当前位置:文档之家› 炼钢原理与工艺

炼钢原理与工艺

炼钢原理与工艺
炼钢原理与工艺

目前主要的炼钢方法有氧气转炉炼钢法、电弧炉炼钢法以及炉外精炼技术。

氧气转炉包括氧气顶吹转炉、氧气底吹转炉、氧气侧吹转炉及顶底复吹转炉等,故常简称为LD。它拄要原料是铁水,同时可配加10%~30%的废钢;生产中不需要外来热源,依告靠吹入的氧气与铁水中的碳、硅、猛、磷等元素反应放出的热量使熔池获得所需的冶炼温度。其突出的优点是生产周期短、产量高;不足之处是生产的钢种有限,主要冶炼低碳钢和部分合金钢。

电炉炼钢法是以电能为主要能源、废钢为主要原料的炼钢方法,显著的优点是,熔池温度易于控制和炉内气氛可以调整,用来生产优质钢和高合金钢。设备也比较简单,而投资小,建厂快。

炉外精炼,是指从初炼炉即氧气炉或电弧炉中出来的初炼钢水,在另一个冶金容器中进行精炼的工艺过程。精炼的目的是进一步去气、脱硫、脱氧、排除夹杂物、调整及均匀钢液的成分和温度等,提高钢水质量;缩短初炼炉的冶炼时间,精炼的手段有真空、吹氩、搅拌、加热、喷粉等。

但目前世界上氧气转炉钢的产量仍占总产量的60%左右。

氧气顶吹转炉炼钢的基本过程是:装料(即加废钢、兑铁水→摇正炉体→降枪开始吹炼并加入第一批渣料→(吹炼中期)加入第二批渣料→(终点前)测温、取样→(碳、磷及温度合格后)倾炉出钢并进行脱氧合金化。

所谓装料,是指将炼钢所用的钢铁炉料装入炉内的工艺操作。

电炉炼钢所用原料,主要有废钢、生铁和直接还原铁三种。

废钢是电炉炼钢的主原料。

按其来源不同,废钢大致可分为返回废钢和外购废钢两类。

B对废钢的要求

对废钢的一般要求是清洁少锈,无混杂,成分明确,块度合适。

在电弧炉炼钢中,生铁一般是用来提高炉料的配碳量的。

转炉炼钢的原料主要是铁水,其次还配用部分废钢。

1.2.1.1铁水

铁水是氧气顶吹转炉的主原料,一般占装入量的70%以上。铁水的物理热和化学热是氧气顶吹转炉炼钢过程中的唯一热源。

A、对铁水温度的要求

较高的铁水温度,不仅能保证转炉炼顺利进行,同时还能增加放心钢的配加量,降低转炉的生产成本。希望铁水的温度尽量高些,入炉时仍在1250~1300℃。

1、兑入转炉时的铁水温度相对稳定。

2、铁水的成分应该合适而稳定。

3、铁水中的硅,是转炉炼钢的主要发热元素之一。铁水含硅量以0.5%~0.8%为宜。

4、对于含硅量过高的铁水应进行预脱硅处理,以改善转炉的脱磷条件,并减少渣量。

5、铁水的含猛量(1)铁水中的猛是一种有益元素;(2)铁水的含猛量多低于0.3%。

6、铁水的含磷量(1)磷会使钢产生“冷脆”,是钢中的有害元素之一。铁水的含磷量小于0.15%~0.20%。

7、铁水的含硫量(1)硫会使钢产生“热脆”现象,也是钢中的有害元素,铁水含硫量低于0.04%~0.05%。

铁水含硫高时,对其进行预脱硫处理是经济有效的脱硫方法。

铁水的成分也应相对稳定,以方便冶炼操作和生产调度。

还希望兑入转炉的铁水尽量少带渣。

1.2.1.2废钢

废钢是转炉的另一种金属炉料,作为冷却剂使用的。

转炉的装入制度,包括装入量、废钢比及装料顺序三个问题。

1.2.2.1装入量的确定

转炉的装入量是指每炉装入铁水和废钢两种金属炉料的总量。目前控制氧气顶吹转炉装入量的方法有以下三种。

(1)定量装入法。所谓定量装入,是指在整个炉役期内,每炉的装入量保持不变的装料方法。

优点是:生产组织简单,便于实现吹炼过程的计算机自动控制,定量装入法适合于大型转炉。

(2)定深装入法。所谓定深装入,是指在一个炉役期间,随着炉衬的侵蚀炉子实际容积不断扩大而逐渐增加装入量以保证溶池深度不变的装料方法。

优点是:氧枪操作稳定,有利于提高供氧强度并减轻喷溅;又能充分发挥炉子的生产能力。但是装入量和出钢量生产组织难度大。

(3)分阶段定量装入法。该法是根据炉衬的侵蚀规律和炉膛的扩大程度,将一个炉役期划分成3~5个阶段,每个阶段实行定量装入,装入量逐段递增。因此中小转炉炼钢厂普遍采用。

1.2.2.2废钢比

废钢的加入量占金属装入量的百分比称为废钢比。提高废钢比,可以减少铁水的用量,从而有助于降低转炉的生产成本;同时可减少石灰的用量和渣量,有利于减轻吹炼中的喷溅,提高冶炼收得率;还可以缩短吹炼时间、减少氧气消耗和增加产量。废钢比大多波动在10%~30%之间。

氧气顶吹转炉的装料顺序,一般情况下是先加废钢后兑铁水,以避免废钢表面有水或炉内渣未倒净装料时引起爆炸。炉役后期,可先兑铁水后加废钢。

炼钢的主要任务之一,就是要将金属炉料中的杂质元素如碳、磷等降低到钢种规格所要求的程度。炼钢生产首先要有一个氧化过程。供入炉内的氧,可以三种不同的形态存在,即生态、溶于钢液和溶解在渣中。

溶池内的氧主要来源于直接吹氧、加矿分解和炉气传氧三个方面。

直接吹入氧气是炼钢生产中向熔池供氧的最主要方法。要求氧气的含氧量不得低于98.5%,水分不能超过3g/m3,而且具有一定的压力。

转炉炼钢采用高压氧气经水冷氧枪从溶池上方垂直向下吹入的

方式供氧;氧枪的喷头是拉瓦尔型的,工作氧压0.5~1.1MPa,氧气流股的出口速度高达450~500m/s,即属于超音速射流,以使得氧气流股有足够的动能去冲击、搅拌熔池,改善脱碳反应的动力学条件,加速反应的进行。

2.1.2加入铁矿石和氧化铁皮

而在氧气顶吹转炉炼钢中,铁矿石和氧化铁皮则多是作为冷动剂或造渣剂使用的。

炼钢对铁矿石的要求是,含铁要高、有害杂质要低,一般成分为:在氧化精炼过程中,炼钢炉内具备了炉气向熔池传氧的条件,气相中的氧会不断传入溶渣和钢液。

杂质元素,是指钢液中除铁以外的其他各种元素如硅、猛、碳、磷等。它们的氧化方式有两种:直接氧化和间接氧化。

所谓直接氧化,是指吹入熔池的氧气直接与钢液中杂质元素作用而发生的氧化反应。

杂质元素的直接氧化反应发生在溶池中氧气射流的作用区,或氧射流破碎成小气泡被卷入金属内部时。

所谓间接氧化,是指吹入溶池的氧气先将钢液中的铁元素氧化成氧化亚铁(FeO),并按分配定律部分地扩散进入钢液,然后溶解到钢液中的氧再与其中的杂质元素作用而发生的氧化反应。

杂质元素的间接氧化反应发生在熔池中氧气射流用区以外的其也区域。间接氧化是指钢中的[O]或渣中的(FeO)与钢液中的杂质元素间发生的氧化反应。

在氧气射流的作用区及其附近区域,大量进行的是铁元素的氧化反应,而不是杂质元素的直接氧化反应。

氧气转炉炼钢的供氧方式,主要是直接向溶池吹氧气。所谓供氧强度,是指单位时间内向每金吨金属供给的标准状态氧气量的多少。

供氧时间,主要与转炉的容量的大小有关,而且随着转炉容量增大供氧时间增加;通常情况下,容量小于50吨的转炉取12~16分钟;50吨转炉取16~18分钟;容量大于120吨的转炉则取18~20分钟。

缩短吹氧时间可以提高供氧强度,从而可强化转炉的吹炼过程,提高生产率。

枪位,通常定义为氧枪喷头至平静熔池液面的距离。枪位的高低是转炉吹炼过程中的一个重要参数,控制好枪位是供氧制度的核心内容,是转炉炼钢的关键所在。

转炉炼钢中,高压、超音速的氧气射流连续不断地冲击熔池,在熔池的中央冲出一个“凹坑”,该坑的深度常被叫做氧气射流的冲击深度,坑日的面积被称为氧气射流的冲击面积;与此同时,到达抗底后的氧气射流形成反射流股,通过与钢液间的摩擦力引起熔池内的钢液进行环流运动。钢液的环流运动极大地改善了炉内化学反应的动力学条件,对加速治炼过程具有重要意义。

吹炼过程中,采用低枪位或高氧压的吹氧操作称为“硬吹”。硬吹时,氧气射流与熔池间炼时的枪位较低或氧压较高,氧气射流与熔池接触时的速度较快、断面积较小,因而熔池的中央被冲出一个面积较小而深度较大的作用区。作用区内的温度高达2200~2700℃,而

且钢液被粉碎成细小的液滴,从坑的内壁的切线方向溅出,形成很强的反射流股,从而带动钢液进行剧烈的循环流动,几乎使整个熔池都得到了强有力的搅拌。

采用高枪位或低氧压的吹氧操作称为“软吹”。软吹时,氧气射流与熔池间的作用吹炼时的枪位较高或氧压较低,与熔池接触时氧气射流的速度较慢、断面积较大,因而其冲击溶度较小而冲击面积较大;同时所产生的钢液中因此而形成的环流也就相对较弱,即氧气射流对熔池的搅拌效果较差。

转炉的吹氧操作可有以下三种类型。

(1)恒氧压变枪位操作。所谓恒氧压变枪位操作,是指在一炉钢的吹炼过程中氧气的压力保持不变,而通过改变枪位来调节氧气射流对熔池的冲击深度和冲击面积,以控制冶炼过程顺利进行的吹氧方法。

恒氧压变枪位的吹氧操作能根据一炉钢冶炼中各阶段的特点灵活地控制炉内的反应,吹炼平稳、金属损失少,去磷和去硫效果好。目前国内各厂普遍采用这种吹氧操作。

恒枪位变氧压操作。所谓恒枪位变氧压操作,是指在一炉钢的吹炼过程,喷枪的高度,即枪位保持不变,仅靠调节氧气的压力来控制冶炼过程的吹氧方法。

变枪位变氧压操作。变枪位变氧压操作是在炼钢中同时改变枪位和氧压的供氧方法。

目前国内普遍采用的是分阶段恒氧压变枪位操作,低枪位吹炼

时,钢液的环流强,几乎整个熔池都能得到良好的搅拌;高枪位吹炼时,钢液的环流弱,氧气射流对熔池的搅拌效果差。

氧气顶吹转炉内的传氧方式有两种:直接传氧和间接传氧。

直接传氧,是指吹入熔池的氧气被钢液直接吸收的传氧方式。

硬吹时,转炉内的传氧方式主要是直接传氧。其传氧的途径有以下两个;(1)通过金属液滴直接传氧。

A、硬吹时,氧气射流强烈冲击熔池而溅起来的那些金属液滴被气相中的氧气氧化,其表面形成一层富氧的FeO渣膜。这种带有FeO 渣膜的金属滴很快落入熔池,并随其中的钢液一起进行环流而成为氧的主要传递者。

B、通过乳浊液直接传氧

高压氧气射流自上而下吹入熔池,在将熔池出一凹坑的同时,射流的末端也被碎裂成许多小气泡。这些小氧气泡与被氧气射流击碎的金属液和熔渣一起形成了三相乳浊液,其中的金属液滴可将小气泡中的氧直接吸收。

由于熔池的乳化,极大地增加了钢液、熔渣、氧气三者之间的接触面积,据估算低枪位吹氧时,氧气射流大量地直接向熔池传氧,因而杂质元素的氧化速度较快;但是,渣中的(FeO)低而化渣能力差些。

所谓间接传氧,是指吹入炉内的氧气经熔液传入钢液的传氧方式。软吹时,接传氧作用则会明显加强。

转炉炼钢中采用高枪位吹氧时,氧气射流的间接传氧作用得以加

强,使得渣中的(FeO)含量较高而化渣能力较强;

枪位控制:转炉炼钢中枪位控制的基本原则是,根据吹炼中出现的具体情况及时进行相应的调整,力争做到毁不出现“喷溅”,又不产生“返干”,使冶炼过程顺利到达终点。

A、一炉钢吹炼过程中枪位的变化:枪位的变化规律通常是:高→低→高→低。

吹炼前期,最佳的枪位应该是,使炉内的熔渣适当泡沫化即乳浊液涨至炉口附近而又不喷出。吹炼中期的枪位也不宜过低。合适的枪位是使渣中的(ΣFeO)保持在10%~15%的范围内。

吹炼后期:该阶段应先适当提枪化渣,而接近终点时再适当降枪,以加强对熔池的搅拌,均匀钢液的成份和温度。

2.3.4复吹转炉的底部供气制度

顶底复合吹炼技术是近年来氧气转炉炼钢技术的重要发展。

氧气转炉的顶底复合吹炼法,可以通过选择不同的底吹气体的种类和数量及顶枪的供氧制度,得到冶炼不同原料和钢种的最佳复合吹炼工艺。按照底吹气体的性质不同,大致可以将它们分为以下两类:(1)底吹惰性气体。吹气的方式多采用透气元件法,底吹惰性气体的目的是为了加强对熔池的搅拌,以改善成渣过程,减少喷溅,缩短冶炼时间等。

(2)底吹氧气或氧气和石灰粉:使用双层套管式喷嘴。

生产中,底吹气体种类的选用应根据所炼钢种的质量要求和气体的来源和价格而定,而总用量不大于顶吹气体的5%,供气压力在

0.5MPa以上。目前国内多采前期吹氮、后期吹氩(无氩气时用博士氧化碳代替)的底吹工艺。

2.3.4.3复合吹炼的冶金效果

复吹转炉增加了底部供气,加强了对熔池的搅拌,降低了熔渣与钢液之间异相反应的不平衡程度,可以在渣中的(ΣFeO)含量较低的情况下完成去磷的任务,炉渣中的(ΣFeO)含量较低,吹炼终点时钢液的残猛量较高;在整个吹炼过程中,熔渣和金属的混合良好,可以加速杂质元素的氧化。消防了熔池内成分与温度不均匀的现象,轻吹炼中的喷溅,使冶炼过程迅速而平稳。

复吹转炉钢的品种广泛,可以冶炼高碳钢,也能生产超低碳钢,还可以直接吹炼不锈钢和高牌号电工钢等合金钢;

造渣,是指通过控制人炉渣料的种类和数量,使炉渣具有某些性质,以满足溶池内有关炼钢反应需要的工艺操作。

造渣是完成炼钢过程的重要手段,造好渣是炼好钢的前提。

炼钢中,造氧化渣的主要目的是为了去除钢中的磷,并通过氧化渣向熔池传氧。

炼钢中的去磷过程,主要是在钢-渣两相的界面上进行的。造氧化渣,就是要设法使熔渣具有适于脱磷反应的理化性质;还要精心控制造渣过程,炼钢过程对氧化渣的要求是:较高的碱度、较强的氧化法性、适量的渣量、良好的流动性及适当泡沫化。

碱度的控制。碱度是炉渣酸碱性的衡量指标,是炼钢中有效去磷的必须条件。渣中的(ΣFeO)含量相同的条件下,碱度为1.87时其

活度最大,炉渣的氧化性最强。氧气顶吹转炉炼钢中,通常是将碱度控制在2.4~2.8的范围内。

渣中的(ΣFeO)含量。渣中(ΣFeO)含量的高氏,标志着渣氧化性的强弱及去磷能力的大小。生产中通常将渣中的(ΣFeO)含量控制在10%~20%之间。

渣量的控制。过大的渣量不仅增加造渣材料的消耗和铁的损失,还会给冶炼操作带来诸多不便,生产中渣量控制的基本原则是,在保证完成脱磷、胶硫的条件下,采用最小渣量操作。氧气顶吹转炉炼钢时,一般情况下适宜的渣量约为钢液量的10%~12%,可采用双渣操作。

炉渣的流动性。对于去磷、去硫这些双相界反应业说,保证熔渣具有良好的流动性十分重要。影响炉渣流动性的主要因素是温度和成分。

炉渣的泡沫化。泡沫化的炉渣,使钢-渣两相的界面积大为增加,改善了去磷反应的动力学条件,可加快去磷反应速度。但应避免炉渣的严重泡沫化,以防喷溅发生。

3.1.2使用的目的是获得碱性炉渣,以去除钢中的磷或硫。石灰是由主要成分为C a CO3的石灰石煅烧而成。对炼钢用石灰的基本要求是:CaO尽量高、S i O2及S等杂质尽量氏、活性要好、新鲜干燥、块度合适,具体分析如下:

石灰中的有用成分是CaO,当然是CaO含量越高越好,石灰的有效碱应不低于80%~85%,S i O2不超过2.5%,S低于0.2%。

石灰中可利用的氧化钙的含量

ω(CaO)有效=ω(CaO)石灰=R×ω(S i O2)石灰

所谓“活性”,是指石灰与熔渣的反应能力,它是衡量石灰在渣中熔解速度的指标。2、石灰的“活性”与生产石灰时的煅烧温度有关。石灰石的分解温度为880~910℃,如果煅烧温度控制在1050~1150℃时,烧成的石灰晶粒细小(仅1μm左右)、气孔率高(可达40%以上),呈海绵状,“活性”很好,称软烧石灰或轻烧石灰。熔化快,成渣早,有利于前期去磷,称过烧石灰或硬烧石灰。不利于冶炼操作。如果煅烧温度低于900℃,由于烧成温度低,石灰烧不透,核心部分仍是石灰石,称生烧石灰。生灰石灰入炉后,其中残留的石灰石要继续分解而吸热,不仅成渣慢而且对熔池升温不利。

评价石灰活性的正确方法,是将石灰加入到一定温度的熔渣中,经过一定时间间隔后,测定未熔化的石灰质(重)量,然后根据石灰在炉渣中的溶解速度判断其活性。石灰的水活性的检验方法,主要有以下三种:第一是AWWA法,它是将100g石灰加入到盛有400ml 25℃水的烧杯中;第二是ASTM法;第三是盐酸法;

石灰的块度

对于石灰的块度,转炉炼钢一般要求为5~40mm,块度过大时,熔化慢,化渣晚。块度过小,则易被炉气带走。混有许多粉末的石灰。炼钢所用石灰还应新鲜干燥。转炉车间附近建有石灰窑,萤石的主要成分是CaF2,它能加速石灰熔化和消除炉渣“返干”,而且作用迅速。

一般要求其CaF2不低于85%,SiO2结不超过4%,CaO不超过5%。

翠绿透明的萤石质量最好;白色的次之;带有褐色条纹或黑色斑点的萤石含有硫化物杂质,其质量最差。一是萤石的稀渣作用持续时间不长,随着氟的挥发而逐渐消失,而且挥发物对人体及炉衬都有一定的危害。二是萤石用量大时,炉渣过稀,会严重侵蚀炉衬。三是萤石的资源短缺,价格昂贵。转炉炼钢中多用铁矾土和氧化铁皮代替萤石。它们的化渣和稀渣速度不及萤石,消耗的热量也比萤石多,而且氧化铁皮表面粘有油污,铁矾土含有较多的SiO2和H2O,均含对冶炼产生不利影响。铁矾土的主要成分是Al2O3。

合成渣料是转炉炼钢中的新型造渣材料。它是将石灰和熔剂按一定比例混合制成的低熔点、高碱度的复合造渣材料,即把炉内的造查过程部分地,甚至全部移到炉外进行。这是一个提高成渣速度、改善冶炼效果的有效措施。

国内使用较多的合成渣料是冷固结球团。它是用主要成分为FeO (67%左右)和Fe2O3(16%左右)的污泥状的转炉烟尘配加一定的石灰粉、生白云石粉和氧化铁皮,该合成渣料的成份均匀、碱度高、熔点低,而且遇高温会自动暴裂,加入转炉后极易熔化,能很快形成高碱度、强氧化性和良好流动性的熔渣。

白云石是碳酸钙和碳酸镁的复合矿物,高温下分解后的主要组分为CaO和MgO。

转炉炼钢中广泛采用加入一定数量的白云石来代替部分石灰的造渣工艺,白云石造渣工艺的主要目的是延长炉衬寿命,根据氧化镁在渣中有一定溶解度的特点,向炉内加入一定数量的白云石,从而减

弱熔渣对镁质炉初中MgO 的溶解;另一方面,冶炼中随着炉渣碱度的提高,渣中MgO 达过饱和状态而有少量的固态氧化镁颗粒析出,使后期炉渣的黏度明显升高。加白云石造渣可以大幅度提高炉龄,而且,渣中(MgO )含量控制在6%~8%较为适宜。对于转炉炼钢用白云石,一般要求其MgO 含量在20%以上,CaO 含量不低于30%,硫、磷杂质元素含量要低,块度以5~40mm 为宜。白云石造渣时以采用轻烧白云石为好。

转炉炼钢中使用部分矿石作冷却剂或电炉炼钢中加矿氧化时,由于铁矿石中含有一定数量的S i O 2,为保证炉渣的碱度不变应补加适量

的石灰。每千克矿石需补加石灰的数量按下式计算:

补加石灰量(kg/kg )=石灰

矿石)()(2CaO R SiO ωω? 转炉炼钢中采用白云石造渣工艺时,白云石的用量约为石灰用量的四分之一。

加速石灰熔化、迅速成渣是炼钢,尤其是转炉炼钢中的重要任务。影响石灰在渣中的溶解速度的因素主要是石灰的质量、熔池温度及熔渣的组成。熔池温度的允许波动范围并不大,对石灰溶解速度的调控能力较为有限。通过控制炉渣的成分来影响石灰的溶解速度是最为直接、方便和快捷的方法。

渣中(CaO )的含量小于30%~35%时,石灰的溶解速度随其增加而增大。

当渣中(S i O 2)的浓度低时随着(S i O 2)含量增加,石灰的溶解速

度增大。当(S i O 2)大于25%时,进一步增加其含量,不仅会在石灰

表面形成2CaO·S i O2硬壳,而且会增加渣中复合阴离子的数量,导致炉渣黏度上升而减缓石灰的溶解。

随着渣中FeO含量的增加,石灰的溶解速度直线增大。少量的(MgO)含量,有利于石灰的熔化。

渣中的(C a F2)也具有极强的化渣和稀渣作用。

选择的依据是原材料的成分和所炼钢种。

在冶炼过程中只造一次渣,中途不倒渣、不扒渣,直到终点出钢的造渣方法称为单渣法。单渣法操作的工艺简单,冶炼时间短,生产率高,劳动强度小,但其他除硫、磷的效率低些。单渣法适合于使用含磷、硫、硅较低的铁水或冶炼对硫、磷要求不高的一般碳素钢和低合金钢。

双渣法,是指在吹炼中途倒出部分炉渣,然后补回渣料再次造渣的操作方法。特点:炉内如终保持较小的渣量,吹炼中可以避免因渣量过大而引起的喷溅,且渣少易化;同时又能获得较高的去硫、去磷效率。适合于铁水含硅、磷、硫量较高。或者生产高碳钢和低磷钢种。

采用双渣法操作时,要注意两个问题:一是倒出炉渣的数量。倒出1/2或2/3的炉渣。二是倒渣时机,应选在渣中的磷含量最高(FeO)含量最低的时候进行倒渣操作,理想效果:吹炼低碳钢时,钢渣操作应该在钢中含碳量降至0.6%~0.7%时进行。倒渣前1分钟适当提枪或加些萤石改善炉渣的流动性,便于倒渣操作。

双渣留渣法是指将上一炉的高碱度、高温度和较高(FeO)含量的终渣部分地留在炉内,以便加速下一炉钢初渣的形成并在吹炼中途

倒出部分炉渣再造新渣的操作方法。倒渣时机及倒渣量与双渣法相似,但是由于留渣,初渣早成而前期的去硫及去磷效率高。采用双渣留渣法时,兑铁水前应先加一批石灰稠化所留炉渣,而且兑铁水时要缓慢进行,以防发生爆发式碳氧反应而引起严重喷溅。若上一炉钢终点碳过低,一般不宜留渣。

喷吹石灰粉造渣,是在冶炼的中、后期以氧气为载体,用氧枪将粒度为1mm以下的石灰粉喷入熔池且在中途倒渣一次的操作方法。倒渣操作:一般选在钢液含碳量为0.6%~0.7%时进行。由于喷吹的是石灰粉末,成渣速度更快,前期去硫、去磷的效率更高,该法需要破碎设备,而且粉尘量大,劳动条件恶劣;石灰粉又更容易吸收空气中的水。氧气顶吹转炉虽能将高磷铁水炼成合格的钢,但技术经济指标较差。单渣法生产稳定、操作简单、便于实行计算机控制。对于含硅、磷及硫较高的铁水,入炉前进行预处理使之达到单渣法操作的要求,即合理又经济。

为了加速石灰的熔化,渣料应分批加入。否则,会造成熔池温度下降过多,导致渣料结团且石灰块表面形成一层金属凝壳而推迟成渣,加速炉衬侵蚀并影响去硫和去磷。

单渣操作时,渣料通常分两批加入。第一批渣料在开吹的同时加入,石灰为全部的1/2~2/3,铁矿石为总加入量的1/3,萤石则用全部的1/3~1/2。其余的为第二批渣料,一般是在硅及猛的氧化基本结束、头批渣料已经化好、碳焰初起的时候加入。如果二批渣料加入过早,炉内温度还低且头批渣料尚未化好又加冷料,势必造成渣料结

团,炉渣更难很快化好。如果加入过晚,正值碳的激烈氧化时期,渣中的(ΣFeO)较低,二批渣料难化,容易产生金属飞溅。由于渣料的加入使炉温降低,碳氧反应将被抑制,导致渣中的氧化铁积聚,一旦温度上升,必会发生爆发式碳氧反应而引起严重喷溅。二批渣料可视炉内情况一次加入或分小批多次加入。分小批多次加入无疑对石灰熔化是有利的。最后一小批料必须在终点前3~4分钟加入,否则所加渣料尚未熔化就要出钢了。

电炉炼钢熔化期的任务主要有两个:一是用电弧产生的热量把固体炉料迅速熔化,并尽快将钢液加热到氧化所需的温度1550℃。二是尽早造好有一定碱度的氧化渣,以去除钢液中的一部分磷并减少钢液吸气和金属挥发。氧化期的主要任务是进一步去磷至低于成品钢的要求,并氧化脱碳以升温、去气、去夹杂。熔化期及氧化期需要的都是碱性氧化渣。为了顺利完成上述任务造渣过程从装料时就开始了。

装料前,先在炉底铺一层约为料重 1.5%的石灰,不仅能保护衬装料时不被砸坏,而且有利于早成渣。炉内形成熔池后,按料重的1%补加石灰,同时吹氧助熔并化渣。尔后不时补加石灰,最终使总渣量达到钢液的4%~5%;炉料化清后,扒除大部分炉渣或熔化后期自动流渣,并补加渣料进入氧化期。氧化期造渣的关键是根据脱磷和脱碳两方面的要求正确地控制炉渣的成分及渣量。脱碳是氧化期的两个重要反应。氧化前期,边吹氧边自动流渣,并及时补加石灰,渣量保持在3%~4%左右,碱度控制在2.5~3.0之间。随着氧化的进行,不时流渣并补加少量渣料,到氧化后期渣量减至2%~3%。碱度降至2.0

左右,以利于脱碳反应的进行。

氧化渣的渣况是否正常,将直接关系到氧化过程能否顺利进行。而渣况的好坏,取决于炉渣的成分与温度,加之冶炼过程中熔池的温度及成分在不断的变化着。对于转炉练钢,炉内渣况良好的基本条件有两个。第一是不出现“返干”现象;第二是不发生喷溅,特别是严重喷溅。无论是“返干”还是喷测,一旦出现均会严重影响炉内的化学反应,甚至酿成事故。因此转炉炼钢的渣况判断的重点,应放在对将会发生的“返干”或喷油的预测上,以便及时处理而避免发生。经验预测。渣料化好、渣况正常的标志是:炉口的火焰比较柔软,炉内传出的声音也柔和、均匀。渣已化好、化透时,炉渣被一定程度地泡沫化了,渣层较厚。氧枪喷头埋没在泡沫渣中吹炼,氧气射流从枪口喷出及其冲击熔池时产生的噪声大部分被渣层吸收,而传到炉外的声音就较柔和;从熔池中逸出的CO气体的冲力也大为减弱,在炉口处燃烧时的火焰也就显得较为柔软。炉口的火焰由柔软逐渐向硬直的方向发展,炉内传出的声音也由柔和渐渐变得刺耳起来,表明炉渣将要出现“返干”现象。这是枪位过低或较低的枪位持续时间过长,激烈的脱碳反应大量消耗了渣中的氧化铁所致。迅速调高枪位并酌情加入适量萤石,便可避免“返干”的出现。如果炉内传出的声音渐渐变闷,炉口处的火焰也逐渐转暗且飘忽无力;还不时地从炉口溅出片装泡沫渣,说明炉查正在被严重泡沫化,渣面距炉口已经很近,不久就要发生喷溅。二批料加入过晚易出现此种现象。其原因是,当时炉内的碳氧反应已较激烈,加入冷料后使炉温突然下降,抑制了碳氧反应,

使渣中的氧化铁越积越多;随着温度渐渐升高,熔池内的碳氧反应又趋激烈,产生的CO气体逐渐增多,炉渣的泡沫化程度也就越来越高。迅速调低枪位消耗渣中多余的氧化铁即可避免喷溅的发生。声纳控渣仪预测。一些大型钢厂使用声纳控渣仪对转炉炼钢中的“返干”和喷溅进行预测和预报,并取得了不错的效果。

声纳控渣仪的工作原理是:在炉口附近安装定向取声装置和声纳仪采集炉口噪声,对其进行信号转换、选频、滤波、放大、整表后输入计算机,由计算机在其显示器上的音强化渣图中绘制冶炼过程中的噪声强度曲线,间接地反映渣层厚度或渣面的高低,同时对吹炼过程中可能发生的喷溅或“返干”进行预报,并由报警装置发出声、光信号。有大量微小气泡存在的熔渣呈泡沫状,这样的渣子们们称之为泡沫渣。泡沫渣中气泡的体积通常要大于熔渣的体积,可见泡沫渣中的渣子是以气泡的液膜的形式存在的。泡沫渣中往往还悬浮有大量的金属液滴。炉渣被泡沫化后,钢、渣、气三相之间的接触面积大为增加,可使传氧过程及钢、渣间的物化反应加速进行,冶炼时间大大缩短;炉渣的泡沫化,使得在不增加渣量的情况下,渣的体积显著增大,渣层的厚度成倍增加,对炉气的过滤作用得以加强,可减少炉气带出的金属和烟尘,提高金属收得率。

A、熔渣泡沫化的条件:1、这是熔渣泡沫化的外部条件。向熔渣吹入气体,或熔池内有大量气体通过钢渣界同面向渣中转移均可促使炉渣泡沫化。例如熔池内的碳氧反应,因其反应的产物是CO气体,而且要通过渣层向外排出,因而具有促使熔渣起泡的作用。2、熔渣

本身有一定的发泡性。这是熔渣泡沫化的内部条件。一是泡沫促持时间,又称之为泡沫寿命。泡沫寿命越长,熔渣的发泡性越好。二是泡沫渣的高度,此值愈大炉渣的发泡性愈好。熔渣发泡性的本质即渣中气泡的稳定性。实际生产中,熔渣的泡沫化程度是形成泡沫渣的外部条件和内部条件共同作用的结果。外部条件主要是进气量和气体种类,而内部条件即炉渣的发泡性则是由其本身的性质决定的。炉渣的表面张力愈小,其表面积就愈易增大即小气泡愈易进入而使之发泡。炉渣的黏度,将增加气泡合并长大及从渣中逸出的阻力,渣中气泡的稳定性增加。影响炉渣泡沫化程度的因素主要有以下四个:①进气量和气体的种类;②熔池温度;③熔渣的碱度及(FeO)含量;④熔渣的其他成分。

在转炉炼钢中,由于脱碳量及脱碳速度均很大,形成泡沫渣的气体来源充足;加之,为了去除硫和磷,炉渣的碱度及(FeO)含量均较高,具备了形成泡沫渣的良好条件,因此,转炉吹炼中炉渣的泡沫化是必然现象。

如果沪渣过分泡沫化则会溢出炉外,甚至产生喷溅,不仅影响炉衬寿命和正常生产,严重时还会造成人身及设备的安全事故。开吹初期,由于渣量较小,脱碳速度不大,炉渣的泡沫化程度较低。吹炼进行到全程的25%时间后,脱碳速度逐渐增加,加之渣量已较大,炉渣的泡沫化程度也逐渐增加,并渐渐埋没氧枪喷头。当吹炼进行到全程的50%~60%时间时,渣面高度达最大值,并有溢出炉口的趋势,此时炉内的脱碳速度达峰值,且熔渣的碱度也恰好在1.8~2.0左右,

转炉炼钢工艺流程

转炉炼钢工艺流程 转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高 200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 电炉.转炉系统炼钢生产工艺流程简图 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化(FeO,SiO2 , Mn0,)生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅

与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理; (2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3?5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3?5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min后火焰微弱,停吹);

高炉炼铁工艺流程(经典)61411

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、 直接还原法、熔融还原法等,其 原理是矿石在特定的气氛中(还 原物质CO、H2、C;适宜温度 等)通过物化反应获取还原后的 生铁。生铁除了少部分用于铸造 外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主 要方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧

化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

转炉工作原理及结构设计要点

攀枝花学院本科课程设计 转炉工作原理及结构设计 学生姓名: 学生学号: 院(系): 年级专业: 指导教师: 二〇一三年十二月

转炉工作原理及结构设计 1.1 前言 1964年,我国第一座30t氧气顶吹转炉炼钢车间在首钢建成投产。其后,上钢一厂三转炉车间、上钢三厂二转炉车间等相继将原侧吹转炉改为氧气顶吹转炉。20世纪60年代中后期,我国又自行设计、建设了攀枝花120t大型氧气顶吹转炉炼钢厂,并于1971年建成投产。进入20世纪80年代后,在改革开放方针策的指引下,我国氧气转炉炼钢进入大发展时期,由于氧气转炉炼钢和连铸的迅速发展,至1996年我国钢产量首次突破1亿t,成为世界第一产钢大国。 1.2 转炉概述 转炉(converter)炉体可转动,用于吹炼钢或吹炼锍的冶金炉。转炉炉体用钢板制成,呈圆筒形,内衬耐火材料,吹炼时靠化学反应热加热,不需外加热源,是最重要的炼钢设备,也可用于铜、镍冶炼。转炉按炉衬的耐火材料性质分为碱性(用镁砂或白云石为内衬)和酸性(用硅质材料为内衬)转炉;按气体吹入炉内的部位分为底吹、顶吹和侧吹转炉;按吹炼采用的气体,分为空气转炉和氧气转炉。转炉炼钢主要是以液态生铁为原料的炼钢方法。其主要特点是:靠转炉内液态生铁的物理热和生铁内各组分(如碳、锰、硅、磷等)与送入炉内的氧进行化学反应所产生的热量,使金属达到出钢要求的成分和温度。炉料主要为铁水和造渣料(如石灰、石英、萤石等),为调整温度,可加入废钢及少量的冷生铁块和矿石等。 1.2.1 转炉分类 1.2.1.1 炼钢转炉 早期的贝塞麦转炉炼钢法和托马斯转炉炼钢法都用空气通过底部风嘴鼓入钢水进行吹炼。侧吹转炉容量一般较小,从炉墙侧面吹入空气。炼钢转炉按不同需要用酸性或碱性耐火材料作炉衬。直立式圆筒形的炉体,通过托圈、耳轴架置于支座轴承上,操作时用机械倾动装置使炉体围绕横轴转动。 50年代发展起来的氧气转炉仍保持直立式圆筒形,随着技术改进,发展成顶吹喷氧枪供氧,因而得名氧气顶吹转炉,即L-D转炉(见氧气顶吹转炉炼钢);用带吹冷却剂的炉底喷嘴的,称为氧气底吹转炉(见氧气底吹转炉炼钢)。

转炉炼钢工艺标准经过流程

转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种

转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理;(2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3~5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3~5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min 后火焰微弱,停吹); (5)倒炉,测温、取样,并确定补吹时间或出钢; (6)出钢,同时(将计算好的合金加入钢包中)进行脱氧合金化。 上炉钢出完钢后,倒净炉渣,堵出钢口,兑铁水和加废钢,降枪供氧,开始吹炼。在送氧开吹的同时,加入第一批渣料,加入量相当于全炉总渣量的三分之二,开吹3-5分钟后,第一批渣料化好,再加入第二批渣料。如果炉内化渣不好,则许加入第三批萤石渣料。 吹炼过程中的供氧强度:

炼钢生产流程详细讲解

钢铁生产工艺主要包括:炼铁、炼钢、轧钢等流程。 (1)炼铁:就是把烧结矿和块矿中的铁还原出来的过程。焦炭、烧结矿、块矿连同少量的石灰石、一起送入高炉中冶炼成液态生铁(铁水),然后送往炼钢厂作为炼钢的原料。 (2)炼钢:是把原料(铁水和废钢等)里过多的碳及硫、磷等杂质去掉并加入适量的合金成分。 (3)连铸:将钢水经中间罐连续注入用水冷却的结晶器里,凝成坯壳后,从结晶器以稳定的速度拉出,再经喷水冷却,待全部凝固后,切成指定长度的连铸坯。 (4)轧钢:连铸出来的钢锭和连铸坯以热轧方式在不同的轧钢机轧制成各类钢材,形成产品。 炼钢工艺总流程图

炼焦生产流程:炼业是将焦煤经混合,破碎后加入炼焦炉经干馏后产生热焦碳及粗焦炉气之制程。

烧结生产流程:烧结作业系将粉铁矿,各类助熔剂及细焦炭经由混拌、造粒后,经由布料系统加入烧结机,由点火炉点燃细焦炭,经由抽气风车抽风完成烧结反应,高热之烧结矿经破碎冷却、筛选后,送往高炉作为冶炼铁水之主要原料。 高炉生产流程:高炉作业是将铁矿石、焦炭及助熔剂由高炉顶部加入炉,再由炉下部鼓风嘴鼓入高温热风,产生还原气体,还原铁矿石,产生熔融铁水与熔渣之炼铁制程。

转炉生产流程:炼钢厂先将熔铣送前处理站作脱硫脱磷处理,经转炉吹炼后,再依订单钢种特性及品质需求,送二次精炼处理站(RH真空脱气处理站、Ladle Injection盛桶吹射处理站、VOD真空吹氧脱碳处理站、STN搅拌站等)进行各种处理,调整钢液成份,最后送大钢胚及扁钢胚连续铸造机,浇铸成红热钢胚半成品,经检验、研磨或烧除表面缺陷,或直接送下游轧制成条钢、线材、钢板、钢卷及钢片等成品。 连铸生产流程:连续铸造作业乃是将钢液转变成钢胚之过程。上游处理完成之钢液,以盛钢桶运送到转台,经由钢液分配器分成数股,分别注入特定形状之铸模,开始冷却凝固成形,生成外为凝固壳、为钢液之铸胚,接着铸胚被引拔到弧状铸道中,经二次冷却继续凝固到完全凝固。经矫直后再依订单长度切割成块,方块形即为大钢胚,板状形即为扁钢胚。此半成品视需要经钢胚表面处理后,再送轧钢厂轧延.

转炉炼钢原理汇总

2.2 转炉炼钢的原理2.2.1 转炉炼钢原理简介:这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200 摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300 摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化( FeO, SiO2 , MnO ) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。当磷于硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15 分钟左右。如果空气是从炉低吹入,那就是低吹转炉。2.2.2 转炉冶炼的具体原理『(1)熔池元素氧化规律Si 的变化规律开吹时[ Si ]大量氧化,并结合为( 2 FeO ? SiO2 ),随石灰溶解转变为稳定化合物( 2CaO ? SiO2 ) Mn 的变化规律吹炼初期迅速氧化,中后期被[ C ]还原,后期由于渣中氧化性提高,[ Mn ]被再次氧化. C 的变化规律熔池中氧与碳生成CO }{气泡上浮,[% C ]×[% O ]=m(常数0.002~0.0025),[ C ]与[ O ] 成反比.吹炼初期由于[ Si ]、[ Mn ]的氧化,脱碳速度小,中期脱碳速度最快,后期[ C ]浓度低,脱碳速度下降. P 的变化规律低温、适宜的高碱度、高氧化性利于脱[P],吹炼前期应使石灰快速成渣,将( 3FeO ? P2 O5 ) 、置换为( 3CaO ? P2 O5 )和(4CaO ? P2 O5 )稳定化合物,使[P]去除. S 的变化规律高温利于脱[ S ],渣中( CaO ) 活度大,利于脱[ S ],但转炉渣的氧化性高,因此转炉的脱[ S ] 效率低.』[1] (2)转炉中各种元素具体的反应机理1 ○ Si 的变化规律钢液中硅的氧化特点在任何一种炼钢方法中,硅的氧化反应都进行得很激烈。因为硅是易氧化元素,在所有的杂质元素中,硅和氧的亲和力最大,硅的氧化产物是只溶于炉渣的酸性氧化物SiO2 ,它的分解压力比碳、锰、磷的氧化物分解压力都低,从而使得生成的SiO2 很稳定。所以,硅极易被氧化,且氧化时放出大量的热量。在氧气转炉中开吹几分钟内硅即被氧化完毕;在超高功率电炉大量用氧的情况下,在熔化末期或氧化初期,硅几乎氧化完毕;在普通电炉中熔化期硅将被氧化掉70%,少量的残余硅在氧化初期也能降低到最低限度;硅的氧化反应的反应产物容易从反应区排出。硅的氧化反应(1)硅的氧化反应方程式当金属炉料未被炉渣覆盖,或氧流直接吹入金属熔池时,炉料中的硅被气态氧直接氧化[ Si ] + {O2 } = ( SiO2 ) + 740645 J (1)当炉渣形成后或金属液滴和气泡与渣接触时,硅的氧化主要在炉渣与金属界面上进行2( FeO) + [ Si ] = ( SiO2 ) + 2[ Fe] + 341224 J (2)金属液中的[Si]和[O]的反应[ Si ] + [O] = ( SiO 2 ) + 817448 J (3)注意:硅的氧化都是较强的放热反应。(2)硅的氧化产物是SiO2 Si 氧化时产生的( SiO2 )起初与( FeO )结合生成硅酸铁( 2 FeO ? SiO2 ):( SiO2 ) + 2( FeO) = (2 FeO ? SiO2 ) (4)在碱性渣炼钢操作中,随着石灰的逐渐熔化, ( 2 FeO ? SiO2 ) 中的FeO 被强碱性的CaO 所置换得到氧化产物硅酸钙:2( FeO ? SiO2 ) + 2(CaO) = (2CaO ? SiO2 ) + 2( FeO) (5)硅酸钙(2CaO·SiO2)很稳定,所以在碱性炼钢操作中,冶炼前期Si 几乎全部被氧化,不会再被还原。硅的还原在酸性炼钢操作中,当熔池温度升高到一定程度后,将发生硅的还原反应。( SiO2 ) + 2[C ] = [ Si ] + 2{CO} (6)从反应式可看出,当有产生CO 气泡核心的条件时,就有可能发生Si 的还原反应。影响硅的氧化和还原反应的因素主要因素是温度、炉渣成分、金属液成分和炉气氧分压。(1) 温度低有利于硅的氧化;(2) 增加CaO、FeO 含量,有利于硅的氧化。(3) 金属液中增加硅元素含量,有利于硅的氧化;(4) 炉气中氧分压越高,越有利于硅的氧化。硅的氧化对冶炼的

高炉炼铁炼钢工艺

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要

方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

钢铁行业生产工艺流程

钢铁行业生产工艺流程 钢铁生产工艺主要包括:炼铁、炼钢、铸钢、轧钢等流程。 1. 炼铁 铁矿石的品种分为磁铁矿Fe3O4、赤铁矿Fe2O3、褐铁矿2Fe2O3.3H2O、菱铁矿FeCO3。铁矿石中除铁的化合物外,还含有硅、锰、磷、硫等的化合物(统称为脉石)。铁矿石刚开采出来时无法直接用于冶炼,必须经过粉碎、选矿、洗矿等工序处理,变成铁精矿、粉矿,才能作为冶炼生铁的主要原料。 将铁精矿、粉矿,配加焦炭、熔剂,烧结后,放在100米高的高炉中,吹入1200摄氏度的热风。焦炭燃烧释放热量,6个小时后温度达到1500度,将铁矿融化成铁水,不完全燃烧产生的CO将氧从铁水(氧化铁)中分离出来,换句话说CO作为还原剂将铁从铁水(氧化铁)中还原出来。熔剂,包括石灰石CaCO3、荧石CaF2,其作用是与铁矿石中的脉石结合形成低熔点、密度小、流动性好的熔渣,使之与铁液分离,以便获得较纯净的铁水。铁水即生铁液,然后被送往炼钢厂作为炼钢的原料。 宝钢炼铁车间由两座4063立米大型高炉组成,预留有第三座高炉的建设场地。全车间年产生铁600万吨(最终产量可达650万吨)。向炼钢车间热送576.6万吨铁水,钢锭模铸造车间热送6.78万吨,其余16.62万吨铁水送铸铁机铸块。全车间分两期建设,1号高炉计划1982年4季度投产,2号高炉计划1984年投产。全车间约占地572,000平米,采用半岛式布置,1、2高炉中心距370米,原料、燃料均用胶带运输机分别由原料场,烧结车间,炼焦车间送入矿槽、焦槽。筛下粉矿、碎焦亦由胶带运输机运出,转送烧结车间。铁水输送采用320吨鱼雷式混铁车。高炉煤气灰、垃圾、废铁的… 2. 炼钢 炼钢就是把原料(铁水)里过多的碳及硫、磷等杂质去掉并加入适量的合金成分。 最早的炼钢方法出现在1740 年,将生铁装入坩锅中,用火焰加热溶化炉料,之后将溶化的炉料浇铸成钢锭。1856 年,英国人亨利-贝塞麦发明了酸性空气底吹转炉炼钢法,第一次解决了铁水直接冶炼钢水的难题,从而使钢的质量得到提高,但此法不能脱硫,目前己被淘汰。

炼钢工艺流程

【导读】:转炉炼钢是把氧气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。炼钢的基本任务是脱碳、脱磷、脱硫、脱氧,去除有害气体和非金属夹杂物,提高温度和调整成分。归纳为:“四脱”(碳、氧、磷和硫),“二去”(去气和去夹杂),“二调整”(成分和温度)。采用的主要技术手段为:供氧,造渣,升温,加脱氧剂和合金化操作。本专题将详细介绍转炉炼钢生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 转炉冶炼目的:将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁的物理、化学性能与力学性能更好的钢。 【相关信息】钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。在钢中碳元素和铁元素形成Fe3C固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。 转炉冶炼原理简介: 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果氧气是从炉底吹入,那就是底吹转炉;氧气从顶部吹入,就是顶吹转炉。 转炉冶炼工艺流程简介:

转炉炼钢设计-开题报告(终极版)

湖南工业大学 本科毕业设计(论文)开题报告 (2012届) 2011年12月19日

顶底复吹技术,工艺成熟,脱磷效果好,在后续的生产中采用多种精炼方法,其中LF、RH 、CAS—OB、VOD、VAD的应用可以很好的控制钢水的成分和温度,生产纯净钢,不锈钢等,连铸工艺能够实现连续浇铸,提高产量,降低成本,同时随着连铸技术的发展,近终型连铸,高效连铸等多种连铸技术得到应用,大大的提高了铸钢的质量,一定范围内降低了企业的成本。经现代技术和工艺生产出来的如板材,管线钢,不锈钢等的质量得到了很大的保障,市场的信誉度高,市场需求量大。 故设计建造年产310万t合格铸坯炼钢厂是可行的,也是必要的。 2.2 主要研究内容 研究内容包括设计说明书和图纸两个部分。 2.2.1 设计说明书 (1)中英文摘要、关键词 (2)绪论 (3)厂址的选择 (4)产品方案设计 (5)工艺流程设计 (6)转炉容量和座数的确定 (7)氧气转炉物料平衡和热平衡计算 (8)转炉炼钢厂主体设备设计计算(包括转炉炉型、供气及氧枪设计、精炼方法及设备、连铸设备) (9)转炉炼钢厂辅助设备设计计算(包括铁水供应系统、废钢供应系统、出钢出渣设备、烟气净化回收系统) (10)生产规模的确定及转炉车间主厂房的工艺布置和尺寸选择(包括车间主厂房的加料跨、炉子跨、精炼跨、浇注跨的布置形式及主要尺寸的设计确定)(11)劳动定员和成本核算 (12)应用专题研究 (13)结论、参考文献 2.2.2 设计图纸 (1)转炉炉型图 (2)转炉炼钢厂平面布置图 (3)转炉车间主厂房纵向剖面图 2.3 研究思路及方案 (1)根据设计内容,书写中英文摘要、关键词。 (2)查阅专业文献,结合毕业实习,收集当前转炉炼钢工艺技术、车间设

转炉炼钢的一般原理

2转炉炼钢的一般原理 2-1什么是超音速氧射流,什么是马赫数,确定马赫数的原则是什么? 速度大于音速的氧流为超音速氧射流。超过音速的程度通常用马赫数量度,即氧流速度与临界条件下音速的比值,用符号Ma代表。显然,马赫数没有单位。 马赫数的大小决定喷头氧气出口速度,也决定氧射流对熔池的冲击能量。马赫数过大则喷溅大,清渣费时,热损失加大,增大渣料消耗及金属损失,而且转炉内衬易损坏;马赫数过低,会造成搅拌作用减弱,氧气利用系数降低,渣中TFe含量增加,也会引起喷溅。当Ma>2.0时,随马赫数的增长氧气的出口速度增加变慢,要求更高理论设计氧压,这样,无疑在技术上不够合理,经济上也不划算。 目前国内推荐Ma=1.9~2.1。 2-2氧气射流与熔池的相互作用的规律是怎样的? 超音速氧流其动能与速度的平方成正比,具有很高的动能。当氧流与熔池相互作用时,产生如下效果: (1)形成冲击区。氧流对熔池液面有很高的冲击能量,在金属液面形成一个凹坑,即具有一定冲击深度和冲击面积的冲击区。 (2)形成三相乳化液。氧流与冲击炉液面相互破碎并乳化,形成气、渣、金属三相乳化液。 (3)部分氧流形成反射流股。 2-3氧气顶吹转炉的传氧载体有哪些? 氧气顶吹转炉内存在着直接传氧与间接传氧两种途径。直接传氧是氧气被钢液直接吸收,其反应过程是:[Pe]+1/2{O2}=[FeO],[FeO]=[Fe]+[O];间接传氧是氧气通过熔渣传人金属液中,其反应式为(FeO)=[FeO]、[FeO]=[Pe]十[O]。氧气顶吹转炉传氧以间接传氧为主。 氧气顶吹转炉的传氧载体有以下几种。 (1)金属液滴传氧。氧流与金属熔池相互作用,形成许多金属小液滴。被氧化形成带有富氧薄膜的金属液滴,大部分又返回熔池成为氧的主要传递者;熔池中的金属几乎都经历液滴形式,有的甚至多次经历液滴形式,金属液滴比表面积大,反应速度很快。 (2)乳化液传氧。氧流与熔池相互作用,形成气—渣—金属的三相乳化液,极大地增加了接触界面,加快了传氧过程。 (3)熔渣传氧。熔池表面的金属液被大量氧化,而形成高氧化铁熔渣,这样的熔渣是传氧的良好载体。 (4)铁矿石传氧。铁矿石的主要成分是Fe2O3、Fe3O4,在炉内分解并吸收热量,也是熔池氧的传递者。 顶吹转炉的传氧主要靠金属液滴和乳化液进行,所以冶炼速度快,周期短。 2-4什么是硬吹,什么是软吹? 硬吹是指枪位低或氧压高的吹炼模式。当采用硬吹时,氧气流股对熔池的冲击力大,形成的冲击深度较深,冲击面积相对较小,因而产生的金属液滴和氧气泡的数量也多,气—熔渣—金属乳化充分,炉内的化学反应速度快,特别是脱碳速度加快,大量的CO气泡排出,熔池搅动强烈,熔渣的TFe含量较低。 软吹是指枪位较高或氧压较低的吹炼模式。在软吹时,氧气流股对熔池的冲击力减小,冲击深度变浅,冲击面积加大,反射流股的数量增多,对于熔池液面搅动有所增强,脱碳速度缓慢,因而对熔池内部的搅动相应减弱,熔渣中的TFe含量有所增加。 软吹和硬吹都是相对的。 2-5转炉内金属液中各元素氧化的顺序是怎样的? 氧化物分解压越小,元素越易氧化。在炼钢温度下,常见氧化物的分解压排列顺序如下:P{O2}(Fe2O3)>P{O2}(FeO)>P{O2}(CO2)>P{O2}(MnO)>P{O2}(P2O5)>P{O2}

炼钢的基本原理

炼钢的基本原理: 生铁,矿石或加工处理后的废钢氧气等为主要原料 炼钢的方法,一般可分为转炉炼钢、平炉炼钢和电炉炼钢三种方法。现分别介绍如下: 1. 转炉炼钢法这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化(FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷于硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。 2. 平炉炼钢法(平炉炼钢法也叫马丁法) 平炉炼钢使用的氧化剂通入的空气和炉料里的氧化物,(废铁,废钢,铁矿石)。反应所需的热量是由燃烧气体燃料(高炉煤气,发生炉煤气)或液体燃料(重油)所提供。 平炉的炉膛是一个耐火砖砌成的槽,上面有耐火砖制成的炉顶盖住。平炉的前墙上有装料口,装料机就从这里把炉料装进去。熔炼时关上耐火砖造成的门。炉膛的两端都筑有炉头,炉头各有两个孔道,供导入燃料与热空气,或从炉里导炉气之用。 平炉炼钢所用的原料有废钢、废铁、铁矿石和溶剂(石灰石和生石灰)。开始冶炼时,燃料遇到导入的热空气就在燃料面上燃烧,温度高达1800摄氏度。热量直接由火焰传给炉料,使炉料迅速熔化(铁的熔点是1535摄氏度,钢略低)。同时有一部分熔化的生铁生成氧化亚铁,生铁里的杂质硅、锰被氧化亚铁氧化,声成炉渣。由于炉里放有过量的石灰石,磷与硫等杂质就生成磷酸钙和硫化钙成为炉渣。其次碳也进行氧化,生成一氧化碳从熔化的金属里冒出,好象金属在沸腾一样。 反应快要进行完毕的时候,加入脱氧剂并定时把炉渣扒出。在冶炼将完成时要根据炉前分析(用快速分析法,几分钟可完成)来检验钢的成分是否合乎要求。炼锝的钢从出钢口流入钢水包里,再从钢水包注入模子里铸成制品或钢锭。

转炉炼钢工艺流程介绍

转炉炼钢工艺流程介绍 ---- 冶金自动化系列专题 【导读】:转炉炼钢是把氧气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。炼钢的基本任务是脱碳、脱磷、脱硫、脱氧,去除有害气体和非金属夹杂物,提高温度和调整成分。归纳为:“四脱”(碳、氧、磷和硫),“二去”(去气和去夹杂),“二调整”(成分和温度)。采用的主要技术手段为:供氧,造渣,升温,加脱氧剂和合金化操作。本专题将详细介绍转炉炼钢生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。【发表建议】 转炉冶炼目的:将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁的物理、化学性能与力学性能更好的钢。 【相关信息】钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。在钢中碳元素和铁元素形成Fe3C固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。 [查看全文] 转炉冶炼原理简介: 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果氧气是从炉底吹入,那就是底吹转炉;氧气从顶部吹入,就是顶吹转炉。 [查看全文] 转炉冶炼工艺流程简介:

转炉炼钢原理汇总

2.2转炉炼钢的原理 2.2.1转炉炼钢原理简介: 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (MnO SiO FeO ,,2) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷于硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 2.2.2转炉冶炼的具体原理 『 (1)熔池元素氧化规律 Si 的变化规律 开吹时[Si ]大量氧化,并结合为(22SiO FeO ?),随石灰溶解转变为稳定化合物 (22SiO CaO ?) Mn 的变化规律 吹炼初期迅速氧化,中后期被[C ]还原,后期由于渣中氧化性提高,[ Mn ]被再次氧化. C 的变化规律 熔池中氧与碳生成{CO }气泡上浮,[%C ]×[%O ]=m(常数0.002~0.0025),[ C ]与[O ]成反比. 吹炼初期由于[Si ]、[Mn ]的氧化,脱碳速度小,中期脱碳速度最快,后期[C ]浓度低,脱碳速度下降. P 的变化规律 低温、适宜的高碱度、高氧化性利于脱[P],吹炼前期应使石灰快速成渣,将(523O P FeO ?) 置换为(523O P CaO ?)和(524O P CaO ?)稳定化合物,使[P]去除. S 的变化规律 高温利于脱[S ],渣中(CaO ) 活度大,利于脱[S ],但转炉渣的氧化性高,因此转炉的脱[S ]效率低.』[1] (2)转炉中各种元素具体的反应机理 ○ 1Si 的变化规律 钢液中硅的氧化特点 在任何一种炼钢方法中,硅的氧化反应都进行得很激烈。因为硅是易氧化元素,在所 有的杂质元素中,硅和氧的亲和力最大,硅的氧化产物是只溶于炉渣的酸性氧化物2SiO ,它的分解压力比碳、锰、磷的氧化物分解压力都低,从而使得生成的2SiO 很稳定。所以,硅极易被氧化,且氧化时放出大量的热量。 在氧气转炉中开吹几分钟内硅即被氧化完毕; 在超高功率电炉大量用氧的情况下,在熔化末期或氧化初期,硅几乎氧化完毕; 在普通电炉中熔化期硅将被氧化掉70%,少量的残余硅在氧化初期也能降低到最低限 度; 硅的氧化反应的反应产物容易从反应区排出。 硅的氧化反应 (1)硅的氧化反应方程式

炼铁炼钢工艺流程

1.3 企业基本情况 新绛县祥益工贸有限公司根据山西省发展和改革委员会(晋发改备案【2007】146号)批文,建设450m3高炉,并配套建设90m3带式烧结机等。 新绛县祥益工贸有限公司位于运城市新绛县煤化工业园区,厂址距新绛县城10km,距离同蒲铁路侯马北货站10km,距大运高速公路出口2.5km,距晋韩高速公路出口3km,交通运输十分便利,地理位置非常优越。 新绛县祥益工贸有限公司占地面积约28万m2,目前拥有职工600余人,其中中层管理人员20人,各类专业技术人员40余人(其中高级技术人员3人,中级技术人员20人),职工队伍稳定,职工素质普遍提高。公司紧紧依托当地丰富的矿产资源优势,艰苦创业,我稳步发展。 新绛县祥益工贸有限公司始终坚持质量第一、信誉为本的宗旨,依靠全体员工团结拼搏、积极开拓、艰苦创业、自强不息的努力,企业迅速发展壮大,为新绛县经济发展做出贡献。 1.4 高炉生产工艺简述 高炉冶炼用的焦炭、含铁原料、溶剂在原料厂和烧结厂加工处理合格后,用皮带机运至料仓贮存使用。 各种炉料在仓下经二次筛分、计量后,按程序由仓下皮带机送到高炉料坑,由料车将炉料至炉顶加入炉内进行冶炼。 高炉冶炼的热源主要来源于焦炭和煤粉的燃烧。各种原料在炉内进行复杂的理化反应,炉内承受着高温高压作用。为此,高炉内要砌耐火材料,并在高温区和重要部位设冷却壁,确保高炉安全生产。 高炉冶炼用风由鼓风机站供给,冷风以热风炉加热后送入高炉。 高炉冶炼主要产品是生铁,副产品为煤气、炉渣、炉尘等。 高炉的铁水用铁水罐拉至铸铁机进行铸铁,或用汽车将铁水罐直接送至铸铁机进行铸铁,或用汽车将铁水罐直接送至炼钢厂进行炼钢。 高炉煤气经除尘、净化后一部分供热风炉烧炉,余下部分供烧结机、喷煤和6000kw发电机组。 高炉炉渣在炉前进行水冲渣,水渣送至建材厂制砖,或送至水泥厂作为制作水泥的原料。 高炉产生的各种原料、重力除尘拉到烧结厂进行配料烧结,煤气除尘的布袋拉到建材厂进行综合利用。 高炉生产工艺流程见图二。 1.6烧结生产工艺简述 90m3烧结机主要包括烧结机及相应配套的原料系统、配料系统、混料系统、破碎、筛分系统、鼓风冷却系统、成品贮存系统以及供风、供水、供电等辅助设施。 该工程主要由生产设施、辅助设施和生活设施三大部分组成,其中生活设施由建设单位同意考虑,故本设计只考虑生产设施和辅助设施。 生产设施包括原料及配料系统,主烧结室、带冷几室、风机房、烟卤,一混合室、二混合室、成品中间仓等。 辅助设施包括原料及配料系统除尘及配套风机,机头除尘室及配套风机、烟卤,机尾布袋出尘室及配套风机、变配电室、水泵房等。 生产设施的总图布置为带冷机室在、主烧结室东西方向布置,除尘室的南侧。原料上料及配料系统布置在主烧机室的东侧,一混合室、二混合室布置在主烧机室的南侧。成品中间仓布置在带冷机室的南侧,距高炉储矿槽100余米,由成品皮带将成品烧结矿送至高炉储矿槽上。 烧结生产工艺流程见图三。 1.8 高炉喷煤生产工艺简述 高炉喷煤配套工程,是节约焦炭、降低高炉炼铁生产成本的重要措施。自从六十年代我国鞍钢、首钢高炉喷煤会的成功以来很快在国内普遍推广应用,并且高炉喷煤在工艺及其相关技术得到了迅速发展。尤其是近几年发展的富氧大喷煤技术(宝钢喷煤煤比打达到≥200kg/Tfe水平)给高炉生产注入县的生机。国内炼铁生产规模不断扩大与高炉生产效率的提高,对焦炭需求量业日趋增加,由于国内

炼钢的生产流程及原理

级 论文题目:炼钢的生产流程及原理 专业 班级 姓名 学号 指导教师 日期

炼钢的生产流程及原理 摘要 本文概述了炼钢生产的现状及发展趋势,介绍了炼钢生产的流程、原理及现代炼钢方法。炼钢生产之初的造渣对钢的冶炼起到决定性作用,而碳、磷、硫、氧等成分的含量对钢的冶炼起着关键性作用,除此之外,钢中所含的气体和夹杂物对钢的质量也有影响。本文就造渣过程及脱碳、脱磷、脱硫、脱氧过程进行了详细的阐述。 总之,炼钢的生产过程可归纳为:“四脱”(脱碳、脱磷、脱硫、脱氧),“二去”(去气和去夹杂)“二调整”(调整成分和温度)。 关键词:

目录 摘要 第一章引言 (1) 第二章现代炼钢方法简介 (3) 2.1 氧气转炉炼钢 (3) 2.1.1 氧气顶吹转炉炼钢法特点 (3) 2.1.2 氧气底吹转炉炼钢法特点 (3) 2.1.3 复合炼钢法特点 (4) 2.2电弧炉炼钢 (4) 第三章炼钢的生产流程及原理 (6) 3.1炼钢的基本任务 (6) 3.2 炼钢原材料的来源 (7) 3.3 装料 (7) 3.4 炼钢炉渣 (7) 3.4.1 造渣 (8) 3.4.2 炼钢炉渣的作用 (10) 3.4.3 炼钢炉渣的来源 (11) 3.4.4 炼钢炉渣的分类与组成 (11) 3.4.5 炼钢炉渣的主要性质 (11) 3.5 炼钢过程的基本反应 (13) 3.5.1 碳的氧化 (13) 3.5.2 硅的氧化和还原 (14) 3.5.3 锰的氧化和还原 (15) 3.5.4 脱磷反应 (15) 3.5.5 脱硫反应 (17) 3.5.6 脱氧 (18) 3.6 去除钢中的气体 (21) 3.7降低钢中的非金属夹杂物 (22) 3.8 出钢 (24) 结论 (25) 参考文献 (26) 致谢 (27)

高炉炼铁生产工艺流程简介

高炉炼铁生产工艺流程简介 [导读]:高炉炼铁生产是冶金(钢铁)工业最主要的环节。高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。本专题将详细介绍高炉炼铁生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。付产品有:水渣、矿渣棉和高炉煤气等。 高炉冶炼原理简介: 高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。生产时,从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。装入高炉中的铁矿石,主要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石中的氧夺取出来,得到铁,这个过程叫做还原。铁矿石通过还原反应炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生成炉渣,从出铁口和出渣口分别排出。煤气从炉顶导出,经除尘后,作为工业用煤气。现代化高炉还可以利用炉顶的高压,用导出的部分煤气发电。 高炉冶炼工艺流程简图: [高炉工艺]高炉冶炼过程: 高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中, 定期从铁口、渣口放出。 高炉冶炼工艺--炉前操作

相关主题
文本预览
相关文档 最新文档