (3) 计算50个样本均值的平均值和标准差x σ。 6.12 来自一个样本的50个观察值见Book6.12。 (1) 用组距为10构建频数分布表,并画出直方图。 (2) 这组数据大概是什么分布?

各种分布的随机数生成算法

各型分布随机数的产生算法 随机序列主要用概率密度函数(PDF〃Probability Density Function)来描述。 一、均匀分布U(a,b) ?1x∈[a,b]? PDF为f(x)=?b?a?0〃其他? 生成算法:x=a+(b?a)u〃式中u为[0,1]区间均匀分布的随机数(下同)。 二、指数分布e(β) x?1?exp(?x∈[0,∞)βPDF为f(x)=?β ?0〃其他? 生成算法:x=?βln(1?u)或x=?βln(u)。由于(1?u)与u同为[0,1]均匀分布〃所以可用u 替换(1?u)。下面凡涉及到(1?u)的地方均可用u替换。 三、瑞利分布R(μ) ?xx2 exp[?x≥0?回波振幅的PDF为f(x)=?μ2 2μ2 ?0〃其他? 生成算法:x=?2μ2ln(1?u)。 四、韦布尔分布Weibull(α,β) xα??αα?1?αβxexp[?(]x∈(0,∞)βPDF为f(x)=? ?0〃其他? 生成算法:x=β[?ln(1?u)]1/α 五、高斯(正态)分布N(μ,σ2) ?1(x?μ)2 exp[?]x∈?2PDF为f(x)=?2πσ 2σ ?0〃其他? 生成算法: 1?y=?2lnu1sin(2πu2)生成标准正态分布N(0,1)〃式中u1和u2是相互独立的[0,1]区间

均匀分布的随机序列。 2?x=μ+σy产生N(μ,σ2)分布随机序列。 六、对数正态分布Ln(μ,σ2) ?1(lnx?μ)2 exp[?x>0PDF为f(x)=?2πσx 2σ2 ?0〃其他? 生成算法: 1?产生高斯随机序列y=N(μ,σ2)。 2?由于y=g(x)=lnx〃所以x=g?1(y)=exp(y)。 七、斯威林(Swerling)分布 7.1 SwerlingⅠ、Ⅱ型 7.1.1 截面积起伏 σ?1?exp[σ≥0?σ0截面积的PDF为f(σ)=?σ0〃【指数分布e(σ0)】 ?0〃其他? 生成算法:σ=?σ0ln(1?u)。 7.1.2 回波振幅起伏 ?AA2 ?exp[?2]A≥0〃式中A2=σ〃2A02=σ0。回波振幅的PDF为f(A)=?A02【瑞利分布R(A0)】2A0?0〃其他? 生成算法:A=?2A02ln(1?u)=σ0ln(1?u)。也可由A2=σ得A==?0ln(1?u) 7.2 SwerlingⅢ、Ⅳ型 7.2.1 截面积起伏 2σ?4σ]σ≥0?2exp[?σσ截面积的PDF为f(σ)=?0〃 0?0〃其他? 生成算法:σ=?式中u1和u2是相互独立的[0,1]区间均匀分布随机序列。 [ln(1?u1)+ln(1?u2)]〃2

统计学 第五章 抽样推断课后答案

第五章 抽样推断 一、单项选择题 1 2 3 4 5 6 7 8 9 10 C B A D B D C B A C 11 12 13 14 15 16 17 18 19 20 A D C A D C A C B D 二、多项选择题 1 2 3 4 5 ABCE ABDE BCE ABCE ABDE 6 7 8 9 10 ACE ADE ACD ABE CDE 11 12 13 14 15 BDE CD BC ABCD ABCDE 16 17 18 19 20 AD AC BCE ABDE ACE 三、判断题 1 2 3 4 5 6 7 8 9 10 × × × √ √ × √ √ × × 四、填空题 1、变量 属性 2、正 反 3、重复抽样 不重复抽样 4、抽样总体 样本 5、大于 N n - 1 N n 6、标准差 7、样本 总体 抽样平均误差 抽样平均误差 △x = Z x σ 8、合适的样本估计量 一定的概率保证程度 允许的极限误差范围 9、随机抽样 统计分组 10、增大 增大 降低 11、大数定律 中心极限定理 12、样本容量不小(不小于30个单位) 13、大 0.5

14、缩小 3 3 (即0.5774) 扩大 1.1180 15、估计量(或统计量) 参数 五、简答题(略) 六、计算题 1、已知条件:P = 0.5 ,n = 100 且重复抽样 求:p ≤0.45的概率 解: Z = 1100 ) 5.01(5.05.045.0)1(=-?-= --n P P P p 则F (Z = 1) = 0.6827 所以p ≤0.45的概率为: 2 6827 .01-= 0.15865 2、解 E (x 1) = E (0.5X 1 + 0.3X 2 + 0.2X 3) = 0.5 E (X ) + 0.3 E (X ) + 0.2E (X ) = E (X ) = X E (x 2) = E (0.5X 1 + 0.25X 2 + 0.25X 3) = 0.5 E (X ) + 0.25 E (X ) + 0.25E (X ) = E (X ) = X E (x 3) = E (0.4X 1 + 0.3X 2 + 0.3X 3) = 0.4 E (X ) + 0.3 E (X ) + 0.3E (X ) = E (X ) = X 所以x 1、x 2、x 3都是X 的无偏估计量。 D (x 1) = D (0.5X 1 + 0.3X 2 + 0.2X 3) = 0.25 D (X ) + 0.09 D (X ) + 0.04D (X ) = 0.38 D (x 2) = D (0.5X 1 + 0.25X 2 + 0.25X 3)

统计学习题答案 第4章 抽样与抽样分布

统计学习题答案第4章抽样与抽样分布

第4章抽样与抽样分布——练习题(全免) 1. 一个具有64 n个观察值的随机样本抽自于均 = 值等于20、标准差等于16的总体。 ⑴给出x的抽样分布(重复抽样)的均值和标 准差 ⑵描述x的抽样分布的形状。你的回答依赖于 样本容量吗? ⑶计算标准正态z统计量对应于5.15 = x的值。 ⑷计算标准正态z统计量对应于23 x的值。 = 解: 已知n=64,为大样本,μ=20,σ=16, ⑴在重复抽样情况下,x的抽样分布的均值为 a. 20, 2 b. 近似正态 c. -2.25 d. 1.50 2 . 参考练习4.1求概率。 ⑴x<16;⑵x>23;⑶x>25;⑷.x落在16和22之间;⑸x<14。 解: a. 0.0228 b. 0.0668 c. 0.0062 d. 0.8185 e. 0.0013 3. 一个具有100 n个观察值的随机样本选自于 = μ、16=σ的总体。试求下列概率的近似值:30 =

解: a. 0.8944 b. 0.0228 c. 0.1292 d. 0.9699 4. 一个具有900=n 个观察值的随机样本选自于100=μ和10=σ的总体。 ⑴ 你预计x 的最大值和最小值是什么? ⑵ 你认为x 至多偏离μ多么远? ⑶ 为了回答b 你必须要知道μ吗?请解释。 解:a. 101, 99 b. 1 c. 不必 5. 考虑一个包含x 的值等于0,1,2,…,97,98,99的总体。假设x 的取值的可能性是相同的。则运用计算机对下面的每一个n 值产生500个随机样本,并对于每一个样本计算x 。对于每一个样本容量,构造x 的500个值的相对频率直方图。当n 值增加时在直方图上会发生什么变化?存在什么相似性?这里30,10,5,2====n n n n 和50=n 。 解:趋向正态 6. 美国汽车联合会(AAA )是一个拥有90个俱 乐部的非营利联盟,它对其成员提供旅行、

随机数的产生和特性曲线

《概率论与随机信号分析》实验报告 实验名称:随机数的产生和特性曲线指导教师: 张正明 成绩: 姓名:陈新班级:10通信A班学号:67 一、实验目的与任务 1.了解随机数的产生方法; 2.了解常用随机数的概率分布函数、分布律和概率密度函数。 二、实验原理 随机数的产生有好多方法,可以利用乘积法和同余法产生【0,1】之间的均匀分布,然后利用函数变换法产生所需不同分布的随机数。可以按照所产生的随机数,对落在不同区间的数据进行统计,从而画出所产生的随机数的统计特性。所有这些工作我们可以自己动手用matlab,VC 或VB等语言进行编程实现。 在现代系统仿真中,大量地使用matlab工具,而且它也提供了非常丰富的函数来产生经常使用的分布的随机数,比如rand,randn就是用来产生均匀分布随机数和高斯分布随机数的。 本实验充分利用matlab提供的工具来产生随机数,验证和观察其统计特性。 1.disttool:分布函数和密度函数的可视化工具 分布函数和密度函数的工具能够产生22种常用分布的概率分布曲线和概率密度曲线,并通过图形方式显示。我们还可以通过修改参数产生同一种分布不同参数的概率分布曲线和概率密度曲线。 2.randtool:随机变量模拟工具 随机变量模拟工具能够模拟产生22种常用分布的随机数,并可以通过修改它们的参数产生同一种分布不同参数的随机数,并通过图形方式显示它们的概率密度统计。 三、实验内容与结果 1.绘制正态分布密度函数曲线 建立normal.m脚本文件,并运行 x=-10:0.1:10; u=0,c2=4; c1=sqrt(c2); f=1/(sqrt(2*pi)*d)*exp(-(x-u)^2/2/c2);正态概率密度

正态分布随机数

数学模型: 设连续型随机变量X 的高斯分布的概率密度为 ( )22 ()2,x f x μσ-= -∞<x <+∞ (3-1) 其中μ,σ(σ>0)为常数,则称X 服从参数为μ,σ的正态分布或高斯(Gauss)分布,记为X ~N (μ,2σ)。均值和方差的计算见公式3-2和公式3-3所示,可得到正态分布随机变量X 的均值E(X)=μ和方差D(X)=2σ。 ()()E X xf x dx +∞ -∞ =? (3-2) 2()()D X x f x dx +∞ -∞ =? (3-3) ()()E X xf x dx +∞ -∞ =? 22 ()2x dx μσ-- +∞ -∞ =? 令 x t μ σ -=,则 2 2()()t E X t dt σμσ+∞ --∞ =+?? 2 2 22t t dt dt σ μ+∞ +∞---∞ -∞ =+?? ? 0μμ=+= 根据方差的定义可知: 2 (){[()]} D X E X E X =- 所以,2 (){[()]}D X E X E X =- 2()22()x x dt μσμ-- +∞ -∞ = -? 2222 t t dt σσ+∞ --∞ =?? 2 22 2t t dt σ+∞ --∞ =?

2 σ= 即知正态分布的两个参数分别是该分布的数学期望和方差。 中心极限定理: 设随机变量12,,,n X X X ???相互独立,服从同一分布,且具有相同的均值和方差:()k E X μ=,2()0(1,2,,)k D X k n σ=≠=???,则随机变量 () n n n k k k n X E X X n Y μ --= = ∑∑∑ (3-4) 的分布函数()n F x 对于任意x 都满足 2 2 lim ()lim }n t k x n n n X n F x P x dt μ →∞ →∞ -=≤=∑? (3-5) 即当n 趋向于无穷大时,随机变量n Y 近似的服从标准正态分布N(0,l)。在实际应用中当。大于等于30时,可以把1n i i Y X ==∑当作服从均值为n μ,方差为n 2σ的 正态分布,那么变量'Y = 近似服从标准正态分布N ~(0,l)。 Box-Muller 变换法: 变换法是通过一个变换将一个分布的随机数变换成一个不同分布的随机数。高斯分布的密度函数见公式3-1所示,通过Box-Muller 变换,它可以产生精确的正态分布的随机变量。其变换式如下 : 1)y v π (3-6) 2)y v π (3-7) 式中u ,v 是在区间[0,1]上服从均匀分布,且相互独立的随机变量,所以得到的随机变量1y ,2y 也应该是相互独立的,且服从N ~(0,1)的标准正态分布。 Box-Muller 变换的推导过程如下: 由公式3-6和公式3-7可得: 221212 2 1 ,()2y y y u e v arctg y π+- == (3-8)

统计学答案解析最新版本

统计学课本课后作业题(全) 题目: 第1章:P11 6,7 第2章:P52 练习题3、9、10、11 第3章:P116思考题12、14 练习题16、25 第4章:P114 思考题6,练习题2、4、6、13 第5章:P179 思考题4、练习题3、4、6、11 第6章:P209 思考题4、练习题1、3、6 第7章:P246思考题1、练习题1、7 第8章:P287 思考题4、10 练习题2、3 第一章 6..一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。因此,他们开始检查供货商的集装箱,有问题的将其退回。最近的一个集装箱装的是2 440加仑的油漆罐。这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。装满的油漆罐应为4.536 kg。要求: (1)描述总体;最近的一个集装箱内的全部油漆; (2)描述研究变量;装满的油漆罐的质量; (3)描述样本;最近的一个集装箱内的50罐油漆; (4)描述推断。50罐油漆的质量应为4.536×50=226.8 kg。 7.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。这场战役因影视明星、运动员的参与以及消费者对品尝试验优先权的抱怨而颇具特色。假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝试验(即在品尝试验中,两个品牌不做外观标记),请每一名被测试者说出A品牌或B品牌中哪个口味更好。要求:答:(1)总体:市场上的“可口可乐”与“百事可乐” (2)研究变量:更好口味的品牌名称; (3)样本:1000名消费者品尝的两个品牌 (4)推断:两个品牌中哪个口味更好。 第二章 3.某百货公司连续40天的商品销售额如下(单位:万元):

MATLAB产生各种分布的随机数

M A T L A B产生各种分布 的随机数 The final revision was on November 23, 2020

MATLAB产生各种分布的随机数 1,均匀分布U(a,b): 产生m*n阶[a,b]均匀分布U(a,b)的随机数矩阵:unifrnd (a,b,m, n) 产生一个[a,b]均匀分布的随机数:unifrnd (a,b) 2,0-1分布U(0,1) 产生m*n阶[0,1]均匀分布的随机数矩阵:rand (m, n) 产生一个[0,1]均匀分布的随机数:rand 4,二类分布binornd(N,P,mm,nn)如binornd(10,,mm,nn) 即产生mm*nn均值为N*P的矩阵 binornd(N,p)则产生一个。而binornd(10,,mm)则产生mm*mm的方阵,军阵为N*p。 5,产生m*n阶离散均匀分布的随机数矩阵: unidrnd(N,mm,nn)产生一个数值在1-N区间的mm*nn矩阵 6,产生mm nn阶期望值为的指数分布的随机数矩阵: exprnd( ,mm, nn) 此外,常用逆累积分布函数表 函数名调用格式函数注释 norminv X=norminv(P,mu,sigma) 正态逆累积分布函数 expinv X=expinv(P,mu) 指数逆累积分布函数 weibinv X=weibinv(P,A,B) 威布尔逆累积分布函数 logninv X=logninv(P,mu,sigma) 对数正态逆累积分布函数

Chi2inv X=chi2inv(P,A,B) 卡方逆累积分布函数 Betainv X=betainv(P,A,B) β分布逆累积分布函数 随机数的产生 4.1.1 二项分布的随机数据的产生 命令参数为N,P的二项随机数据 函数 binornd 格式 R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。 R = binornd(N,P,m) %m指定随机数的个数,与R同维数。 R = binornd(N,P,m,n) %m,n分别表示R的行数和列数 例4-1 >> R=binornd(10, R = 3 >> R=binornd(10,,1,6) R = 8 1 3 7 6 4 >> R=binornd(10,,[1,10]) R = 6 8 4 6 7 5 3 5 6 2 >> R=binornd(10,,[2,3]) R = 7 5 8 6 5 6 >>n = 10:10:60; >>r1 = binornd(n,1./n) r1 = 2 1 0 1 1 2 >>r2 = binornd(n,1./n,[1 6]) r2 = 0 1 2 1 3 1 4.1.2 正态分布的随机数据的产生

正态分布随机数的产生

四院四队 正态分布随机数的产生 实验报告 2014年5月26日

正态分布随机数的产生 一、 实验简述 通过matlab 实现正态分布N(0,1)随机数的产生。 二、 历史背景 正态分布是最重要的一种概率分布。正态分布概念是由德国的数学家和天文学家Moivre 于1733年首次提出的,但由于德国数学家Gauss 率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。高斯是一个伟大的数学家,重要的贡献不胜枚举。但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。这要到20世纪正态小样本理论充分发展起来以后。拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。这是历史上第一次提到所谓“元误差学说”——误差是由大量的、由种种原因产生的元误差叠加而成。后来到1837年,海根(G.Hagen )在一篇论文中正式提出了这个学说。 其实,他提出的形式有相当大的局限性:海根把误差设想成个数很多的、独立同分布的“元误差” 之和,每只取两值,其概率都是1/2,由此出发,按狄莫佛的中心极限定理,立即就得出误差(近似地)服从正态分布。拉普拉斯所指出的这一点有重大的意义,在于他给误差的正态理论一个更自然合理、更令人信服的解释。因为,高斯的说法有一点循环论证的气味:由于算术平均是优良的,推出误差必须服从正态分布;反过来,由后一结论又推出算术平均及最小二乘估计的优良性,故必须认定这二者之一(算术平均的优良性,误差的正态性) 为出发点。但算术平均到底并没有自行成立的理由,以它作为理论中一个预设的出发点,终觉有其不足之处。拉普拉斯的理论把这断裂的一环连接起来,使之成为一个和谐的整体,实有着极重大的意义。 三、 实验步骤 设U 1,U 2相互独立同服从U(0,1),令 1 2 112(2lnU )cos(2U )X π=-

统计学习题第五章_抽样与抽样估计答案

一、填空题 1、在实际工作中,人们通常把 n≥30 的样本称为大样本,而把 n<30 的样本称为小样本。 2、在抽样估计中,常见的样本统计量有样本均值、样本比例、样本标准差或样本方差以及它们的函数。 3、在研究目的一定的条件下,抽样总体是唯一确定的,而样本则有许多个。 4、在抽样调查中,登记性误差和系统性误差都可以尽量避免,而抽样误差则是不可避免的,但可以计算并加以控制。 5、在抽样估计中,抽样估计量是指用于估计总体参数的样本指标(统计量),评价估计量优劣的标准有无偏性、有效性和一致性。 二、选择题 单选题: 1、在其它条件不变的情况下,要使抽样平均误差为原来的1/3,则样本单位数必须 ((2)) (1)增加到原来的3倍(2)增加到原来的9倍 (3)增加到原来的6倍(4)也是原来的1/3 2、在总体内部情况复杂,且各单位之间差异程度大,单位数又多的情况下,宜采用 ((3)) (1)简单随机抽样(2)等距抽样(3)分层抽样(4)整群抽样 3、某厂产品质量检查,确定按5%的比率抽取,按连续生产时间顺序每20小时抽1 小时的全部产进行检验,这种方式是((4)) (1)简单随机抽样(2)等距抽样(3)分层抽样(4)整群抽样 4、其它条件一定,抽样推断的把握程度提高,抽样推断的准确性就会((2)) (1)提高(2)降低(3)不变(4)不一定降低 5、在城市电话网的100次通话中,通话持续平均时间为3分钟,均方差为分钟,则概率为时,通话平均持续时间的抽样极限误差为((2)) (1)(2)(3)(4)

6、假定11亿人口大国和100万人口小国的居民年龄变异程度相同,现在各自用重复抽样方法抽取本国人口的1%计算平均年龄,则平均年龄抽样平均误差((3))(1)两者相等(2)前者比后者大(3)前者比后者小(4)不能确定大小 多选题: 1、降低抽样误差,可以通过下列那些途径((2)(4)(5)) (1)降低总体方差(2)增加样本容量。 (3)减少样本容量(4)改重复抽样为不重复抽样 (5)改简单随机抽样为类型抽样 2、抽样推断中的抽样误差((1)(5)) (1)是不可避免要产生的 (2)是可以通过改进调查方法来消除的 (3)只有调查后才能计算 (4)即不能减少,也不能消除 (5)其大小是可以控制的 3、抽样极限误差((1)(2)(4)) (1)是所有可能的样本指标与总体指标之间的误差范围 (2)也叫允许误差(3)与所做估计的概率保证程度成反比 (4)通常用来表示抽样结果的精确度 4、影响样本容量的因素有((1)(2)(3)(4)(5)) (1)总体方差 (2)所要求的概率保证程度 (3)抽样方法 (4)抽样的组织形式 (5)允许误差法范围的大小 5、不重复抽样的抽样平均误差((2)(4)) (1)总是大于重复抽样的抽样平均误差

一维正态分布随机数序列的产生方法

一维正态分布随机数序列的产生方法 一、文献综述 1.随机数的定义及产生方法 1).随机数的定义及性质 在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。由该分布抽取的简单子样称,随机数序列,其中每一个体称为随机数。 单位均匀分布也称为[0,1]上的均匀分布。 由于随机数在蒙特卡罗方法中占有极其重要的位置,我们用专门的符号ξ表示。由随机数序列的定义可知,ξ1,ξ2,…是相互独立且具有相同单位均匀分布的随机数序列。也就是说,独立性、均匀性是随机数必备的两个特点。 随机数具有非常重要的性质:对于任意自然数s,由s个随机数组成的 s维空间上的点(ξn+1,ξn+2,…ξn+s)在s维空间的单位立方体Gs上 均匀分布,即对任意的ai,如下等式成立: 其中P(·)表示事件·发生的概率。反之,如果随机变量序列ξ1, ξ2…对于任意自然数s,由s个元素所组成的s维空间上的点(ξn+1,…ξn+s)在Gs上均匀分布,则它们是随机数序列。 由于随机数在蒙特卡罗方法中所处的特殊地位,它们虽然也属于由具有已知分布的总体中产生简单子样的问题,但就产生方法而言,却有着本质上的差别。 2).随机数表 为了产生随机数,可以使用随机数表。随机数表是由0,1,…,9十个数字组成,每个数字以0.1的等概率出现,数字之间相互独立。这些数字序列叫作随机数字序列。如果要得到n位有效数字的随机数,只需将表中每n 个相邻的随机数字合并在一起,且在最高位的前边加上小数点即可。例如,某随机数表的第一行数字为7634258910…,要想得到三位有效数字的随机数依次为0.763,0.425,0.891。因为随机数表需在计算机中占有很大内存, 而且也难以满足蒙特卡罗方法对随机数需要量非常大的要求,因此,该方法不适于在计算机上使用。 3).物理方法

统计学第五章课后题及答案解析

第五章 练习题 一、单项选择题 1.抽样推断的目的在于() A.对样本进行全面调查B.了解样本的基本情况 C.了解总体的基本情况D.推断总体指标2.在重复抽样条件下纯随机抽样的平均误差取决于() A.样本单位数B.总体方差 C.抽样比例D.样本单位数和总体方差 3.根据重复抽样的资料,一年级优秀生比重为10%,二年级为20%,若抽样人数相等时,优秀生比重的抽样误差() A.一年级较大B.二年级较大 C.误差相同D.无法判断 4.用重复抽样的抽样平均误差公式计算不重复抽样的抽样平均误差结果将()A.高估误差B.低估误差 C.恰好相等D.高估或低估 5.在其他条件不变的情况下,如果允许误差缩小为原来的1/2 ,则样本容量() A.扩大到原来的2倍B.扩大到原来的4倍 C.缩小到原来的1/4D .缩小到原来的1/2 6.当总体单位不很多且差异较小时宜采用() A.整群抽样B.纯随机抽样 C.分层抽样D.等距抽样 7.在分层抽样中影响抽样平均误差的方差是() A.层间方差B.层内方差 C.总方差D.允许误差二、多项选择题 1.抽样推断的特点有() A .建立在随机抽样原则基础 上 B.深入研究复杂的专门问 题 C .用样本指标来推断总体指 标 D.抽样误差可以事先计算 E .抽样误差可以事先控制 2.影响抽样误差的因素有() A .样本容量的大小B.是有限总体还是无限总 体 C .总体单位的标志变动度D.抽样方法 E .抽样组织方式 3.抽样方法根据取样的方式不同分为() A .重复抽样 B .等距抽样 C .整群抽样 D .分层抽样 E .不重复抽样 4.抽样推断的优良标准是() A .无偏性 B .同质性 C .一致性 D .随机性 E .有效性 5.影响必要样本容量的主要因素有() A . 总体方差的大小B.抽样方法

编写一个产生符合高斯分布的随机数函数

编写一个产生符合高斯分布的随机数函数信号检测与估计课程作业作业要求 1、利用计算机内部函数产生高斯分布的随机数,分别画出500,10000,100000点的波形,并进行统计分析(分别画出概率密度曲线,计算均值与方差) 2、利用计算机自己编写一个产生符合高斯分布的随机数函数,画出100000点的波形,并进行统计分析(同一) 提示:这一问分两步做,第一步先产生一个均匀分布的随机数序列(乘同余法、混合同余法等,可以用自己的方法),第二步通过适当变换得到符合高斯分布概率模型的随机数列 3、对随机数产生函数和高斯分布进行性能分析,并写出自己对于此次作业和上课的学习体会 一、利用内部函数产生高斯分布 首先利用matlab自带的内部函数randn()就可以方便的生成所需要的高斯分布随机数,然后画出概率密度曲线并计算出均值与方差即可。程序代码如下: A=randn(500,1); B=randn(10000,1);

C=randn(100000,1); subplot(2,3,1); bar(A); subplot(2,3,2); bar(B); subplot(2,3,3); bar(C); [f1,x1]=ksdensity(A); subplot(2,3,4); plot(x1,f1); title('500点高斯分布概率密度函数'); [f2,x2]=ksdensity(B); subplot(2,3,5); plot(x2,f2); title('10000点高斯分布概率密度函数'); [f3,x3]=ksdensity(C); subplot(2,3,6); plot(x3,f3); title('100000点高斯分布概率密度函数'); JZ500=mean(A) JZ1000=mean(B) JZ100000=mean(C) FC500=var(A) FC10000=var(B)

统计学答案 第八章 抽样与抽样分布

第八章抽样与抽样分布 一、名词解释 1、统计抽样:按照随机原则从被研究现象的总体中,抽取一部分单位进行观察,然后根据 观察的结果运用数理统计的原理,来估计总体综合指标或者对总体综合指标的某种假设进行 检验。 2、重复抽样:是从总体中每抽出一个样本单位后,把结果记录下来,随即将该单位放回到 总体中去,使它和其余的单位在下一次抽选中具有同等被抽中的机会,再抽取第二个单位,直至抽取n个单位为止。 3、不重复抽样:一个单位被抽中后不再放回总体,然后再从所剩下的单位中抽取第二个单位,直到抽出n个单位为止,这样的抽样方法不可能使一个总体单位被重复抽中,所以称为 不重复抽样。 4、简单随机抽样:在从总体中随机抽取n个单位作为样本时,要使得每一个总体的单位都 有相同的机会(概率)被抽中。 5、分层抽样:在抽样之前先将总体的单位划分为若干层(类),然后从各个层中抽取一定数 量的单位组成一个样本,这样的抽样方式称为分层抽样,也称为分类抽样。 6、系统抽样:在抽样中先将总体各单位按某种顺序排列,并按某种规则确定一个随机起点, 然后,每隔一定的间隔抽取一个单位,直至抽取n个单位形成一个样本。这样的抽样方式称 为系统抽样,也称等距抽样或机械抽样。 7、整群抽样:调查时,先将总体划分成若干群,然后再以群作为调查单位从中抽取部分群, 进而对抽中的各个群中所包含的所有个体单位进行调查或观察,这样的抽样方式称为整群抽样。 8、总体分布:总体是我们关心的若干个元素的集合,总体中每个元素的取值是不同的,这些 观察值所形成的相对频数分布就是总体分布。 9、样本分布:是指一个样本中各观察值所形成的相对频数分布。 10.抽样分布:某个样本统计量的抽样分布,从理论上说就是在重复选取容量为n的样本时, 由该统计量的所有可能取值形成的相对频数分布。 11、比率:是指总体(或样本)中具有某种属性的单位与全部单位总数之比。 12、样本比率的抽样分布:在重复选取容量为n的样本时,由样本比率的所有可能取值形成 的相对频数分布称为样本比率的抽样分布。 二、判断题 1、× 2、√ 3、× 4、× 5、√ 6、× 7、√ 8、√ 9、× 10、√ 三、选择题 1、A 2、A 3、B 4、B 5、C 6、D 7、D 8、D 9、C 10、D 11、C 12、B 13、C 14、C 15、A 16、D 17、A 18、B 19、C 20、B 21、B 22、B 23、B 24、A 25、A 四、简答题 1、简述统计抽样的基本特点。

统计学 第五章习题

第五章思考与练习 1. 要求: (1)计算样本平均数和样本标准差,并推算抽样平均误差; (2)以95.45%的概率保证,估计该厂工人的月平均工资和工资总额的区间。 2.从某餐厅连续三个星期抽查49名顾客,调查顾客的平均消费额,得样本平均消费额为 25.5元。要求: (1)假设总体标准差为10.5元,求抽样平均误差。 (2)以95%的概率保证,抽样极限误差是多少? (3)估计总体消费额的置信区间。 3.某加油站想了解司机在该加油站加油的习惯,一周内随机抽取了100名司机,得出如下 结果:平均加油量等于13.5升,样本标准差为3.2升,有19人购买无铅汽油,试问:(1)以0.05的显著性水平,是否有证据说明平均加油量为12升。 (2)以0.05的显著性水平,是否有证据说明购买无铅汽油的司机少于20。 4 设干燥时间总体服从正态分布,现在要求置信度为95%时估计这种漆的平均干燥时间。 (1)根据经验知总体标准差为0.6小时: (2)总体标准差未知。 5.采用简单随机重置抽样从2000件产品中抽查200件产品,其中合格产品190件,要求: (1)计算该产品的合格率及其抽样平均误差; (2)以95.45%的概率,对产品合格率和产品合格数量进行区间估计; (3)如果合格品率的极限误差为2.31%,其概率保证程度是多少?

6.某电子产品的使用寿命在3000小时以下为次品,现在从5000件产品中抽取100件测得 要求: (1)分别按重置抽样和不重置抽样计算该产品平均寿命的抽样平均误差; (2)分别按重置抽样和不重置抽样计算该产品次品率的抽样平均误差; (3)以90%的概率保证,对该产品的平均使用寿命进行区间估计; (4)以90%的概率保证,对该产品的次品率进行区间估计。 7.某医院欲估计一名医生花在每个病人身上的平均时间,根据以往经验看病时间的标准差 为6分钟。若要求置信度为95%,允许误差范围为2分钟。试问随机抽样中需要多大的样本? 8.某公司新推出一种营养型豆奶,为了解该豆奶的受欢迎程度,并使置信度为95%,估计 误差不超过5%,下列情况下,你建议样本容量为多少? (1)初步估计60%的顾客喜欢此豆奶 (2)没有任何顾客资料 9.为调查某地区人口综合素质,在该地区150 000户家庭中以不重置抽样方式随机抽取30 要求: (1)试以95.45%的概率保证程度,推断该地区的人口总数 (2)若要求人口总数的极限误差不超过3300人,应至少抽取多少户作为样本? 10.某电视台为了了解某电视节目的收视率,随机抽取500户居民作为样本。从调查结果来 看,有160户收看该节目。以95%的概率保证推断: (1)该电视节目的收视率 (2)如果收视率的极限误差缩小为原来的1/2,则样本容量应为原来的多少户? 11.从某县的100个村中,抽取10个村进行各村的全面调查,算得每户平均饲养家畜35头, 各村平均的方差为16,要求: (1)以90%的概率估计全县平均每户饲养家畜的头数 (2)若极限误差为2412头,则计算其概率保证程度。

统计学第5-6章 正态分布、 统计量及其抽样分布

第5-6章 统计量及其抽样分布 正态分布 5.1.1定义:当一个变量受到大量微小的、独立的随机因素影响时,这个变量一般服从正态分布或近似服从正态分布。 概率密度曲线图 例如:某个地区同年龄组儿童的发育特征:身高、体重、肺活量等 某一条件下产品的质量 如果随机变量X 的概率密度为 22 ()21 (),2x f x e x μσπσ --=-∞<<∞ 则称X 服从正态分布。 记做 2 (,)X N μσ,读作:随机变量X 服从均值为μ,方差为2 σ的正态分布 其中, μ-∞<<∞,是随机变量X 的均值,0σ>是是随机变量X 的 标准差

5.1.2正态密度函数f(x)的一些特点: ()0 f x≥,即整个概率密度曲线都在x轴的上方。 曲线 () f x相对于xμ =对称,并在xμ = 处达到最大值, 1 () 2 fμ πσ = 。 1 μ< 2 μ< 3 μ 曲线的陡缓程度由 σ 决定:σ越大,曲线越平缓;σ越小,曲线越陡峭当 x 趋于无穷时,曲线以x轴为其渐近线。 标准正态分布 当 0,1 μσ == 时,

2 2 1 () 2x f x e π- = , x -∞<<∞ 称 (0,1) N 为标准正态分布。 标准正态分布的概率密度函数: ()x ? 标准正态分布的分布函数: ()x Φ 任何一个正态分布都可以通过线性变换转化为标准正态分布 设 2 (,) X Nμσ ,则 (0,1) X Z N μ σ - = 变量 2 11 (,) X Nμσ与变量2 22 (,) Y Nμσ相互独立,则有 22 1212 +(+,+) X Y Nμμσσ 5.1.3 正态分布表:可以查的正态分布的概率值()1() x x Φ-=-Φ 例:设 (0,1) X N,求以下概率

相关主题
文本预览
相关文档 最新文档