当前位置:文档之家› 基于活性聚合技术的偶氮苯聚合物研究进展

基于活性聚合技术的偶氮苯聚合物研究进展

基于活性聚合技术的偶氮苯聚合物研究进展
基于活性聚合技术的偶氮苯聚合物研究进展

第14卷 第3期2006年9月山东交通学院学报J OURNAL OF S HANDONG JI AOTONG UNI VERSI TY Vo.l 14No .3Sep.2006

收稿日期:2006-07-09

基金项目:国家自然科学基金资助项目(29874020,58573049);山东省教育厅科技基金资助项目(J 05D11);山东交通学院科研基金资助项目(Z200617)作者简介:唐新德(1968-),男,山东荣成人,山东交通学院副教授,北京大学博士后,主要从事功能高分子和功能树状物研究.

基于活性聚合技术的偶氮苯聚合物研究进展

唐新德1,张其震2

(1.山东交通学院新材料研究所,山东济南 250023;2.山东大学化学与化工学院,山东济南 250100)

摘要:偶氮苯类聚合物的光致各向异性、光致变色等功能在光电信息技术领域具有潜在的应用,采用活性聚合

技术可得到预定结构与分子量的偶氮苯聚合物,对于研究此类聚合物的结构与性能关系,深入探索其应用具有

重要意义。综述了10a 来该技术领域的发展,尤其是近年来的最新研究进展,并对其前景做了展望。

关 键 词:活性聚合技术;偶氮苯聚合物;阴离子聚合;阳离子聚合;原子转移自由基聚合

中图分类号:O63 文献标识码:A 文章编号:1672-0032(2006)03-0070-06

近年来,偶氮苯类聚合物的研究引起了人们的广泛关注[1-2]。由于偶氮苯发色团在光照射下发生可

逆的顺反异构,且在偏振光作用下会发生分子取向重排。偶氮苯聚合物的光致各向异性、光致变色等功能在光信息储存、光放大、光电子、光控分子取向、分子开关、二次谐波、电光调制、光折变效应、集成光学等方面具有巨大的应用潜力。

制备具有可控分子量和结构规整的聚合物是现代合成高分子化学的主要目标之一[3],活性聚合技术为实现对聚合物结构进行设计开辟了一条切实可行的途径。活性聚合技术具有分子量随转化率呈线性增加、分子量分布窄、端基可以是特定官能团以及可合成结构规整聚合物等特点,通过活性聚合易得到预定结构和序列的嵌段共聚物和接枝共聚物以及结构复杂的星形或树状聚合物。依引发机理不同,活性聚合可分为活性离子性聚合(包括阳离子活性聚合、阴离子活性聚合、配位活性聚合)和活性自由基聚合(包括稳态自由基聚合、原子转移自由基活性聚合和可逆加成)裂解)链转移聚合反应等)。而到目前为止,大多数偶氮苯聚合物采用普通自由基聚合或无规共聚法合成[1,4-6],结构不规整性与分子量分布较

宽等缺点限制了其作为特定功能材料的应用。采用活性聚合技术合成偶氮苯类聚合物则较好地解决了这一问题,虽然在引发偶氮苯单体聚合时部分引发剂会失活而导致实际分子量高于理论分子量

[7],但是近年来采用活性聚合技术,例如阴离子聚合、阳离子聚合以及原子转移自由基聚合,特别是通过原子转移

自由基聚合技术合成与研究偶氮苯聚合物出现了较快发展。1 活性阴离子聚合

阴离子聚合是开发最早、发展最为完善的活性可控聚合技术,采用该法成功获得了单分散聚合物、预定结构和序列的嵌段共聚物和接枝共聚物。但阴离子聚合反应条件苛刻,可聚合的单体少,故应用受到限制,其应用于偶氮苯聚合物方面的研究也较少。

1997年,Ober 及其合作者采用活性阴离子聚合技术合成了苯乙烯-异戊二烯双嵌段共聚物,通过将偶氮苯单体与异戊二烯嵌段连接,得到了含偶氮苯的液晶刚柔嵌段共聚物(图1)[8]。当液晶体积分数在0.20~0.82之间,嵌段共聚物显示近晶相,且清亮点温度基本相同,而清亮焓则强烈依赖于嵌段组成变化,随液晶嵌段体积分数的降低而降低。当液晶嵌段体积分数为0.22时,在透射电镜(TE M )下首次观察

图1 液晶刚柔嵌段共聚物

到液晶圆柱体形貌(微域)。Sol a ro 等利用正丁基锂引发4-乙烯基

偶氮苯与苯乙烯的聚合,但是产率和产物分子量较低[9]。

F i n kel m ann 等采用阴离子聚合技术合成了AB 型与AB A 型嵌段

共聚物,其中嵌段A 为侧链液晶聚合物(LC 段),嵌段B 为各向同性

聚合物(I 段)[10]。与双亲性嵌段共聚物含亲水段与疏水段类似,L C /

I 嵌段共聚物含/亲向列性0液晶段(可溶于向列性溶剂)与/疏向列

性0段(不溶于向列性溶剂)。在低分子量液晶的稀溶液中研究了聚

合物分子量、嵌段组成及嵌段长度比对LC /I 嵌段共聚物性能的影响,

发现在向列性溶剂中,含高组分I 段的共聚物不溶,出现相分离,而含

高组分LC 段的共聚物完全可溶。当LC 段重量比在0.46~0.85之

间,在向列性溶剂中可形成热可逆线形聚集体,这些线形聚集体直径

均匀(2~3L m ),含有双层囊泡。与水溶液中双亲嵌段共聚物囊泡的

球形结构相反,在向列性溶剂中囊泡的棒状结构源于向列性基质自由

弹性能量密度的最小化。2 活性阳离子聚合

活性阳离子聚合技术应用于偶氮苯类聚合物的研究鲜有报导。1997年,Solaro 等以无水二氧六环为溶剂,采用BF 3#OE t 2引发4-乙烯基偶氮苯的阳离子均聚反应未获成功[9]。

最近,Aosh i m a 等采用活性阳离子聚合技术,以甲苯为溶剂,在乙基铝倍半氯(E t 1.5A l C l 1.5)/1-异丁氧基乙酸乙酯(I BEA )-乙酸乙酯引发体系下,实现了4种不同偶氮类乙烯基醚单体(A z o VE 、MA z o VE 、A A zo VE 、Sudan1V 见图2)与异丁基乙烯基醚的统计性共聚合

[11]。虽然单体结构不同,但所有共聚过程呈现活性聚合特征,得到的共聚物分子量分布很窄(M w /M n =1.06~1.13)。聚合物结构与图2 偶氮类乙烯基醚单体

乙烯基聚合机理相吻合,不同波长下的光诱导异构化可

通过改变偶氮苯苯环取代基实现。同时在类似引发体系

下,合成了4-(2-乙烯氧基乙氧基)偶氮苯(A zo VE )与

2-(2-乙氧基)乙氧基乙基乙烯醚(EOEOVE )的无规共

聚物[12]。该聚合物在紫外光照射下,雾点温度与可见光

照射不同,这是由于偶氮苯基团的顺反异构化造成的,这

使得在固定温度下,通过特定波长光的照射,控制聚合物

的溶解性,从而产生高灵敏度光诱导相分离成为可能。

另外,他们还合成了2-甲氧基乙基乙烯基醚(MOVE )与

4-(2-乙烯氧基乙氧基)偶氮苯(A z o VE )的共聚物,该

聚合物具有热敏感性,可用于聚合物表面修饰[13]。3 原子转移自由基聚合(ATRP)

活性自由基聚合是近年来发展起来的一类新的结构可控的自由基聚合方法。它既具有自由基聚合反应条件温和的优点,同时又具有活性聚合的活性特征。其中原子转移自由基聚合(AT RP)技术由于适用单体广泛,反应条件温和而备受人们关注,是发展较为迅速的一种活性自由基聚合反应

[14-15],应用于偶氮苯聚合物的合成取得了迅速发展。鉴于偶氮苯均聚物的合成与性质相对简单,此处重点讨论偶氮苯嵌段共聚物的研究进展。71第3期 唐新德等:基于活性聚合技术的偶氮苯聚合物研究进展

3.1 AB 型两嵌段共聚物

Iyoda 等[16]首次合成了系列含偶氮苯基团的双亲热致液晶嵌段共聚物及相应的偶氮苯均聚物(图3)。嵌段共聚物亲水段为聚环氧乙烷(PEO),疏水段为聚(11-[4-(4-丁基苯基偶氮)酚氧基]十一烷甲基丙烯酸酯),分子量分布系数M w /M n =1.08~1.11,在105e 时退火24h ,可清楚地观察到PEO 嵌段分散于液晶嵌段形成的圆柱形与球形形貌,为典型的纳米相分离结构,其尺寸大小在10~20nm ,并随着液晶组分的增加而增大。光物理学与光化学研究表明退火的均聚物薄膜偶氮苯发色团显示强烈H 型聚集和复杂的顺反光化学过程,而退火的嵌段共聚物则无明显的H 型聚集,光化学过程也比较简单。嵌段共聚物与偶氮苯均聚物显著不同的行为可认为源于嵌段共聚物形成的纳米结构,可望为偶氮苯嵌段共聚物在新的光储存和全息材料领域寻求到新的应用。

衍射效率(DE )是全息光栅的重要技术指标之一,其控制与稳定已成为人们关注的焦点。Ikeda 等[17]以上述双亲嵌段共聚物为例研究了表面凸起光栅(SRG )的增强效应。通过纳米级相分离(NSPS)作用使表面调制显著增强,室温下全息光栅可在短时间内通过两束低强度相干激光刻写,退火后DE 约提高两个数量级。SRG 的增强过程可通过NSPS 得到控制。由于信息通过热处理很容易读出,故这种全息光栅可用于安全信息储存。

Zhao 等合成了另一系列含聚苯乙烯和聚偶氮苯的液晶双嵌段共聚物,研究了不同的激发态下共聚物的光诱导双折射现象,表明嵌段共聚物的微结构特性阻碍了偶氮苯液晶基团的光排列

[18]。进一步研究了含偶氮苯的液晶嵌段共聚物对光排列、光化学相转变和热致变色行为的限制作用

[19]。Gan 等通过AT RP 反应将含不同取代基的偶氮苯类甲基丙烯酸酯与2-(二甲基氨基)乙基甲基丙烯酸酯共聚,得到一类新的两亲性嵌段聚合物(图4)[20-21]。因为偶氮苯单体高度疏水,只有含短偶氮苯链的共聚物溶于水,自组装为胶束微粒。研究了光诱导顺反异构化对低临界溶液温度(LCS T)与表面张力的影响。当紫外光照射时,由于顺式结构更加亲水,LCST 增加,但是顺反异构化对临界胶束浓度的影响较小,共聚物可形成核-壳胶束,并首次就结构规整聚合物胶束结构的光化学顺反异构与可逆热回复(反顺异构)

动力学进行了研究。

M atyjasze wsk i 等合成了以聚丙烯酸正丁酯为软段、聚偶氮苯侧链液晶为刚性嵌段的AB 型嵌段共聚物[22]9358。采用不同的溶剂和不同的喷涂工艺制备的薄膜在原子力显微镜(AF M )下观察,其形貌强烈依赖于样品的制备条件和热历史。

L i 等合成含聚乙二醇(PEG)和热致性液晶聚合物的双亲嵌段共聚物PEG -P MAaz o444,可形成结构规整的单层囊泡[23]。

3.2 AB A 型三嵌段共聚物

Zhao 等合成了系列AB A 三嵌段共聚物,这是一类具有光活性的热塑性弹性体,其中B 为聚丙烯酸正丁酯,A 为恻链含偶氮苯的甲基丙烯酸酯液晶聚合物[24]。弹性、液晶性和光活性的结合使此类共聚物具有独特性质。与失去弹性的传统热塑性弹性体(例如聚苯乙烯-丁二烯-苯乙烯三嵌段共聚物)相比,液晶微区可支持部分聚丙烯酸正丁酯链的弹性延伸,同时形变导致偶氮苯液晶在长范围内取向。H e 等合成了以聚乙二醇(PEG)为B 嵌段,甲氧基偶氮苯为A 嵌段的ABA 型三嵌段共聚物(图5),72 山东交通学院学报 2006年9月 第14卷

显示液晶性[25]。随着液晶嵌段摩尔含量增加,由近晶相到向列相与由向列相到各向同性相转变的温度增高,PEG 的结晶受到抑制。

Sek i 等用另一种AB A 型偶氮苯三嵌段共聚物制备单层膜,在原子力显微镜下观察到二维相分离的光控活性与准可逆性[26]。M atyjasze wsk i 等合成了以聚丙烯酸正丁酯为中间嵌段,聚偶氮苯侧链液晶为两

侧嵌段的ABA 型三嵌段共聚物[22]9360

图5 双亲ABA 型三嵌段共聚物L i 等合成了液晶/各向同性(LC /Iso)ABA 型三嵌段共聚物,自组装为层状液晶相

[27]。这种新型的液晶嵌段共聚物可用做/人造肌肉0的模型体系。

3.3 ABC

型三嵌段共聚物

图6 双亲ABC 型三嵌段共聚物Ikeda 等以亲水性聚环氧乙烷的溴化物

(PEOBr)为大分子引发剂,引发单体11-(4-氰基

二苯氧基)十一烷基)甲基丙烯酸酯(M A11CB)的

ATRP 反应,合成双亲性两嵌段共聚物PE O -P M A

(11CB),以此聚合物进一步引发11-[4-(4-丁基

苯基偶氮)酚氧基]十一烷基甲基丙烯酸酯

(MA11A z)的AT RP 反应,得到相应的三嵌段共聚物

PEO-P M A (11CB)-P M A (11Az)(图6)[28]。这两

种共聚物结构稳定,分子量分布窄,在较宽的温度区

间内显示近晶相。从分子设计角度看,在PE O 与

PAz 嵌段之间插入新的介晶基团将具有新的功能,

例如协同运动、相分离和光敏性等。另一方面,液晶

基元与偶氮分子之间的协同分子运动可应用于三嵌

段共聚物的光调制,可能对微相分离和光栅增强产

生有利的影响。

图7 不等臂星形偶氮苯侧链液晶聚合物

3.4 星形或超支化共聚物

星形聚合物是由多条线性链通过结点连接

的聚合物。规则的星形聚合物具有单一支化

点,所有臂的分子量分布均匀,但也有不对称的

星形聚合物,如AB 2型或ABA 型聚合物。

张海良等合成了AB 2型(或Y 型)不对称

的三臂星形聚合物(图7),其中A 为聚苯乙烯,

B 为甲氧基偶氮苯的聚合物[29]。该不等臂星形聚合物的液晶性与偶氮苯均聚物相似。

颜德岳等通过自缩合ATRP 共聚合成了超支化偶氮苯侧链液晶共聚物

[30]。超支化共聚物的支化度

可以通过共聚单体的投料比控制,并影响其液晶性。4 结论与展望

通过活性聚合合成偶氮苯聚合物的研究只有近十年的历史,而采用活性离子性聚合(阴离子聚合、阳离子聚合)的例子很少,只是AT RP 技术出现后,基于该技术的偶氮苯聚合物的合成与研究才得到了快速发展。从上述文献可以看出,目前该领域的研究还集中于简单线性嵌段共聚物的合成与表征,而涉及复杂结构规整性聚合物,例如树状聚合物的合成尚未见报导。另一方面,对此类聚合物的性能研究还处在73第3期 唐新德等:基于活性聚合技术的偶氮苯聚合物研究进展

74山东交通学院学报2006年9月第14卷起步阶段。可以预见,基于活性聚合技术的复杂偶氮苯聚合物的合成研究、偶氮苯信息材料的光电性能研究、偶氮苯聚合物在选择性溶液中的自组装行为研究将成为该领域的研究热点,并为探索此类聚合物的现实应用提供技术支持。

参考文献:

[1]N at an s ohn A,Rochon P.Photoi nduced M oti ons i n A z o-Contai n i ng Pol y m ers[J].Che m Rev,2002,102(11):4139-4176.

[2]Ikeda T.Phot o m odu l ati on of L i qu i d Crys t al Orientati ons for Photon ic Appli cati ons[J].J M ater Che m,2003,13(9):2037-2057.

[3]W ebster O W.L i v i ng Poly m erizati on M ethods[J].Science,1991,(251):887-893.

[4]V i s wanat han N K,K i m D Y,Bi an S,et a.l Su rf ace Reli ef Stru ctures on A z o Po l y m er F il m s[J].J M ater Ch e m,1999,9(9):1941-1956.

[5]Wu Y,Zh ang Q,Kanaza wa A,et a.l Photoi nduced A lignm ent of Pol y m er L i qu id Crystals Contai n i ng Azob enzeneM oi eti es i n the Si de Chain.5.

E ffect of the A z o Con tents on A li gnm en t Behavi or and Enhanced Res ponse[J].M acromolec u les,1999,32(12):3951-3956.

[6]And ruzziL,A l to m are A,C i ardelli F,et a.l H ol ograph i c G rati ngs i n Azobenzene Si de-Chai n Po l y m et hacry l ates[J].M acro m olecu les,1999,

32(2):448-454.

[7]N at an s ohn A,Rochon P,Gosseli n J,et a.l Azo Poly m ers f or Reversi b le Opti ca lStorage.1.Pol y[4-'[[2-(A cry l oy l oxy)E thyl]E t hyla m i n o]

-4-N itroazoBen zene][J].M acro m olecu les,1992,25(8):2268-2273.

[8]M ao G,W ang J,Ober C K,et a.l M ol ecu l ar Desi gn,Synthesis,and Characteri zati on of Liqu i d Crystal-Coil D i block Copo l y m ers with

A zobenzen e Si d e Group s[J].M acro m ol ecu l es,1997,30(9):2556-2567.

[9]A l to m areA,Ci ardelliF,Sol aro R,et a.l4-V i nyl az ob e n ze n e:Pol ymeri zab ility and Photoc h ro m ic Properti es of It s Pol y m ers[J].M acro m ol ecules,

1997,30(5):1298-1303.

[10]WaltherM,Fau l ha m m erH,Fi nkel mann H.On t he Th read-L i keM orphol ogy of LC/I Bl oc k Copoly m ers i n Ne m ati c Sol vents[J].M acro m ol

Che m Phys,1998,199(2):223-237.

[11]Y osh i da T,Kanaoka S,A osh i m a S.Photosens itive Copol ym ersW i th V arious Types ofAzob enzene Si de Groups Syn t h esized by L li vi ng Cati on ic

Pol y m eri zati on[J].J Poly m Sc,i Part A:Pol ym Che m,2005,43(18):4292-4297.

[12]Yosh i da T,K anaok a S,A osh i m a S.Ph oto-Respon si ve Copoly m ers W it h A z ob enzene Si de Group s Syn t h es i zed by Livi ng Cati on ic

Pol ym eriz ati on:E ffici en tAm pli fi cati on of Photosen sitivit y i n Aqu eous Phot o-S w i tch i ng Syste m[J].J Po l y m Sc,i Part A:Poly m Che m, 2005,43(21):5337-5342.

[13]Y osh i da T,Kan aoka S,Aos h i m a S,et a.l Po l y m er Su rfaceM od ificati on U si ng Diblock Copol ym ers Contai n i ng A zobenzen e[J].J Poly m Sc,i

PartA:Pol y m Che m,2005,43(22):5704-5709.

[14]M atyjasze wsk iK,X i a J.Ato m Transfer Rad i calPoly m erizati on[J].Che m Rev,2001,101(9):2921-2990.

[15]K a m igaitoM,Ando T,Sa wa m ot o M.M etal-Catal yzed L i v i ng Rad ical Po l y m eri zation[J].Ch e m R ev,2001,101(12):3689-3745.

[16]T i an Y,W at an abe K,Iyoda T,et a.l Syn t hesis,N anos tructures,and Functionality of Amph i ph ilic L i qu i d Crystalli n e Block Copo l y m ers with

A z obenzene Mo i eties[J].M acro m olecu les,2002,35(9):3739-3747.

[17]Yu H,Ok ano K,Ik eda T,et a.l Enhan ce m ent of Surface-Reli efG rati ngs Recorded on A m ph i ph ilic L i qu i d-Crys t alli ne D i b lock Copoly m er

by N anos cal e Ph ase Separation[J].AdvM ater,2005,17(18):2184-2188.

[18]Cu iL,Zhao Y,Yavri an A,et a.l Syn t hesis of Azoben z en e-Con t a i n i ng D i b l ock Copol y m ers Us i ng A t o m T rans f er Rad ical Pol y m eri zation and

t h e Phot oali gn m en t Beh avi or[J].Macro m ol ecu l es,2003,36(22):8246-8252.

[19]Tong X,Cu i L,Zhao Y.Confi ne m en t E ffects on Phot oali gn m en t,Photoche m ical Phas e T rans iti on,and Ther m ochro m ic Behavi or of L i qu i d

Crystalli ne Azob enzene-Con tai n i ng D i b l ock Copol ym ers[J].Macro m ol ecu l es,2004,37(9):3101-3112.

[20]Ravi P,Si n S L,Gan H L,et a.l N e wW ater Sol ub leA z ob enzene-Contai n i ng D i b l ock Copol y m ers:Syn thes i s and Aggregati on Behav i or[J].

Pol ym er,2005,46(1):137-146.

[21]Si n S L,Gan H L,H u X,et a.l Phot oche m i ca l and Ther m al Ls om eriz ati on s of Azoben zene-Contai n i ng Amph i ph ilic D i b l ock Copoly m ers i n

A qu eous M i cell ar Aggregates and i n F il m[J].M acro m ol ecu l es,2005,38(9):3943-3948.

[22]H an Y-Y,Dufour B,M at y j asz ews k i K,et a.l Synthes i s and Ch aracteriz ati on of Ne w L i qu i d-Crystalli ne Bloc k Copo l y m ers wit h P-

Cyanoazob enzeneM oieti es and Pol y(n-bu t y l acrylate)Seg m en ts U si ng Ato m-T rans f er Rad ical Po l y m eri zation[J].M acro m olecu les,2004, 37(25):9355-9365.

[23]Y ang J,Levy D,L iM,et a.l Poly m er Vesicl es For m ed by Am ph i ph ilic D i b l oc k Copoly m ers Contai n i ng a Th er m otrop ic Liqu i d Crystalli ne

Pol y m er Block[J].Che m Co m m un,2005,(34):4345-4347.

[24]Cu iL,Tong X,Yan X,et a.l Phot oactive Th er m op l asti c E l ast omers ofA z ob enzene-Con tai n i ng T ri b l ock Copol y m ers Prepared Through A to m

Tran sfer R ad i cal Pol y m eriz ati on[J].M acro mo l ecules,2004,37(19):7097-7104.

[25]H e X,Zhang H,Yan D,et a.l Synthesis of Si de-Chai n L i quid-Crystalli ne Ho m opol y m ers and Tri b l oc k Copol y m ers wit h P-m et hoxyazobenzene

Moieties a nd Pol y(et hyl ene gl ycol )as Coil Seg m ents by Ato m Transf er RadicalPol y m eri zati on and Th eir Ther m otrop i c Phas e Behavi or [J].J Pol y m Sc,i PartA :Poly m Che m ,2003,41(18):2854-2864.

[26]K adota S ,Aok iK ,Sek iT ,et a.l Photocontro ll ed M i crophas e Separation of Bl ock Copoly m ers i n Two D i m ens i on s [J ].JAm Che m Soc ,2005,

127(23):8266-8267.

[27]L iM,K eller P ,A l bouy P- A.Novel Liqu i d Crystalli n e Bl ock Copol y m ers by ATRP and RO M P [J].M acro m olecu les ,2003,36(7):2284

-2292.

[28]Yu H,Sh is h i do A,Ikeda T,et a.l NovelAm ph i ph ilic D i b l ock and T ri b l ock L i qu i d -Crystalli ne Copol ymers w it h Well-Defi n ed Stru ctures

Prepared by Ato m Transfer Rad i calPol ym erizati on [J].M acro m olRap i d Co mmun,2005,26(20):1594-1598.

[29]Chen J ,Zhang H,W ang X ,et a.l Syn t hesis of aN ovel M i k t oar m Star Azoben zene Si de-Ch ai n Liqu i d Crystalli ne Copol ym ers by A t om Transfer

Rad i calPoly m erizati on [J].Pol ym Bu l ,l 2005,53(4):223-230.

[30]H e X,Yan D .Branch ed A z ob enzene Si de-Chai n L i qu i d-Crystalline Copol y m ers Ob tai ned by Self -Conden si ng ATR Copo l y m eri zati on [J].

M acro m olRapid Co mmun,2004,25(9):949-953.

P rogress of Azobenzene -Conta i n i ng P oly m er by

L ivi ng Poly m erization

TA NG X i n -de 1,Z HA NG Q i -z he n 2

(1.Instit u te o f N e w Ma te rials ,Shand ong J i aotong Univers ity ,J i nan 250023,China;

2.School of Ch e m is try and Che m i ca lE ng i n ee ring,Shandong Univers it y,J inan 250100,Ch i na )

Abstr act :Photoi s o merization and photochro m is m of az obenzene-con taining pol y m er are su itab le f or optical data storage applicati o ns ,photos w itching ,a li g n m ent of li q u i d crysta ls ,optical e le m ents ,and ot h er photon i c devices .Predeter m inded structure and molecular we i g ht can be rea lized by livi n g poly meriz ati o n techn i q ue ,wh ich benefits the research of the relatives bet w een str ucture-pr operty and the exploration of the ir app lications .The progress in th is area i n recent ten years ,espec i a ll y in the past f e w years ,are revie wed .The deve lopment directions in this area are predicted.

K ey w ord s :li v i n g pol y meri z ati o n ;az obenz ene -contai n i n g poly mer ;anionic poly meriz ati o n ;cati o nic pol y merization ;ato m transf er r adical pol y merization

作者简介:

唐新德,男,1968年生,山东荣成人,山东交通学院副教授,工学博士,2004~2006年在北京大学化学与分子工程学院教育部高分子化学与物理重点实验室从事博士后研究工作。主要研究方向为功能高分子材料、功能树状大分子、环境友好材料等。作为主要完成人参与3项国家自然科学基金项目(面上项目2项、重点项目1项)和1项教育部重点研究项目,主持完成军队科技项目4项,其中获军队科技进步三等奖(第2位)1项。现主持中国博士后科学基金1项、山东省教育厅科技项目1项。在国内外学术刊物发表学术论文50余篇,其中SC I 、E I 收录20余篇。

(责任编辑:杨秀红)75

第3期 唐新德等:基于活性聚合技术的偶氮苯聚合物研究进展

发光性液晶共轭聚合物的研究进展[1]

发光性液晶共轭聚合物的研究进展 王国杰 李 敏3 陈欣方 (吉林大学材料科学系 长春 130023) 摘 要 综述了可用做发光材料的液晶共轭聚合物(LCCPs)的种类及其制备,介绍了LCCPs在制备发光器件中的取向方法,并对其光学性能进行了评述。 关键词 液晶聚合物 共轭聚合物 发光 Abstract The development of liquid crystalline conjugated polymers(LCCPs)used as light emitting materials is reviewed.The synthesis and properties of electroluminescent LCCPs,and various techniques for orienting LCCPs are presented. K ey w ords Liquid crystalline polymers,C onjugated polymers,Luminescence 1990年Burroughes等[1]在Nature上首次报道了聚合物半导体聚苯撑乙烯(PPV)的电致发光性。随后在1991年得到了Heeger等的进一步确证[2],从此,发光聚合物的研究在世界范围内广泛开展起来。相对于无机和有机小分子发光材料,共轭聚合物发光材料具有以下特点[3]:有良好的成膜性及加工性、可通过旋涂、浇铸等方法制成大面积薄膜;共轭聚合物有优良的粘附性、机械强度及稳定性;其电子结构、发光颜色等通过化学结构的改变和修饰可进行调节;虽然,聚合物自身的电导率很低,但作发光层的膜非常薄(100nm),因此即使驱动电压很低,加在聚合物膜上的电场强度仍足以产生器件发光所需要的电流密度,从而消除了掺杂带来的结构不稳定性。 液晶共轭聚合物(LCCP)是近几年发展起来的一类新型的功能高分子[4~14],它兼有液晶聚合物和共轭聚合物的双重特性,集液晶性和发光性于一身。与各向同性发光聚合物相比,LCCP具有独特的长程有序性、光学各向异性。因而,可用于制备具有偏振发光性和发光视角可控的新型发光器件,并且其分子排列的各向异性可导致材料电荷传输的各向异性。具有取向的发光聚合物发射的偏振光用做液晶显示(LC D)的背照明,可明显提高LC D的亮度、对比度、发光效率和视角等。LCCP 在信息显示方面的应用前景和可观的实用价值,已经引起了科学界和工业界极大兴趣。本文将综述这一类新型功能高分子的研究进展。 1 液晶共轭聚合物的合成与性质 按照聚合物主链的不同,目前文献报道的液晶共轭聚合物可分为聚苯撑乙烯型、聚苯型、聚噻吩型、共聚噻吩型等四类。图1给出了文献报道的液晶共轭聚合物的分子结构。 1.1 聚苯撑乙烯型 二卤代苯与二烯苯通过Heck偶合反应可制备2,52二烷氧基聚苯撑乙烯[4](图1a)。反式聚苯撑乙烯衍生物主链刚硬,侧链烷氧基柔韧,因而,在一定条件下呈现出向列液晶相。此类LCCP的 王国杰 男,28岁,博士,从事高分子化学与物理研究。 3联系人 国家自然科学基金资助项目(29974013) 2000201209收稿,2000205230修回

聚噻吩类导电聚合物的研究进展

聚噻吩类导电聚合物的研究进展 姓名:丁泽 班级:材化12-3 学号:1209020302

摘要 π-共轭聚合物被认为是很有发展前景的材料,因为它拥有独特的光电特性,可以被广泛的应用于太阳能电池(PSCs),电致变色器件,传感器,聚合物发光二极管(PLEDs)等各种领域。这些电活性与光活性聚合物通常是基于噻吩,吡咯,苯,芴或咔唑等芳环、芳杂环等单元的聚合物。在大量的电致变色材料中,噻吩类聚合物由于它们的高电子导电性和好的氧化还原特性,以及在可见与红外区域,快的响应时间,显著地稳定性和高的对比率而成为一类重要的电致变色共轭聚合物。更重要的是,通过聚合物链结构改动,噻吩类聚合物拥有容易的禁带可调性,可展示不同的电致变色特性。 关键词:π-共轭聚合物;电化学聚合;共聚;导电聚合物;

一、导电聚合物简介 1.1导电聚合物的分类 导电高分子材料包括结构型导电高分子材料和复合型导电高分子材料两大类型。 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的。该类材料通常是填充高效导电粒子或导电纤维,较普及的是炭黑填充型和金属填充型。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势。 结构型(又称作本征型)导电聚合物是指聚合物本身具有导电性或经掺杂处理后具有导电性的聚合物材料。这种高分子材料本身具有“固有”的导电性,由其结构提供载流子,一经掺杂,电导率可大幅度提高,甚至可达到金属的导电水平。如聚乙炔、聚吡咯、聚苯胺、聚噻吩、聚苯硫醚、聚对苯撑等均属于结构型导电高分子材料(如图1-1)[1]。结构型导电聚合物是目前导电聚合物研究领域的重点。

高速加工技术现状及发展趋势

高速加工技术现状及发展趋势 1引言 对于机械零件而言,高速加工即是以较快的生产节拍进行加工。一个生产节拍:零件送进--定位夹紧--刀具快进--刀具工进(在线检测)--刀具快退--工具松开、卸下--质量检测等七个基本生产环节。而高速切削是指刀具切削刃相对与零件表面的切削运动(或移动)速度超过普通切削5~10倍,主要体现在刀具快进、工进及快退三个环节上,是高速加工系统技术中的一个子系统;对于整条生产自动线而言,高速加工技术表征是以较简捷的工艺流程、较短、较快的生产节拍的生产线进行生产加工。这就要突破机械加工传统观念,在确保产品质量的前提下,改革原有加工工艺(方式):或采用一工位多工序、一刀多刃,或以车、铰、铣削替代磨削,或以拉削、搓、挤、滚压加工工艺(方式)替代滚、插、铣削加工…等工艺(方式),尽可能地缩短整条生产线的工艺流程;对于某一产品而言,高速加工技术也意味着企业要以较短的生产周期,完成研发产品的各类信息采集与处理、设计开发、加工制造、市场营销及反馈信息。这与敏捷制造工程技术理念有相同之处。 高速加工技术产生于近代动态多变的全球化市场经济环境。在激烈的市场竞争中,要求企业产品质量高、成本低、上市快、服务好、环境清洁和产品创新换代及时,由此牵引高速加工技术不断发展。自二十世纪八十年代,高速加工技术基于金属(非金属)传统切削加工技术、自动控制技术、信息技术和现代管理技术,逐步发展成为综合性系统工程技术。现已广泛实用于生产工艺流程型制造企业(如现代轿(汽)车生产企业);随着个性化产品的社会需求增加,其生产条件为多品种、

单件小批制造加工(机械制造业中,这种生产模式将占到总产值的70%),高速加工技术必将在生产工艺离散型或混和型企业中(如模具、能源设备、船舶、航天航空…等制造企业)得到进一步应用和发展。 二十世纪末期,我国变革计划经济体制,改革开放,建成有中国特色社会主义市场经济体制。实用的高速加工技术跟随引进的先进数控自动生产线、刀具(工具)、数控机床(设备),在机械制造业得到广泛应用,相应的管理模式、技术、理念随之融入企业。企业家们对现代信息技术和企业制度、机制在未来可持续发展、市场竞争中的重要地位和作用,认识日益深刻。社会主义市场经济环境,不仅促进企业转制、调整产业、产品结构和技改,还给企业展现出应用和发展高速加工技术良好而广阔的前景。 2我国引进数控轿车自动生产线中的高速加工技术 二十世纪八十年代以来,我国相继从德国、美国、法国、日本…等国引进了多条较先进的轿车数控生产自动线,使我国轿车制造工业得到空前发展。其中较典型的是来自德国的一汽--大众捷达轿车和上海大众桑塔纳轿车自动生产线,其处于国际二十世纪九十年代中期水平。其中应用了较多较实用的高速加工技术。从中可部分了解到世界高速加工技术的现状与发展趋势。本文重点介绍一汽--大众捷达轿车传、发生产线。 引进的捷达数控轿车自动生产线概况 一汽--大众捷达轿车自动生产线由冲压、焊接、涂装、总装、发动机及传动器等高速生产线组成。同步引进德国大众汽车公司并行工程管理模式与管理技术,

液晶聚合物增韧热固性树脂

液晶聚合物增韧热固性树脂 摘要:简要介绍液晶聚合物的基本概念,综述了近年来液晶聚合物的研究进展。由于现有的热固性树脂增韧方法存在种种缺陷,热致型液晶正取代橡胶性体、热塑性塑料等成为新一类热固性树脂增韧剂,与其它方法相比,该法增韧果好,改性体系衬热性、模量高。从液晶聚合物增韧、液晶单体/低聚物增韧、液晶固化剂增韧三个方面综述了现阶段热致型液晶增韧热固性树脂的研究进展。 关键词:液晶聚合物,增韧,热致型液晶,液晶单体/低聚物,液晶固化剂 1.液晶聚合物 1.1液晶聚合物的分类及性能 液晶聚合物是一种兼有固体和液体部分性质的过渡中间态---液晶态,其分子排列介于理想的液体和晶体之间,呈一维或二维的远程有序----分子排列在位置上显示无序性,但在分子取向上任有一定程度的有序性,表现出良好的各向异性。 根据分子排列有序性不同,大致可分为向列型(nematic)、近晶型(sematic)和胆甾型(cholesteric)三种类型。按液晶的形成条件又可分为溶致性、热致性和压敏性液晶。 液晶聚合物材料具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率以及良好的介电性和耐化学腐蚀性等一系列优异的综合性能。在电子电器、航空航天、光纤通讯、汽车工业、机械制造和化学工业等领域具有广阔的应用前景[1]。 1.2国内外液晶高分子聚合物的研究进展 1972年美国Du Pont公司研究成功的Kevlar系列溶致液晶纤维标志着合成高分子液晶开始走向市场,并引起人们广泛的兴趣。1984年Darto和Manufacturing 公司开发聚芳酯热致LCP并首次实现了热致LCP的工业化。 英国ICI公司的VICTRES-SRP LCP已经有4个品种投入生产,新一种拉伸强度高达200 MPa,悬臂缺口冲击强度为130 J/m2的新品种[2]。德国BASF公司的ULTRAX已经研制出三种基本新品种,其中两种是耐高温的特种工程塑料.另外,德国Hoechst公司将新型Vectra LCP作为热塑性工程塑料在世界X围内推广,目前投放市场的有30余种商品级及专用级产品[3]。 周其凤等[4]从分子设计的角度提出了“含二维液晶基元的液晶高分子”概念,并合成了一系列T型、X型二维液晶基元的液晶高分子.这类液晶高分子材料有别于一维液晶基元的液晶高分子材料,经过精心的分子设计,比如将二维液晶基元的其中一维方向的结构部分固定于分子主链之中而构成主链的结构成分,而使另一维方向上的结构部分作为侧基,因而可望制得力学各向异性较弱的高强度、高

环氧树脂增韧研究进展_史孝群

收稿日期:2001-12-25 作者简介:史孝群(1949-),男,高工,主要从事材料力学性能、结构及压力容器的安全测试;材料的残余应力测试与研究;材料组织与力学损伤及高分子纳米材料合成与力学性能等领域的研究。(Tel :010-********) 环氧树脂增韧研究进展 史孝群,肖久梅,龚春秀,马文江,刘建林 (北京科技大学应用科学学院,北京100083) 摘要:增韧环氧树脂是环氧树脂领域的研究热点,本文就环氧树脂增韧研究进行了概述,介绍了近年来环氧树脂增韧方法及相应的增韧机理研究进展,力求为环氧树脂在增韧领域的进一步研究提供新的思路和方法,以进一步扩展环氧树脂的应用领域。 关键词:环氧树脂;增韧;增韧机理 中图分类号:T M 216.3;T Q323.5 文献标识码:A 文章编号:1009-9239(2002)06-0031-04 Development of Research on Toughening Epoxy Resin Shi Xiao -Qun ,Xiao J iu -M ei ,Go ng Chun -Xiu ,Ma Wen -J ang ,Liu Jian -Lin (Department of Applied Science ,University of Science and Technology Beijing ,Beijing ,100083)Abstract :To ug hening epo xy is v ery important in the field of epox y .Study o n toughening epox y resin a re rev iew ed,methods o f to ughening epox y recently a nd to ughening mechanism a re indroduced in this paper,which provides new ideas a nd rules fo r further study on toug hening epox y resin,in o rder to ex panding th e use of epo xy . Keywords :epox y resin;toughening;to ughening mechanism 1 前 言 环氧树脂具有良好的介电性能、化学稳定性、粘接性、加工性,使其在胶粘剂、涂料、电子、电器和航空航天等领域发挥重要的作用。环氧树脂为交联度很高的热固性材料,裂纹扩展属于典型的脆性扩展,固化后存在韧性不足、耐冲击性较差和容易开裂等缺点,所以增韧环氧树脂是环氧树脂领域的研究热点。最初,用加入增塑剂、柔韧剂(增柔剂)的方法来提高韧性,但却降低了材料的耐热性、硬度、模量、介电性能。从六十年代中期开始,国内外相继开展了用反应性液态聚合物增韧环氧树脂的研究工作,在热性能、模量、介电性能等降低不太大的情况下提高了环氧树脂的韧性,改善了材料的综合性能,使得增韧环氧树脂的应用有了较大的进展。近年来,由于弹性体合金化技术、互穿网络材料、液晶及纳米材料等制备技术的成熟,在橡胶类弹性体,热塑性树脂,热致性液晶,纳米 材料增韧方面也获得了长足的进展。本文就环氧树脂的增韧及增韧机理进行了探讨。 2 弹性体增韧环氧树脂 用于增韧环氧树脂的橡胶需具备两个基本条件,其一为橡胶与环氧树脂在固化前具有相容性,并且分散性好;其二为环氧树脂固化时,橡胶能够顺利析出,呈两相结构。丁腈橡胶、丙烯酸酯橡胶、聚氨酯橡胶、聚硅氧烷等是增韧环氧树脂的首选弹性体材料,并且这些弹性体通常具有可以与环氧树脂中的环氧基反应形成嵌段的活性端基(如羟基、烃基、氨基等)。在环氧树脂固化过程中,这些橡胶类弹性体嵌段一般能从基体中析出,以分散相的形式分散于连续的环氧树脂体系中,形成“海岛”结构。在橡胶增韧环氧体系中,橡胶的第二种作用在于诱发基体的耗能过程,而其本身在被拉伸断裂过程中的耗能一般占次要地位。材料的断裂过程发生在基体树脂中,因此增韧的最根本潜力在于提高基体的屈服变形能力[1]。 有关弹性体增韧环氧树脂的研究很多 [2,3] 。常用 的增韧剂是液体端羟基丁腈橡胶(C TBN ),环氧树脂

超分子科学研究进展

摘要超分子化学是基于分子间的非共价键相互作用而形成的分子聚集体的化学,在与材料科学、生命科学、信息科学、纳米科学与技术等其它学科的交叉融合中,超分子化学已发展成了超分子科学,被认为是21世纪新概念和高技术的重要源头之一。本文介绍了近几年超分子科学研究中的热点和基本问题,愿为我国超分子科学的研究提供参考。 自然界亿万年的进化创造了生命体,而执行生命功能是生命体中的无数个超分子体系。对超分子的认识一直到20世纪中叶,特别是C. J. Pedersen、J. M. Lehn和D. G. Cram等人合成了大环分子(冠醚、穴状配体等),这些大环化合物能基于非共价键作用选择性地结合某些离子和有机小分子,这一主客体的创新成果获得1987年诺贝尔化学奖。1978年法国科学家J. M. Lehn等超越主客体化学的研究范畴,首次提出了“超分子化学”这一概念,他指出:“基于共价键存在着分子化学领域,基于分子组装体和分子间键而存在着超分子化学”[1]。超分子化学是基于分子间的非共价键相互作用而形成的分子聚集体的化学,它主要研究分子之间的非共价键的弱相互作用,如氢键、配位键、亲水/疏水相互作用及它们之间的协同作用而生成的分子聚集体的组装、结构与功能。两个世纪以来,化学界创造了2 000万种分子,原则上都可在不同层次组装成海量的、取决于组装体结构具有特殊功能的超分子体系,由此可见,超分子化学开拓了创造新物质与新材料的崭新的无限的发展空间。事实上,自然存在着亿万个超分子体系居于生命体的核心位置,例如,在细胞内的生物化学过程都由特定超分子体系来执行,像DNA与RNA的合成、蛋白质的表达与分解、脂肪酸合成与分解、能量转换与力学运动体系等。因此超分子科学是研究生物功能、理解生命现象、探索生命起源的一个极其重要的研究领域。经过20多年的快速发展,在与材料科学、生命科学、信息科学、纳米科学与技术等其它学科的交叉融合中,超分子化学已发展成了超分子科学,被认为是21世纪新概念和高技术的重要源头之一[2,3]。 国际上超分子科学的研究开展得如火如荼,发达国家和地区,如欧盟、美国和日本等都投入了大量的人力和物力进行超分子科学方面的研究与开发。在国家自然科学基金委、科技部、教育部、中国科学院等相关部门的大力支持下,我国的科学工作者较早地开展了超分子科学研究,并做出了一大批有特色的工作。我们结合今年9月在长春举办的超分子国际香山科学会议及部分国内外同行的研究结果来介绍超分子科学研究的热点和基本问题,供国内同行参考。 1 层状超分子组装体 生物膜是细胞的关键组分,又是高效、神奇的超分子体系。它的模拟物就是层状组装体(包括单层膜、多层膜、复合膜等)。层状结构容易表征,是研究分子间作用力及组装方法最好的模型,又是走向实用化的器件原型,所以层状组装超薄膜的构筑与功能化一直是超分子科学研究的热点[2]。 1991年,G.Decher及其合作者报道了基于阴阳离子静电作用的聚电解质多层膜的制备,称为静电组装技术,拉开了层状组装薄膜研究的序幕[4]。静电组装技术被认为是一种构筑结构和功能可控的有机、无机和有机/无机复合薄膜的有效方法之一。在层状组装多层膜的构筑中,引入含有刚性介晶基团的双头离子能提高多层薄膜的稳定性和改善层间界面的有序度。基于静电组装技术,实现了包容卟啉、酞菁等有机分子,特殊的齐聚物、有机和无机微粒、生物大分子如蛋白质、酶、病毒以及树状分子等在内的物质的多功能较稳定复合薄膜的构筑。一种由金属烷氧基化合物来制备金属氧化物薄膜的组装技术,称为表面溶胶 凝胶技

有机导电聚合物研究进展a

有机导电聚合物研究进展 1 导电聚合物 各种人造聚合物俗称为塑料或化纤,天然聚合物主要有蛋白质和树脂等。上述有机固体通常是绝缘体,而增强它们的电导率是一个非常吸引人的研究领域。因为这类材料成本低廉、重量轻,更重要的是,可以把聚合物的可塑以及柔韧等优良机械特性与通常只有金属才具备的高电导特性结合在一起,从而将应用范围大大拓宽。 1977年,白川英树在一次聚乙炔合成的实验中,意外地加入了过多的催化剂(齐格勒—纳塔催化剂,以1963年诺贝尔化学奖得主Ziegler 和Natta命名,其作用是定向催化——用于严格控制聚合物的空间结构)。不料,在反应器中生成了一种光亮的反式聚乙炔薄膜。如果将薄膜暴露于卤族Br2或I2蒸汽,生成物的电导率可以提高1012倍[1],从此有机物不能导电的观念被打破。 2000 年度诺贝尔化学奖授予了三位致力于导电聚合物研究的科学家,他们是美国物理学家艾伦·黑格(Alan Heeger)、化学家艾伦·麦克迪尔米德(Alan MacDiarmid )和日本化学家白川英树(Hideki Shirakawa )。这是对导电聚合物研究的充分肯定。 导电聚合物根据材料的组成可以分成复合型导电聚合物材料和本征型导电聚合物材料两大类[2-4]。复合型导电聚合物材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、层合、梯度复合、表面镀层等复合方式构成。其导电作用主要通过其中的导电材料来完成。本征型导电聚合物材料也被称为结构型导电聚合物材料,其高分子本身具备一定的导电能力,这种导电聚合物如果按其结构特征和导电机理还可以进一步分成:载流子为自由电子的电子导电型聚合物和载流子为能在聚合物分子间迁移的正负离子的离子导电型聚合物。 在电子导电聚合物的导电过程中,载流子在电场的作用下能够在聚合物内定向移动形成电流。电子导电聚合物的共同结构特征是分子内有大的线性共轭π电子体系,给自由电子提供了离域迁移条件,故又称为共轭聚合物。作为有机材料,聚合物是以分子形态存在的,其电子多为定域电子或具有有限离域能力的电子。π电子虽然具有离域能力,但它并不是自由电子。当有机化合物具有共轭结

光折变液晶材料的研究进展

第30卷 第3期 2008年6月光 学 仪 器OP TICAL INSTRUM EN TS Vol.30,No.3 J une ,2008 文章编号:100525630(2008)0320083205 3收稿日期:2007210209 作者简介:白俊霞(19812),女,山西汾阳人,硕士研究生,主要从事新型材料的研究。 光折变液晶材料的研究进展3 白俊霞,郝 伟 (北京工业大学,北京 100022) 摘要:介绍了液晶材料光折变效应的基本概念及基本机理及特性,根据光折变液晶材料的发展,分别对掺杂染料的液晶、聚合物分散液晶、掺杂铁电材料液晶等几种液晶材料的光折变效应的各个发展过程及其存在的问题和研究现状作了较为详细的阐述,并展望了其今后的实际应用及发展方向。 关键词:光折变;液晶材料;光电效应;液晶聚合物 中图分类号:O 43 文献标识码:A The developing of photorefractive liquid crystal material B A I J unx i a ,H A O W ei (Beijing University of Technology ,Beijing 100022,China ) Abstract :This paper int roduced t he basic conception ,mechanism and character of p hotoref ractive liquid crystal material ,according to p hotorefractive t he develop ment of liquid crystal materials ,respectively ,in dye 2doped liquid crystal ,polymer dispersed liquid crystal and ferroelectric liquid crystal material separately ,and laid out t he problem of different liquid crystal and research on t he stat us of it at t he same time ,we prospected t he application and develop ment direction of liquid crystal material. K ey w ords :p hotorefractive ;liquid crystal material ;p hotoemission ;polymer liquid crystal 1 引 言 光折变效应(p hotoref ractive effect )是光致折射率变化效应(p hoto 2induced refractive index change effect )的简称[1],当照射到非线性光学材料上的光发生变化时,物质内部电荷发生非均匀的重新分配,使得物质的折射率发生变化的现象。它在高密度光学信息储存、多媒体技术、相共轭、全息图象加工、中性网络的模拟、畸变图像的复原以及程序互联等方面具有重要的潜在应用价值。 2 液晶材料光折变效应的基本原理及特点 液晶材料的光折变效应可分为四个过程,如图1所示:(1)在非均匀光照射下,物质见光区域产生可移动的电荷;(2)产生电荷的输运;(3)捕获中心俘获移动的电荷,形成非零的空间电场;(4)在空间电场作用下,物质折射率发生变化[2]。 光折变效应主要有两个显著的特点,其一是光折变效应的大小只与入射光子的能量有关系,与光强没

浅谈超分子化学的应用及前景展望

浅谈超分子化学的应用及前景展望 超分子化学是基于冠醚与穴状配体等大环配体的发展以及分子自组装的研究和有机半导体、导体的研究进展而迅速发展起来的,它包括分子识别、分子自组装、超分子催化、超分子器件及超分子材料等方面。其中分子识别功能是其余超分子功能的基础。超分子学科的应用主要是围绕它的主要功能-识别、催化和传输来进行开发研究。 1987年,莱恩(Lehn J. M.)、克拉姆(Cram D. J.)和彼得森(Perterson C. J.)三位化学家以其对发展和应用具有特殊结构的高分子的巨大贡献而获得诺贝尔化学奖。莱恩在获奖演讲中,首次提出了“超分子化学”的概念。同时克拉姆创立和提出了主—客体化学理论,彼得森则发展和合成出大批具有分子识别能力的冠醚。至此,以“超分子化学”为名称的新的化学学科蓬勃地发展起来,并以其新奇的特性吸引了全世界化学家的关注和热衷。近年来Supramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,已经得到世界各国化学家的普遍认同。 目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究不仅与各化学分支相结合,又与物理学、信息学、材料科学和生命科学等紧密相关。在与其他学科的交叉融合中,超分子化学已发展成了超分子科学。超分子科学涉及的领域极其广泛,它不仅包括了传统的化学(如有机化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。由于超分子学科具有广阔的应用前景和重要的理论意义,超分子化学的研究近十多年来非常活跃。涉及的应用包括:在化学药物方面的研究与应用,在光化学上的应用,在压电化学传感器中的应用,识别作用(酶和受体选择性的根基)的应用,在有机半导体、导体和超导体以及富勒烯中的应用,作为分子器件方面的研究,在色谱和光谱上的应用,催化及模拟酶的分析应用,在分析化学上的应用等等。 超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药物分子和其它有机分子通过氢键作用结合在一起形成的药物超分子化合物,可有效改善药物的溶解度、生物利用度等性质,成为药物制剂的一个新选择。超分子药物化学是超分子化学在药学领域的新发展。该领域发展迅速,是一个新兴的交叉学科领域,正在逐渐变成一个相对独立的研究领域。迄今已有许多超分子化学药物应用于临床,其效果良好。更多的超分子体系正在作为候选药物进行临床研究开发。超分子化学药物因具有良好的稳定性、安全性、低毒性、不良反应少、高生物利用度、消除药物异味、克服多药耐药、药物靶向性强、多药耐

特种加工技术的应用及发展趋势.教学提纲

特种加工摘要随着我国机械制造业的快速发展,电火花加工技术在民用和国防工业中的应用越来越多,特别是数控电火花成形加工机床和数控电火花线切割加工机床不仅在模具制造业中广泛应用,而且在一般机械加工企业中逐渐普及.电火花加工技术是实践性与理论性都很强的一门技术,用户既要掌握电火花工艺方面的知识,又要充分熟悉电火花机床的功能与编程知识。目前,我国的电火花机床操作者中,大多只经过短期培训,缺乏系统的理论知识,只能进行简单加工的程序编制,严重影响了加工设备的高效使用。为适应现代化加工技术的要求,电火花机床操作者,要全面掌握所需的专业知识;从事电火花加工的技术人员也需要提高自身的技术水平;企业也急需一批电火花加工方面懂工艺、会编程,能够熟练操作和维护机床的应用型技术人才。针对上述现状,作者对高职高专目前常见的电火花加工技术方面的教材进行了认真研究,并对国内数十家企业进行了调研,根据电火花加工技术人才知识结构的市场需求,从培养学生必备的基础知识和操作技能出发,汇集多年的教学和在企业的实践经验,编写了本书。本书由电火花加工技术基础,电火花成形加工机床、加工工艺及编程,电火花线切割加工机床、加工工艺及编程三部分组成。学生在学习本课程前,已学过“机械制造技术”和“数控原理及其应用”课程,并已进行过金工实习或生产实习,对机械加工工艺和数控机床已有初步了解。关键字:电火花加工技术 1.激光加工技术原理 1.1激光加工技术简介激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属进行切割、焊接、表面处理、打孔、微加工等的一门技术。激光加工作为先进制造技术已广泛应用于汽车、电子、电器、航空、冶金、机械制造等国民经济重要部门,对提高产品质量、劳动生产率、自动化、无污染、减少材料消耗等起到愈来愈重要的作用。 1.2激光技术分类激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为: 1)激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统。 2)激光加工工艺。包括切割、焊接、表面处理、打孔、打标、划线、微调等各种加工工艺。 3)激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。目前使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器。4)激光切割:汽车行业、计算机、

关于导电高分子材料的研究进展

湖北汽车工业学院 本科生课程论文 《新材料导论》 论文题目关于导电高分子材料的研究进展学生专业班级 学生姓名(学号) 指导教师(职称) 完成时间

关于导电高分子材料的研究进展 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的概念、分类、导电机理及其应用领域,综述了近些年来国内外科研工作者对导电高聚物的研究进展状况并对其发展前景进行了展望。 关键词:导电高分子;功能材料;导电机理;应用;述评。 自从1976年美国宾夕法尼亚大学的化学家MacDiarmid领导的研究小组首次发现掺杂后的聚乙炔(Polyacetylene,简称PA)具有类似金属的导电性以后,人们对共轭聚合物的结构和认识不断深入和提高,新型交叉学科)))导电高分子领域诞生了。在随后的研究中科研工作者又逐步发现了聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯撑、聚苯胺等导电高分子。导电高分子特殊的结构和优异的物理化学性能使它成为材料科学的研究热点,作为不可替代的新兴基础有机功能材料之一,导电高分子材料在能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术上有着广泛、诱人的应用前景。到目前为止,导电高分子在分子设计和材料合成、掺杂方法和掺杂机理、可溶性和加工性、导电机理、光、电、磁等物理性能及相关机理以及技术上的应用探索都已取得重要的研究进展。本文介绍了导电高分子的结构特征、导电机理及其应用领域,综述了近些年来导电高分子材料研究领域的进展状况。 1 导电高分子材料的分类 高分子导电材料通常分为复合型和结构型两大类: ①复合型高分子导电材料。 由通用的高分子材料与各种导电性物质通过填充复合、表面复合或层积复合等方式而制得。主要品种有导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。 ②结构型高分子导电材料。 是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小又可分为高分子半导体、高分子金属和高分子超导体。按照导电机理可分为电子导电高分子材料和离子导电高分子材料。电子导电高分子材料的结构特点是具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导

特种加工技术的现状发展及其应用教学文案

特种加工技术的现状发展及其应用 一、特种加工技术的现状发展 特种加工是各种利用物理的、化学的能量去除或添加材料以达到零件设计要求的加工方法的总称。由于这些加工方法的加工机理以溶解、熔化、气化、剥离为主,且多数为非接触加工,因此对于高硬度、高韧性材料和复杂形面、低刚度零件是无法替代的加工方法,也是对传统机械加工方法的有力补充和延伸,并已成为机械制造领域中不可缺少的技术内容。目前,这一技术正向着自动化、柔性化、精密化、集成化、智能化和最优化方向发展,在已有的工艺不断完善和定型的同时,新的特种加工技术不断涌现,如快速原形制造技术、等离子体熔射成形工艺技术、在线电解修整砂轮镜面磨削技术、实变场控制电化学机械加工技术、三维型腔简单电极数控电火花仿铣技术、电火花混粉大面积镜面加工技术、磁力研磨技术和电铸技术等。新的特种加工技术是在传统的特种加工技术的基础上,紧密结合材料、控制和微电子技术而发展起来的,并随着产品应快速响应市场需求,正在形成面向快速制造的特种加工技术新体系。 1、特种加工技术的构成 近二三十年来,特种加工技术发展迅速,其内涵已十分广泛而丰富。包括:.溶解加工、熔化加工、复合加工、综合加工、特种机械加工等多种加工形式。 2、人工智能技术为特种加工工艺规律建模奠定了基础 特种加工的微观物理过程非常复杂,往往涉及电磁场、热力学、流体力学、电化学等诸多领域,其加工机理的理论研究极其困难,通常很难用简单的解析式来表达。近年来,虽然各国学者采用各种理论对不同的特种加工技术进行了深入的研究,并取得了卓越的理论成就,但离定量的实际应用尚有一定的距离。然而采用每一种特种加工方法所获得的加工精度和表面质量与加工条件参数间都有其规律。 因此,目前常采用研究传统切削加工机理的实验统计方法来了解特种加工的工艺规律,以便实际应用,但还缺乏系统性。受其限制,目前特种加工的工艺参数只能凭经验选取,还难以实现最优化和自动化,例如,电火花成形电极的沉入式加工工艺,它在占电火花成形机床总数95%以上的非数控电火花成形加工机床和较大尺寸的模具型腔加工中得到广泛应用。 虽然已有学者对其cad、capp和cam原理开展了一些研究,并取得了一些成果,但由于工艺数据的缺乏,仍未有成熟的商品化的cad/cam系统问世。通常只能采用手工的方法或部分借助于cad造型、部分生成复杂电极的三维型面数据。随着模糊数学、神经元网络及专家系统等多种人工智能技术的成熟发展,人们开始尝试利用这一技术来建立加工效果和加工条件之间的定量化的精度、效率、经济性等实验模型,并得到了初步的成果。因此,通过实验建模,将典型加工实例和加工经验作为知识存储起来,建立描述特种加工工艺规律的可扩展性开放系统的条件已经成熟。并为进一步开展特种加工加工工艺过程的计算机模拟,应用人工智能选择零件的工艺规程和虚拟加工奠定基础。 3、智能控制将成为特种加工领域主要的控制策略 加工过程和加工设备的稳定、可靠、高效地运行是特种加工工艺技术适应快速制造体系的必不可少的条件。但由于多数特种加工方法采用“以柔克刚”的非接触式加工机制,加工是伴随着物理、化学过程进行的,其加工的微观过程非常复杂,迄今为止仍不能用一个确定的数学模型来描述。而且随着加工过程的进行,加工条件有时还会发生较大的变化,引起加工特性随时间而变化。因此在控制理论中属于典型的模型不确定非线性时变系统,很难用经典的控制理论和现代控制理论的方法获得理想的控制效果。多年来人们尝试过很多种自适应控制策略,取得了很大进展。但在加工条件大幅度变化的情况下仍难以达到满意的性能。

环氧树脂及其胶粘剂的增韧改性研究进展_杨卫朋

环氧树脂及其胶粘剂的增韧改性研究进展 杨卫朋,郝 壮,明 璐 (西北工业大学理学院应用化学系,陕西西安 710129) 摘 要:综述了环氧树脂(EP )及其胶粘剂的增韧改性研究进展。介绍了EP 增韧方法[包括橡胶类弹 性体增韧改性EP 、互穿聚合物网络(IPN )增韧改性EP 、聚硅氧烷(PDMS )增韧改性EP 、纳米粒子增韧改性EP 和超支化聚合物(HBP )增韧改性EP 等]及相关增韧机制。展望了今后EP 及其胶粘剂的增韧改性发展方向。 关键词:环氧树脂;胶粘剂;增韧;改性中图分类号:TQ433.437:TQ323.5 文献标志码:A 文章编号:1004-2849(2011)10-0058-05 收稿日期:2011-05-26;修回日期:2011-06-24。 作者简介:杨卫朋(1987—),陕西咸阳人,在读硕士,主要从事环氧树脂增韧改性等方面的研究。E-mail :yangweipeng.883245@https://www.doczj.com/doc/a78505231.html, 0前言 环氧树脂(EP )是指其分子结构中至少含有两个环氧基团的高分子材料。EP 具有良好的综合性能,能以各种形式(如增强塑料、胶接材料、密封剂和涂料等)广泛应用于诸多领域。未改性EP 固化物脆性大、耐冲击强度低且易开裂(韧性不足),从而极大限制了其在某些重点技术领域的应用空间。本研究重点综述了近年来各种改性EP 的增韧方法,其中绝大部分增韧方法可用于EP 胶粘剂的增韧改性。 1 增韧改性EP 及其胶粘剂 1.1 橡胶类弹性体增韧改性EP 1.1.1 有关橡胶类弹性体增韧EP 的理论 橡胶类弹性体是较早用于增韧EP 的方法之 一。早期的增韧理论有Merz 等[1]提出的能量直接吸收理论和Newman 等[2]提出的屈服膨胀理论。早期的理论虽能解释某些试验现象,但不能普遍获得人们的认可。随着科学技术的不断发展,在早期理论基础上,建立了初步的橡胶增韧理论体系。目前被人们普遍接受的增韧理论有Bucknall 等[3-4]提出的银纹-剪切带理论。该理论认为橡胶颗料在增韧体系中发挥两个重要的作用:一是作为应力集中中心诱发大量银纹和剪切带;二是控制银纹的发展,并使银纹终止而不致发展成破坏性裂纹。银纹尖端的应 力场可诱发剪切带的产生,而剪切带也可阻止银纹的进一步发展;大量银纹或剪切带的产生和发展要消耗大量能量,故材料的冲击强度显著提高。另外,影响较大的是Kinloch 等[5]建立的孔洞剪切屈服理论认为:裂纹前段的三向应力场与颗粒相固化残余应力的叠加作用,使颗粒内部或颗粒/基体界面处破裂而产生孔洞;这些孔洞一方面产生体膨胀,另一方面又由于颗粒赤道上的应力集中而诱发相邻颗粒间基体的局部剪切屈服;这种屈服会导致裂纹尖端钝化,进一步达到减少应力集中和阻止断裂的目的。 1.1.2橡胶弹性体的类型 目前用于增韧EP 的反应性橡胶及弹性体主要包 括端羧基丁腈橡胶(CTPB )、端羟基丁腈橡胶(HTBN )、端环氧基丁腈橡胶和聚硫橡胶等。Chikhi [6]等用端氨基丁腈橡胶(ATBN )改善EP 的韧性,并对其热力学性能和玻璃化转变温度(T g )等进行了表征。研究结果表明:ATBN 的引入能显著改善EP 体系的韧性,其缺口处的冲击强度从0.85kJ/m 2增至2.86kJ/m 2,无缺口处的冲击强度从4.19kJ/m 2增至14.26kJ/m 2;其增韧机制是局部塑性剪切变形、T g 降低所致。赵祺等[7]以内亚甲基四氢邻苯二甲酸酐为固化剂,用聚硫橡胶增韧EP 。研究结果表明:加入20%聚硫橡胶后,EP 胶粘剂的拉伸弹性模量、拉伸强度、断裂伸长率、断裂能量和冲击强度分别增加了27%、34%、 22%、48%和330%;聚硫橡胶增韧EP 胶粘剂的综合力学性能明显提高,但其动态模量降低、T g 下降。 中国胶粘剂 CHINA ADHESIVES 2011年10月第20卷第10期 Vol.20No .10,Oct.2011 58--642() DOI:10.13416/j.ca.2011.10.015

液晶高分子材料现状研究进展

液晶高分子材料的现状及研究进展 摘要:本文综述了液晶高分子材料的研究现状,包括简单介绍了液晶高分子的发展历史,结构及性能,介绍了液晶高分子研究的新进展,对液晶高分子早各个领域的应用和潜在的性能进展做了简要的阐述,并针对液晶高分子存在的问题提出了相应的建议。 关键词:液晶高分子研究应用 前言 高分子科学,以30年代H.staidinger建立高分子学说为开展.此后高分子化学有了飞跃的发展.与此同时,高分子物理化学也有相应的发展。高分子化学注重对高聚物合成以及性质的研究,而高分子物理则重点研究高聚物的结构与性能,二者相辅相成,近年来研究较多的高分子液晶材料就是两者结合的典范。 液晶现象是1888年奥地利植物学家F.Reintizer[1]在研究胆甾醇苯甲酯时首先发现的。研究表明,液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。 这样人们自然会联想到具有这种结构的高分子材料。1937年Bawden和Pirie[1]在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性。这是人们第一次发现生物高分子的液晶特性,其后1950年,Elliott与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。50年代到70年代,美国Duponnt公司投入大量人力才力进行高分子液晶发面的研究,取得了极大成就,1959年推出芳香酰胺液晶,但分子量较低,1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex,1972年研制出强度优于玻璃纤维的超高强.高模量的Kevlar纤维,并付注实用,以后,高分子液晶的研究则从溶致型转向为热致型。在这一方面Jackson等作出了较大贡献,他们合成了对苯二甲酸已二醇酯与对羟基苯甲酸的共聚物,可注塑成型,这是一种模量极高的自增强液晶材料。 从应用领域分析,液晶高分子材料在电子电气行业中需求量最大且发展迅速,1998年可达3600 吨,平均年增长23.1 %;其次是通讯业,需求量约1540 吨,增长21.1%;工业界及运输业总需求量不到1700 吨,平均年增长率约为I1%。主要用于接插件、开关、继电器、模塑印刷电路板、光缆结构件、复合材料、机械手、泵/阀门组件、功能件等,极大地推动了液晶高分子技术及其它高新技术的发展。 从高分子液晶诞生到现在只有50多年的历史,是一门很年轻的学科。虽然高分子液晶[2]是具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率、低密度、良好的介电性、阻燃性和耐化学腐蚀性等一系列优异的综合性能,作为液晶自增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。但目前对它的研究仍处于较低的水平,理论研究较狭隘,液晶高分子尚存在制品的机械性能各向异性、接缝强度低、价格相对较高等缺点,这些都有待于进一步的改进,所以高分子液晶仍是高分子科学研究的一个热点。 1液晶高分子材料的特性[3]

超支化聚合物增韧环氧树脂的研究进展

超支化聚合物增韧环氧树脂的研究进展 朱 超 林丽娟 (徐州建筑职业技术学院土木工程系,徐州 221008) 摘要 介绍超支化聚合物的结构及特点,着重综述了超支化聚合物增韧改性环氧树脂的研究进展,指出了超支化聚合物在环氧树脂改性方面的发展方向。 关键词 环氧树脂 超支化聚合物 增韧 改性 环氧树脂(EP)作为一种热固性树脂因具有良好的电性能、化学稳定性、粘接性、加工性等特点而被广泛应用于机械、电气电子、航天航空等领域。但纯环氧树脂的最大弱点是固化后质脆、耐冲击性较差和容易开裂,因而难以满足工程技术的要求,使其应用受到一定的限制。为了解决这些问题,需要对环氧树脂进行增韧改性,其方法包括增塑剂增韧、低分子量增韧剂增韧、热塑性树脂增韧、互穿网络聚合物(IPN )增韧、热致性液晶聚合物(TLCP)增韧、橡胶类弹性体增韧及纳米粒子增韧等[1,2]。这些增韧手段都能使环氧树脂的韧性得到较大的提高,但同时却降低了材料的耐热性、硬度、模量和电性能。而近几年出现了一种新的共混改性环氧树脂的方法,即采用超支化聚合物(HBPs)改性环氧树脂。由于超支化聚合物具有独特的性能,可以在保证提高环氧树脂韧性的同时不降低固化物的模量、耐热性等性能,故引起了人们广泛的关注。1 超支化聚合物 超支化聚合物是近10多年才出现的一种新型高分子材料,它是一种以低分子为生长点,通过逐步控制重复反应而得到的一系列分子质量不断增长的结构类似的化合物。常见的3种聚合物的结构如图1 所示。 图1 三种聚合物的结构 用超支化聚合物改性环氧树脂,初始时由超支化聚合物与环氧树脂共混形成均相体系,固化时发生相分离,由于超支化聚合物分子外层可以按要求组装官能团,这样可有效地调控环氧树脂固化物的结构和相态,为实现其改性提供了很大的空间。 2 超支化聚合物改性环氧树脂的研究进展 对于热固性的环氧树脂,其加工性能对应用有着非常重要的影响。加工时通常希望体系具有较低的粘度,使得其在固化后期能发生相分离以达到增韧的目的。但是传统增韧改性剂的分子量较高,这种高分子量往往意味着高粘度,这对加工来说是不利的。超支化聚合物具有独特的结构和良 好的相容性、低粘度等特性,所以可用作环氧树脂的改性剂。 超支化聚合物应用于增韧改性环氧树脂还具有下列优点[3]:(1)超支化聚合物的球状三维结构能降低环氧固化物的收缩率;(2)超支化聚合物的活性端基能直接参与固化反应形成立体网状结构,众多的末端官能团能加快固化速度;(3)超支化聚合物的尺寸和球状结构杜绝了在其它传统的增韧体系中所观察到的有害的粒子过滤效应,起到内增韧的作用。 2.1 超支化聚合物改性环氧树脂的固化行为 由于环氧树脂的固化行为直接影响到环氧树脂材料的制备和最终性能,所以针对超支化聚合物改性环氧树脂固化行为,人们做了大量的研究工作。 2000年韩国的Joon H ak O h 等[4]研究了超支化聚合物与环氧树脂的固化行为。他们采用差示扫描量热(D SC)仪和傅里叶变换红外光谱(FT-IR )仪等分析手段发现环氧树脂/超支化聚合物体系的固化温度比环氧树脂/线性聚合物体系的固化温度高,但环氧树脂/超支化聚合物体系的固化反应活化能较低。当超支化聚合物末端的羟基转变为苯甲酸基团时,固化反应的诱导期变得较长,并且反应热降低,整个反应级数为1.5。随着固化反应的进行,环氧基团的峰特性呈下降趋势,同时H 连接到C O 键上的峰值增加,并随着超支化聚合物含量的增加,H 与C O 连接的峰值不断增强。 日本的M.Okazak 等[5]用超支化聚酰胺多胺与有机硅接枝制得超支化聚合物。结果表明,超支化聚酰胺多胺的端 胺基促进了凝胶化反应。采用接枝有机硅为固化剂,在170e 、48h 条件下超支化聚酰胺多胺固化环氧树脂的凝胶级数达到77%,凝胶程度随其端胺基含量的增加而增加。 2003年D.R a t na 等[6]选用二乙基甲苯-2,6-二胺(DET-DA )为固化剂,使用环氧化超支化聚合物增韧双酚A 型环氧树脂。结果表明,环氧化超支化聚合物的加入对体系的固化速率没有影响。100e 时超支化聚合物与双酚A 型环氧树脂很容易混溶,固化时则发生相分离。随着固化温度的升高,分散相的超支化聚合物的含量也增加。超支化聚合物的加入使得固化物的韧性得到显著提高。 收稿日期:2006-10-12

相关主题
文本预览
相关文档 最新文档