当前位置:文档之家› 高考物理速度选择器和回旋加速器常见题型及答题技巧及练习题(1)

高考物理速度选择器和回旋加速器常见题型及答题技巧及练习题(1)

高考物理速度选择器和回旋加速器常见题型及答题技巧及练习题(1)
高考物理速度选择器和回旋加速器常见题型及答题技巧及练习题(1)

高考物理速度选择器和回旋加速器常见题型及答题技巧及练习题(1)

一、速度选择器和回旋加速器

1.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1。平行金属板右侧有一挡板M ,中间有小孔O ′,OO ′是平行于两金属板的中心线。挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2,CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,现有大量质量均为m ,电荷量为q 的带正电的粒子(不计重力),自O 点沿OO ′方向水平向右进入电磁场区域,其中有些粒子沿直线OO ′方向运动,通过小孔O ′进入匀强磁场B 2,如果这些粒子恰好以竖直向下的速度打在CD 板上的E 点(E 点未画出),求:

(1)能进入匀强磁场B 2的带电粒子的初速度v ; (2)CE 的长度L

(3)粒子在磁场B 2中的运动时间.

【答案】(1)1 E B (2) 12

2mE qB B (3) 2m qB π 【解析】 【详解】

(1)沿直线OO ′运动的带电粒子,设进入匀强磁场B 2的带电粒子的速度为v , 根据

B 1qv =qE

解得:

v =

1

E

B (2)粒子在磁感应强度为B 2磁场中做匀速圆周运动,故:

2

2v qvB m r

=

解得:

r =2mv qB =12

mE qB B 该粒子恰好以竖直向下的速度打在CD 板上的E 点,CE 的长度为:

L =

45r sin o

2r 12

2mE

(3) 粒子做匀速圆周运动的周期2

m

T qB

π= 2t m qB

π

=

2.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。求: (1)带电粒子的速度大小v ; (2)带电粒子的质量m 。

【答案】(1)500m/s v =;(2)10

4.010kg m -=?

【解析】 【分析】 【详解】

(1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有

qE qvB =

解得带电粒子的速度大小

100m/s 500m/s 0.2

E v B =

== (2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有

2

v qvB m R

=

而粒子偏转90°,由几何关系可知

0.5m R L ==

联立可得带电粒子的质量

610

2100.20.5kg 4.010kg 500

qBL m v --???===?

3.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。一带正电的粒子质量为m 、电荷量为q 从P (x =0,y =h )点以一定的速度平行于x 轴正向入射。这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.求:

(1)若只有磁场,粒子做圆周运动的半径R 0大小; (2)若同时存在电场和磁场,粒子的速度0v 大小;

(3)现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点。(不计重力)。粒子到达x =R 0平面时速度v 大小以及粒子到x 轴的距离; (4)M 点的横坐标x M 。

【答案】(1)0mv qB (2)E B (302v ,02R h +(4)2

2000724

M x R R R h h =++-【解析】 【详解】

(1)若只有磁场,粒子做圆周运动有:2

00

qB m R =v v

解得粒子做圆周运动的半径0

0m R qB

ν=

(2)若同时存在电场和磁场,粒子恰好做直线运动,则有:0qE qB =v 解得粒子的速度0E v B

=

(3)只有电场时,粒子做类平抛,有:

00y qE ma R v a t v t

=== 解得:0y v v =

所以粒子速度大小为:22

002y v v v v =+=

粒子与x 轴的距离为:2

0122

R H h at h =+

=+ (4)撤电场加上磁场后,有:2

v qBv m R

=

解得:02R R = 粒子运动轨迹如图所示:

圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4

π

,由几何关系得C 点坐标为:

02C x R =,

02

C R y H R h =-=-

过C 作x 轴的垂线,在ΔCDM 中:

02CM R R ==

2

C R C

D y h ==-

解得:2

2

2

20074

DM CM CD R R h h =-=+-M 点横坐标为:2

2000724

M x R R R h h =+-

4.如图为质谱仪的原理图。电容器两极板的距离为d ,两板间电压为U ,极板间的匀强磁场的磁感应强度为B 1,方向垂直纸面向里。一束带电量均为q 但质量不同的正粒子从图示方向射入,沿直线穿过电容器后进入另一磁感应强度为B 2的匀强磁场,磁场B 2方向与纸面垂直,结果分别打在a 、b 两点,若打在a 、b 两点的粒子质量分别为1m 和2m .求:

(1)磁场B 2的方向垂直纸面向里还是向外? (2)带电粒子的速度是多少?

(3)打在a 、b 两点的距离差△x 为多大? 【答案】(1)垂直纸面向外 (2)1U

v B d = (3)12122()U m m x qB B d

-?= 【解析】 【详解】

(1)带正电的粒子进入偏转磁场后,受洛伦兹力而做匀速圆周运动, 因洛伦兹力向左,由左手定则知,则磁场垂直纸面向外. (2)带正电的粒子直线穿过速度选择器,受力分析可知:

1U

qvB q

d

= 解得:1U v B d

=

(3)两粒子均由洛伦兹力提供向心力

2

2v qvB m R

=

可得:112m v R qB =

,222

m v

R qB = 两粒子打在底片上的长度为半圆的直径,则:

1222x R R ?=-

联立解得:12122()

U m m x qB B d

-?=

5.如图所示,M 、N 为水平放置的两块平行金属板,板间距为L ,两板间存在相互垂直的匀强电场和匀强磁场,电势差为MN 0U U =-,磁感应强度大小为0B .一个带正电的粒子从两板中点垂直于正交的电、磁场水平射入,沿直线通过金属板,并沿与ab 垂直的方向由d 点进入如图所示的区域(忽略电磁场的边缘效应).直线边界ab 及ac 在同一竖直平面内,且沿ab 、ac 向下区域足够大,不计粒子重力,30a ∠=?,求:

(1)粒子射入金属板的速度大小;

(2)若bac 区域仅存在垂直纸面向内的匀强磁场罗要使粒子不从ac 边界射出,设最小磁感应强度为B 1;若bac 区域内仅存在平行纸面且平行ab 方向向下的匀强电场,要使粒子不从ac 边射出,设最小电场强度为E 1.求B 1与E 1的比值为多少? 【答案】(1)v =00U

B L

(2)0110

2B L

B E U = 【解析】 【详解】

(1)设带电粒子电荷量为q 、质量为m 、射入金属板速度为v ,粒子做直线运动时电场力与洛伦兹力平衡,根据平衡条件有:qvB 0= qE 0 ① E 0 =

U L

② 解得:v =

0U B L

③ (2)仅存在匀强磁场时,若带电粒子刚好不从ac 边射出,则其轨迹圆与ac 边相切,则

1

1sin 30ad R s R =+

?

④ qvB 1 =2

v m R

得:B 1=

3ad

mv

qS ⑥

仅存在匀强电场时,若粒子不从ac边射出,则粒子到达边界线ac且末速度也是与ac边相切,即:x=vt⑦

y=1

2

at2 ⑧

qE1=ma⑨

tan30o=

ad

x

S y

+⑩

y

v at

=⑾

tan30o =

y

v

v⑿

得:E1=

2

3

2

ad

mv

qS

所以:0

1

10

2B L

B

E U

=⒁

6.PQ和 MN分别是完全正对的金属板,接入电动势为E的电源,如图所示,板间电场可看作匀强电场,MN之间距离为d,其间存在着磁感应强度为B,方向垂直纸面向里的匀强磁场。紧挨着P板有一能产生正电荷的粒子源S,Q 板中间有孔J,SJK在一条直线上且与MN 平行。产生的粒子初速度不计,粒子重力不计,发现粒子能沿着SJK 路径从孔 K射出,求粒子的比荷

q

m

【答案】

22

2

E

B d

【解析】

【分析】

粒子在PQ板间是匀加速直线运动,根据动能定理列式;进入MN板间是匀速直线运动,电场力和洛伦兹力平衡,根据平衡条件列式;最后联立求解即可.

【详解】

PQ板间加速粒子,穿过J孔是速度为v

根据动能定理,有:2

1

2

qE mv

=

沿着SJK路径从K孔穿出,粒子受电场力和洛伦兹力平衡:

qE

qvB

d

=

解得:

22

2q E m B d = 【点睛】

本题关键是明确粒子的受力情况和运动情况,根据动能定理和平衡条件列式.

7.某粒子实验装置原理图如图所示,狭缝1S 、2S 、3S 在一条直线上,1S 、2S 之间存在电压为U 的电场,平行金属板1P 、2P 相距为d ,内部有相互垂直的匀强电场和匀强磁场,磁感应强度为1B 。比荷为k 的带电粒子由静止开始经1S 、2S 之间电场加速后,恰能沿直线通过1P 、2P 板间区域,从狭缝3S 垂直某匀强磁场边界进入磁场,经磁场偏转后从距离

3S 为L 的A 点射出边界。求:

(1)1P 、2P 两板间的电压; (2)偏转磁场的磁感应强度。 【答案】(1)12U B kU ='2)222U

B L k

=【解析】 【分析】

(1)粒子先在电场中加速,然后匀速通过1P 、2P ,则根据平衡可求出1P 、2P 两板间的电压

(2)根据粒子的运动轨迹找到运动半径,借助于2

2v qvB m r

=可求出偏转磁场的磁感应强

度 【详解】

(1)设带电粒子质量为m ,所带电荷量为q ,已知

q

k m

= 粒子在电场中S 1与S 2之间加速,根据动能定理可得:2

102

qU mv =

-; 带电粒子在P 1和P 2间运动,根据电场力与洛伦兹力平衡可得:1U q qvB d

='

解得:

12U B d kU =';

(2)带电粒子在磁场中做匀速圆周运动,根据洛伦兹力充当向心力:2

2v qvB m r

=;

已知2L r =,解得:222U

B L k

=

8.如图,在整个直角坐标系xoy 区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在x>0区域还存在方向垂直于xoy 平面向内的匀强磁场。一质量为m 、电荷量为q 的带正电粒子从x 轴上x=-L 的A 点射出,速度方向与x 轴正方向成45°,粒子刚好能垂直经过y 轴,并且在第一象限恰能做直线运动,不计粒子重力

(1)求粒子经过y 轴的位置 (2)求磁感应强度B 的大小

(3)若将磁场的磁感应强度减小为原来的一半,求粒子在x>0区域运动过程中的最大速度和最低点的y 坐标。 【答案】(1)y=12L (2)mE B qL = (3)3m qEL v m

= 72y L =-

【解析】 【分析】

(1)粒子在第二象限做类平抛运动,根据平抛运动的规律求解粒子经过y 轴的位置;(2)粒子在第一象限恰能做直线运动,则电场力等于洛伦兹力,可求解B ;(3)将x>0区域的曲线运动看做以2v 1的匀速直线运动和以v 1的匀速圆周运动的合成,结合直线运动和圆周运动求解最大速度和最低点坐标。 【详解】

(1)粒子在第二象限做类平抛运动,设初速度为v ,

122

2

v v ==

L=v 1t

2

2

v y t =

联立解得2L y =,则经过y 轴上2

L

y =的位置; (2)qE a m

= v 2=at 可得1qEL

v m

= qv 1B=qE 解得mE

B qL

=

(3)将x>0区域的曲线运动看做以2v 1的匀速直线运动和以v 1的匀速圆周运动的合成,如图;

2112v B

qv m r

?=

解得2

122mv r L qE == 24y r L ?==

最低点y 坐标为1722

y L y L =-?=- 此时速度最大为v m =2v 1+v 1

解得3

m qEL

v m

=

9.我们熟知经典回旋加速器如图(甲)所示,带电粒子从M 处经狭缝中的高频交流电压加速,进入与盒面垂直的匀强磁场的两个D 形盒中做圆周运动,循环往复不断被加速,最终离开加速器。另一种同步加速器,基本原理可以简化为如图(乙)所示模型,带电粒子从M 板进入高压缝隙被加速,离开N 板时,两板的电荷量均立即变为零,离开N 板后,在匀强磁场的导引控制下回旋反复通过加速电场区不断加速,但带电粒子的旋转半径始终保持不变。已知带电粒子A 的电荷量为+q ,质量为m ,带电粒子第一次进入磁场区时,两种加速器的磁场均为B 0,加速时狭缝间电压大小都恒为U ,设带电粒子最初进入狭缝时的初速度为零,不计粒子受到的重力,不计粒子加速时间及其做圆周运动产生的电磁辐射,不考虑磁场变化对粒子速度的影响及相对论效应。

(1)求带电粒子A 每次经过两种加速器加速场时,动能的增量;

(2)经典回旋加速器与同步加速器在装置上的类似性,源于它们在原理上的类似性。 a.经典回旋加速器,带电粒子在不断被加速后,其在磁场中的旋转半径也会不断增加,求加速n 次后r n 的大小;

b.同步加速器因其旋转半径R 始终保持不变,因此磁场必须周期性递增,请推导B n 的表达式;

(3)请你猜想一下,若带电粒子A 与另一种带电粒子B (质量也为m ,电荷量为+kq ,k 为大于1的整数)一起进入两种加速器,请分别说明两种粒子能否同时被加速,如果不能请说明原因,如果能,请推导说明理由。

【答案】(1)k E qU =△;(2)a.0

12n nUq

R B m

=0n B nB =;(3)见解析 【解析】 【分析】 【详解】

(1)粒子仅在狭缝间由电场加速,绕行过程中仅受洛伦兹力作用,洛伦兹力不会对粒子做功,根据动能定理: 每次动能的增量为:

K E qU =V

(2)a .在D 形盒中洛伦兹力作向心力,磁感应强度不需要改变,当第n 次穿过MN 两板间开始作第n 圈绕行时

20n

n n

v qv B m R =

第n 圈的半径

n R =

b.同步加速器因其旋转半径始终保持不变,因此磁场必须周期性递增,洛伦兹力作向心力

212nqU mv = , 2000v qv B m R = , 2

n

n n v qv B m R

=

所以第n 圈绕行的磁感应强度为:

0n B =

(3)经典回旋加速器不能做到回旋加速,同步加速器仍然能做到回旋加速。经典回旋加速器,交变电压的周期与带电粒子回旋周期相同,加速A 粒子的交变电压的周期为

02m

T B q π=

而若要加速回旋加速粒子B ,交变电压周期应为

02m

T kB q

π=

' 因此当B 粒子到达加速电场缝隙时,电压方向并没有反向,因此无法同时加速。同步加速器A 粒子的磁场变化周期

2n n

m

T qB π=

B 粒子的旋转周期

2n

n T m T kqB k

π=

=' n T 是T ' 的k 倍,所以A 每绕行1周,B 就绕行k 周。由于电场只在A 通过时存在,故

B 仅在与A 同时进入电场时才被加速。

10.诺贝尔物理学奖得主劳伦斯发明了回旋加速器,其原理可简化如下.如图所示,两个中空的半径R =0.125m 的半圆金属盒,接在电压U =5000V 、频率恒定的交流电源上;两盒狭缝之间距离d =0.01m ,金属盒面与匀强磁场垂直,磁感应强度B =0.8T .位于圆心处的质子源能不断产生质子(初速度可以忽略,重力不计,不计质子间的相互作用),质子在狭缝之间能不断被电场加速,最后通过特殊装置引出.已知质子的比荷

198

271.6101101.6710q C m kg

--?=≈??C/kg ,求: (1)质子能获得的最大速度;

(2)质子在电场加速过程中获得的平均功率;

(3)随轨道半径r 的增大,同一盒中相邻轨道的半径之差Δr 如何变化?简述理由. (4)设输出时质子束形成的等效电流为100mA ,回旋加速器输出功率是多大?

【答案】(1)7max 110v =?m/s (2) 7

410P -≈?W 电

(3) Δr 逐渐减小 (4)P =5000W 【解析】 【详解】

(1)粒子在磁场中回旋,有

2

mv qvB r

= 引出时有r=R , 得

7max 110gBR

v m

=

=?m/s (2)引出前质子(在电场中)加速的次数

100km E

n qU

==

质子在电场中多次加速,可等效为一次性做匀加速直线运动 该过程中的平均速度为v /2,则

7210/2

nd

t s v -=

=?电 平均功率

()227777

1 1.6710102

410210

W P t ---???==≈??W W 电电 (3)粒子回旋半径mv

r qB

=

,设加速一次后的速度为v 1,加速三次后的速度为v 3,则有 313v v =,515v v =……,

由此

313r r =,55r r

因为111(31)(53)(75)r r r >>>L L ,故Δr 逐渐减小 (4)研究出口处截面Δt →0时间内的质子,设有N 个,则

N·q =I ·Δt

在该时间内,回旋加速器做的功等效于把N 个质子从静止加速到km E

21

(0)

2

W N mv =-

W P t

=

?, 代入得

P =5000W

11.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .

(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v

(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P

(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小

【答案】(1) 222202e B R mc v mh h =+,222

02e B R E m = ;(2) 20e B U m

π ;(3)02sin B R n d

π

【解析】 【详解】

解:(1)正、负电子在回旋加速器中磁场里则有:2

00mv evB R

=

解得正、负电子离开回旋加速器时的速度为:00eB R

v m

=

正、负电子进入对撞机时分别具有的能量:2222

00122e B R E mv m

==

正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=

正、负电子对撞湮灭后产生的光子频率:2222

02e B R mc v mh h

=+

(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:

201

2

neU mv =

解得:22

02eB R n mU

=

正、负电子在磁场中运动的周期为:0

2m

T eB π=

正、负电子在磁场中运动的时间为:2022B R n

t T U

π==

D 型盒间的电场对电子做功的平均功率:20e B U

W E P t t m

π===

(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin

2

d

r n

π

=

解得:

2sin

d r n

π=

根据洛伦磁力提供向心力可得:2

00mv ev B r

=

电磁铁内匀强磁场的磁感应强度B 大小:

02sin

B R n B d

π

=

12.1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B 的匀强磁场与盒面垂直.A 处粒子源产生的粒子,质量为m 、电荷量为+q ,在加速器中被加速,加速电压为U .加速过程中不考虑相对论效应和重力作用.

(1)求粒子第2次和第1次经过两D 形盒间狭缝后轨道半径之比; (2)求粒子从静止开始加速到出口处所需的时间t ;

(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应强度和加速电场频率的最大值分别为B m 、f m ,试讨论粒子能获得的最大动能E ㎞. 【答案】(1)2:1(2)

2

2BR U

π(3)当Bm

m f f ≤时,E Km =2222m q B R

m

;当Bm m f f ≥时,

E Km =222

2m mf R π

【解析】 【分析】

(1)狭缝中加速时根据动能定理,可求出加速后的速度,然后根据洛伦兹力提供向心力,推出半径表达式;

(2)假设粒子运动n 圈后到达出口,则加速了2n 次,整体运用动能定理,再与洛伦兹力提供向心力,粒子运动的固有周期公式联立求解;

(3)B m 对应粒子在磁场中运动可提供的最大频率,f m 对应加速电场可提供的最大频率,选两者较小者,作为其共同频率,然后求此频率下的最大动能. 【详解】

(1)设粒子第1次经过狭缝后的半径为r 1,速度为v 1 qU=mv 12 qv 1B=m

解得

同理,粒子第2次经过狭缝后的半径

(2)设粒子到出口处被加速了n 圈

解得.

(3)加速电场的频率应等于粒子在磁场中做圆周运动的频率,即

当磁场感应强度为B m 时,加速电场的频率应为

粒子的动能

当f Bm ≤f m 时,粒子的最大动能由B m 决定

解得

当f Bm ≥f m 时,粒子的最大动能由f m 决定v m =2πf m R 解得

【点睛】

此题是带电粒子在复合场中运动与动能定理的灵活应用,本题每一问都比较新颖,需要学生反复琢磨解答过程.

13.回旋加速器D 形盒中央为质子流,D 形盒的交流电压为U ,静止质子经电场加速后,进入D 形盒,其最大轨道半径为R ,磁场的磁感应强度为B ,质子质量为m .求: (1)质子最初进入D 形盒的动能多大; (2)质子经回旋加速器最后得到的动能多大; (3)交流电源的频率是多少.

【答案】(1)eU (2) 2222e B R m (3) 2eB

m

π

【解析】(1)质子在电场中被加速,根据动能定理,则有最初进入D 型盒的动能:

k E eU =;

(2)根据2v qvB m R =得,粒子出D 形盒时的最后的速度为: m eBR

v m

=,

则粒子出D 形盒时的最后的动能为: 222

2122km

m e B R E mv m

==;

(3)由洛伦兹力提供向心力,则有:

2

v

Bev m

r

=,而

2r

T

v

π

=,所以粒子在磁场中运行

周期为

2m

T

eB

π

=,因一直处于加速状态,则磁场中的周期与交流电源的周期相同,即

为:

2m

T

eB

π

=,因此频率为

2

eB

f

m

π

=。

点睛:考查粒子做匀速圆周的周期公式与半径公式的应用,掌握牛顿第二定律,注意交流电源变化周期与粒子在磁场中偏转周期的关系。

14.1930年,Earnest O. Lawrence提出了回旋加速器的理论,他设想用磁场使带电粒子沿圆弧形轨道旋转,多次反复地通过高频加速电场,直至达到高能量。题图甲为Earnest O. Lawrence设计的回旋加速器的示意图。它由两个铝制D型金属扁盒组成,两个D形盒正中间开有一条狭缝;两个D型盒处在匀强磁场中并接有高频交变电压。图乙为俯视图,在D 型盒上半面中心S处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D型盒中。在磁场力的作用下运动半周,再经狭缝电压加速;为保证粒子每次经过狭缝都被加速,应设法使交变电压的周期与粒子在狭缝及磁场中运动的周期一致。如此周而复始,最后到达D型盒的边缘,获得最大速度后被束流提取装置提取出。已知正离子的电荷量为q,质量为m,加速时电极间电压大小恒为U,磁场的磁感应强度为B,D型盒的半径为R,狭缝之间的距离为d。设正离子从离子源出发时的初速度为零。

(1)试计算上述正离子从离子源出发被第一次加速后进入下半盒中运动的轨道半径;(2)设该正离子在电场中的加速次数与回旋半周的次数相同,试推证当R>>d时,正离子在电场中加速的总时间相对于在D形盒中回旋的时间可忽略不计(正离子在电场中运动时,不考虑磁场的影响)。

(3)若此回旋加速器原来加速的是α粒子(),现改为加速氘核(),要想使氘核获得与α粒子相同的动能,请你通过分析,提出一种简单可行的办法。

【答案】(1)(2)见解析(3)

【解析】

【详解】

(1)设质子经过窄缝被第n次加速后速度为v n,由动能定理 nqU=mv n2

第n次加速后质子在磁场中做匀速圆周运动的半径为R n,由牛顿第二定律 Bqv n=m

由以上两式解得

则R1=;

(2)在电场中加速的总时间为:

在D形盒中回旋的时间为t2=

故?1

即只有当R?d时,质子在电场中加速的总时间相对于在D形盒中回旋的时间可忽略不计.

(3)若加速氘核,氘核从D盒边缘离开时的动能为E k′则:E k′==E km

联立解得 B1= B

即磁感应强度需增大为原来的倍;高频交流电源的周期T=,由α粒子换为氘核

时,交流电源的周期应为原来的倍.

【点睛】

解决本题的关键知道回旋加强器的工作原理,利用磁场偏转,电场加速.以及知道回旋加强器加速粒子的最大动能与什么因素有关.粒子离开加速器时圆周运动的轨道半径等于D 形盒的半径,在电场中的总的运动可以看做连续的匀加速直线运动.

15.回旋加速器是加速带电粒子的常用仪器,其结构示意图如图甲所示,其中置于高真空中的金属D形盒的半径为R,两盒间距极小,在左侧D形盒圆心处放有粒子源S,匀强磁场的磁感应强度为B,方向如图乙所示(俯视).设带电粒子质量为m,电荷量为+q,该粒子从粒子源S进入加速电场时的初速度不计,两金属盒狭缝处加高频交变电压,加速电压大小U可视为不变,粒子重力不计,粒子在电场中的加速次数等于回旋半周的次数,求:

(1)粒子在回旋加速器中经过第一次加速可以达到的速度和第一次在磁场中的回旋半径;

(2)粒子在第n次通过狭缝前后的半径之比;

(3)粒子若能从上侧边缘的引出装置处导出,则R与U、B、n之间应满足什么条件?

【答案】2Uq m 2Uqm 1n n - (3) qBR m 2nUq

m

【解析】

(1)粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动, 根据Uq =

2

112

mv v 12Uq

m

根据2

v qvB m r

=

12Uqm

r =

(2)根据nUq =212

n mv v n 2nUq

m

根据2

v qvB m r

=

2n nUqm

r =

粒子在第n 1n n -

(3)根据2

v qvB m r

=

nUq =

212

n mv 知v m =

2qBR

nqU

m m

=

(习题)3.9粒子速度选择器_质谱仪_回旋加速器

一 粒子速度选择器练习 如图,粒子以速度v 0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中出去,根据qv 0B =qE , 得v 0=E/B ,故 若v= v 0=E/B ,粒子做直线运动,与粒子电量、电性、质量无关 若v <E/B ,电场力大,粒子向电场力方向偏,电场力做正功,动能增加. 若v >E/B ,洛伦兹力大,粒子向磁场力方向偏,电场力做负功,动能减少. 速度选择器的特点是:(1)只选速度,不选电性.即不管是带正电还是带负电,只要初速度满足一定的关系,粒子均能直线飞出. (2)单向性:粒子只能从一个方向打入,另外一个方向飞出. 1. (单) 如图,水平放置的平行金属板a 、b 带有等量异种电荷,a 板带正电,两板间有垂直于纸面向里的匀强磁场,若一个带正电的液滴在两板间做直线运动,其运动方向是:( D ) A .沿竖直方向向下 B .沿竖直方向向上 C .沿水平方向向左 D .沿水平方向向右 2(双)在图中实线框所围的区域内同时存在匀强磁场和匀强电场.一负离子(不计重力)恰好能沿直线MN 通过这一区域.则匀强磁场和匀强电场的方向不可能为下列哪种情况( AD ) A 、匀强磁场和匀强电场的方向都水平向右 B 、匀强磁场方向竖直向上,匀强电场方向垂直于纸面向里 C 、匀强磁场方向垂直于纸面向里,匀强电场方向竖直向下 D 、匀强磁场方向垂直于纸面向外,匀强电场方向竖直向下 3(双)、一质子以速度V 穿过互相垂直的电场和 磁场区域而没有发生偏转,则 ( BD ) A 、若电子以相同速度V 射入该区域,将会发生偏转 B 、无论何种带电粒子,只要以相同速度射入都不会发生偏转 C 、若质子的速度V'V ,它将向上偏转,其运动轨迹既不是圆弧也不是抛物线 4(双)如图,氕、氘、氚核以相同的动能射入速度选择器,结果氘核沿直线运动,则 ( AD ) A .偏向正极板的是氕核 B .偏向正极板的是氚核 C .射出时动能最大的是氕核 D .射出时动能最大的是氚核 图 11-3-1 a b B M N V + --

高中物理速度选择器和回旋加速器专题训练答案及解析

高中物理速度选择器和回旋加速器专题训练答案及解析 一、速度选择器和回旋加速器 1.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B = 3 3 T ,方向垂直于纸面向里。一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π 3 ,不计离子重力。求: (1)离子速度v 的大小; (2)离子的比荷 q m ; (3)离子在圆形磁场区域中运动时间t 。(结果可含有根号和分式) 【答案】(1)2000m/s ;(2)2×104C/kg ;(3)4310s 6 π -? 【解析】 【详解】 (1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即: B 0qv =qE 解得: 2000m/s E v B = = (2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示

由洛仑兹力公式和牛顿第二定律有: 2 v Bqv m r = 由几何关系有: 2 R tan r θ = 离子的比荷为: 4 210C/kg q m =? (3)弧CF 对应圆心角为θ,离子在圆形磁场区域中运动时间t , 2t T θπ= 2m T qB π= 解得: 43106 t s π -= 2.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置; (2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?

高考物理解题技巧集锦

高中物理解题方法之隔离法和整体法 江苏省特级教师戴儒京 隔离法和整体法是解决物理问题特别是力学问题的基本而又重要的方法。 隔离法是把一个物体从物体系中隔离出来,只研究他的受力情况和运动情况,不研究他的施力情况。 整体法是把物体系看做一个整体,分析物体系的受力情况和运动情况,而不分析物体系内的物体的相互作用力。 整体法一般是在物体系内各物体的加速度相同的情况下应用。并且不求物体系内各物体的相互作用力。 下面的例题中的物体系只包含2个物体,3个以上的物体,方法与此类似。一、一个外力 例1.光滑水平面上的两个物体 在光滑水平面上有两个彼此接触的物体A和B,它们的质量分别为m1、m2。若用水平推力F作用于A物体,使A、B一起向前运动,如图1所示,则两物体间的相互作用力为多大?若将F作用于B物体,则A、B间的相互作用力为多大? 图1

【解析】对A 、B 两个物体组成的系统用整体法,根据牛顿第二定律,有 a m m F )(21+=,所以2 1m m F a += ① 对B 物体用隔离法,根据牛顿第二定律,有 a m F AB 2= ② 将①代入②得 2 12 m m m F F AB +? = ③ 若将F 作用于B 物体,则对A 物体用隔离法,根据牛顿第二定律,有 a m F BA 1= ④ 所以A 、B 间的相互作用力为2 11 m m m F F BA +? = ⑤ 实际上,在同一个时刻,根据牛顿第三定律,A 、B 之间的作用力和反作用力大小是相等的。此处,③式和⑤式所表示的AB F 和BA F 不是作用力和反作用力,而是两种情况下的A 、B 之间的作用力,这样表示,以示区别,不要误会。 ③式和⑤式,可以看做“力的分配规律”,正如串联电路中电压的分配规律一样。因为大家知道,电阻R 1、R 2串联,总电压为U ,则R 1和R 2上的电压分别为 2111R R R U U +=,2 12 2R R R U U +=。这两个式子与③式和⑤式何其相似乃尔。 例2.粗糙水平面上的两个物体 在水平面上有两个彼此接触的物体A 和B ,它们的质量分别为m 1、m 2,与水平面间的动摩擦因数皆为为μ。若用水平推力F 作用于A 物体,使A 、B 一起向前运动,如图1所示,则两物体间的相互作用力为多大?若将F 作用于B 物体,则A 、

高考物理速度选择器和回旋加速器各地方试卷集合汇编及解析(1)

高考物理速度选择器和回旋加速器各地方试卷集合汇编及解析(1) 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。不计粒子重力。 (1)求第二象限中电场强度和磁感应强度的比值0 E B ; (2)求第一象限内磁场的磁感应强度大小B ;

专项训练磁场测试卷.docx

专题训练:磁场单元 1. 关于电场强度E与磁感应强度仪下列说法中错误的是() A.电场强度E是矢量,方向与正电荷受到的电场力方向相同 B.磁感应强度B是欠量,方向与小磁针N极的受力方向相同 C.电场强度定义式为E =匚,但电场中某点的电场强度E与尸、9无关 q D.磁感应强度定义式R -匚,同样的电流元〃在磁场中同一点受到的力一定相同 H 2.如图所示,均匀绕制的螺线管水平放置,在具正屮心的上方附近用绝缘绳水平吊起通电直导 线/并处于平衡状态,/与螺线管垂肓,M导线中的电流方向垂玄纸面向里,开关S闭仑后,绝缘绳 对/拉力变化情况是() A.增人 B.减小 C.不变 D.无法判断 3.如图所示,在兀轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为3。在xOy内, 从原点O处沿与x轴疋方向成0角(0<〃<兀)以速率v发射一个带正电的粒子(重力不计)。则下列说法正确的 A.若卩一定,&越大,则粒子在磁场中运动的时间越短 B.若u—定,0越人,则粒子在离开磁场的位置距O点越远 C.若0—定,v越人,则粒子在磁场屮运动的时间越短 D.若&一定,v越大,则粒了在磁场中运动的角速度越大 4.如图所示为电视机显像管偏转线圈的示意图,当 线圈通以图示的直流电吋,形成的磁场如图所示,一束沿着管颈轴线射向纸内的电子将() A.向上偏转 B.向下偏转 C.向左偏转 D.向右偏转 5.如图所示,光滑的平行导轨与电源连接后,与水平方向成&角倾斜放置,导轨上另放一个质量为加的金属导体棒。通电后,在棒所在区域内加-个合适的匀强磁场,可以使导体棒静止平衡,图中分别加了不同方向的磁场,其中一定不能平衡的是() 6.关于回旋加速器加速带电粒了所获得的能量,下列结论中正确的是() A.只与加速器的半径有关,半径越大,能量越大 B.与加速器的磁场和半径均有关,磁场越强、半径越人,能量越人 C.只与加速器的电场有关,电场越强,能量越大 D.与带电粒子的质量和电荷量均有关,质量和电荷量越大,能量越大 7.如图所示,冇一四面体OABC处在Ox方向的匀强磁场中,下列关于穿过各个面的 磁通量的说法错误的 是() XXX /XXX A.13.

高考物理 解题的策略与方法

2012高考物理解题的策略与方法 在高三的最后复习阶段,学生常会遇到这样的场景:高考物理也就是“12道选择题、l道选作题、2道实验题和4道计算题”,总分150分.学生对于一般的物理基础题基本上没有问题,其错误大多是在不定项选择题上发生;另外,做计算题的能力还有些差,有时候没有一点解题的思路和程序,有时候理解题意有些偏差,有时候把问题搞得很复杂,有时候又把问题想得过于简单;而对于实验题,简直是摸不着头脑,常考常新,基本上得不到分数.“老师?我该怎么办呢?” 上述“物理场景”具有广泛性与普遍性,是高三学生学习过程中常会出现的一种现象.同学们要正视问题,调整心态,充满信心,更要注重解题方法与应试技巧的积累,把自己头脑中储存的物理知识有效地转化成分数.高考——分数是硬道理,学物理不能“一看就懂,一听就会,一作就错”,而要把自己的知识与能力转化成分数.在这里我想从“物理场景”的角度谈谈物理解题的策略与方法,望能对同学们有所帮助. 一、关于12道物理选择题 1.选择题失分的原因剖析 物理考试中,选择题有12题共48分,分数非常可观,故考试成败的关键在于选择题,这个问题应该引起同学们的高度重视.选择题失分较多的关键是处理题目时过于草率,这和平时的练习有直接联系.无论单选多选,处理选择题时建议把它当做稍大些的题处理.在处理大题的时候,同学们会自觉地画图、审题、弄清物理情境中出现的系统、状态与过程,挖出隐含条件,同学们格外重视这些因素,也做得比较到位.但在处理选择题的过程中,画图、审题程序往往被忽略,这样就埋下了隐患,导致丢分.所以,选择题失分不要总是归结为马虎、粗心!一定要注重审题及其他程序,不能凭一种单纯的物理感觉去解题. 2.选择题的求解技巧

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

高考物理最新模拟题精选训练(磁场)专题05 质谱仪与回旋加速器(含解析)

专题05 质谱仪与回旋加速器 1.(2017武汉武昌模拟)回旋加速器的核心部分是真空室中的两个相距很近的D形金属盒,把它们放在匀强磁场中,磁场方向垂直于盒面向下。连接好高频交流电源后,两盒间的窄缝中能形成匀强电场,带电粒子在磁场中做圆周运动,每次通过两盒间的窄缝时都能被加速,直到达到最大圆周半径时通过特殊装置引出。如果用同一回旋加速器分别加速氚核(13H)和α粒子(24He),比较它们所需要的高频交流电源的周期和引出时的最大动能,下列说法正确的是 A.加速氚核的交流电源的周期较大;氚核获得的动能较大 B.加速氚核的交流电源的周期较小;氚核获得的动能较大 C.加速氚核的交流电源的周期较大;氚核获得的动能较小 D.加速氚核的交流电源的周期较小;氚核获得的动能较小 【参考答案】C. 【命题意图】本题考查回旋加速器、带电粒子在匀强磁场中的匀速圆周运动、周期、动能及其相关的知识点。 【解题思路】由于氚核的比荷q/m小于α粒子的比荷,由带电粒子在匀强磁场中运动的周期公式T=2m qB 可 知加速氚核的交流电源的周期较大。粒子通过回旋加速器获得的最大速度v=qBR m ,动能 E k=1 2 mv2= 222 2 q B R m ,将氚核和α粒子的电荷量q和质量m代入比较可知,α粒子获得的动能较大,选项C 正确。

2.(2017云贵川百校大联考)图甲是回旋加速器的示意图,其核心部分是两个D形金属盒,在加速带电粒子时,两金属盒均置于匀强磁场中,并分别与高频交流电源两极相连.带电粒子在磁场中运动的动能E k随时间t的变化规律如图乙所示,若忽略带电粒子在电场中的加速时间,则下列说法正确的是() A.(t2﹣t1)=(t3﹣t2)=…(t n﹣t n﹣1) B.高频交流电源的变化周期随粒子速度的增大而减小 C.要使得粒子获得的最大动能增大,可以减小粒子的比荷 D.要使得粒子获得的最大动能增大,可以增大匀强磁场的磁感应强度 【参考答案】AD. 3.(2016济南模拟)质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示。粒子源S发出两种带正电的同位素粒子甲和乙,两种粒子从S出来时速度很小,可忽略不计,粒子经过加速电场加速后垂直进入有界匀强磁场(图中线框所示),最终打到照相底片上。测得甲、乙两种粒子打在照相底片上的点到入口的距离之比为5︰4,则它们在磁场中运动的时间之比是 A.5︰4 B.4︰5 C.25︰16 D.16︰25 【参考答案】. C 【命题意图】本题考查了质谱仪、洛伦兹力和带电粒子在匀强磁场中的运动、动能定理及其相关的知识点。

最新高二物理综合强化训练试题

N S G 胡文2021年高二物理综合强化训练试题(八) 审稿人:胡文2021年 1、如图所示,线圈两端接在电流表上组成闭合电路,在下列情况中,电流表指针会发生偏转的是 ( ABD ) A 、线圈不动,磁铁插入线圈 B 、线圈不动,磁铁拔出线圈 C 、磁铁插在线圈内不动 D 、线圈不动,磁铁以其中心为轴,沿纸面做顺时针方向转动 2.如图所示的光控电路用发光二极管LED 模仿路灯,RG 为光敏电阻.“功能的非门,当加在它的输入端 A 的电压逐渐上升到某个值时,输出端Y 会突然从高电平跳到低电平,而当输入端A 的电压下降到另一个值时,Y 会从低电平跳到高电平.在天暗时路灯(发光二极管)会点亮,下列说法中正确的是( BD ) A .天暗时Y 处于高电平 B .天暗时Y 处于低电平 C .当R1调大时A 端的电压降低, 灯(发光二极管)点亮 D .当R1调大时A 端的电压降低, 3、如图所示,质量为m 电量为q 的带正电物体,在磁感强度为B 、方向直纸面向里的匀强磁场中,沿动摩檫因数为μ的水平面向左运动,则CD A.物体的速度由v 减小到零所用的时间等于mv/μ(mg+qvB) B.物体的速度由。减小到零所用的时间小于mv/μ(mg+qvB) 物体做匀速 C.若另加一个电场强度为μ(mg+qvB)/q 、方向水平向左的匀强电场, 运动 。 D.若另加一个电场强度为 (mg+qvB)/q 、方向竖直向上的匀强电场,物体做匀速运动· 4、如图所示,回旋加速器D 形盒的半径为R ,用来加速质量为m ,电量为q 的质子,质子每次经过电场区时,都恰好在电压为U 时并被加速,且电场可视为匀强电场,使质子由静止加速到能量为E 后,由A 孔射出 。下列说法正确的是( BD ) A.D 形盒半径R 、磁感应强度B 不变,若加速电压U 越高,质子的能量E 将越大 B.磁感应强度B 不变,若加速电压U 不变, D 形盒半径R 越大、质子的能量E 将越大 C.D 形盒半径R 、磁感应强度B 不变,若加速电压U 越高,质子的在加速器中的 运动时间将越长 D.D 形盒半径R 、磁感应强度B 不变,若加速电压U 越高,质子的在加速器中的运动时间将越短 5.在真空中,半径r =3×10-2 m 的圆形区域内有匀强磁场,方向如图所示,磁感应强度B = 0.2T 。一个带正电的粒子,以初速度v 0=106 m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷q/m =108 C/kg ,不计粒子重力。 (1)粒子在磁场中作匀速圆周运动的半径是多少?R =0.05m (2)若要使粒子飞离磁场时有最大偏转角,求入射时v 0方向与ab 的夹角θ。θ=37 v 0 θ a O 图5 t 4 e t t 1 t 2 t 3

高中物理总复习 15种快速解题技巧

技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin θ (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F 与系统的重力(M+m )g 满足关系式:F >(M+m )g ,正确答案为D. 【方法链接】对于超、失重现象大致可分为以下几种情况: θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

2020届高考物理冲刺专项训练21 带电粒子在复合场中的运动 (原卷版)

带电粒子在复合场中的运动 一、单选题 1.(2020·全国高三专题练习)作用在导电液体上的安培力能起到推动液体流动的作用,这样的装置称为电磁泵,它在医学技术上有多种应用,血液含有离子,在人工心肺机里的电磁泵就可作为输送血液的动力.某电磁泵及尺寸如图所示,矩形截面的水平管道上下表面是导体,它与磁感强度为B的匀强磁场垂直,并有长为的部分在磁场中,当管内充满血液并通以横穿管子的电流时血液便能向前流动.为使血液在管内不流动时能产生向前的压强P,电流强度I应为 A.B.C.D. 2.(2020·全国高三专题练习)笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件.当显示屏开启时磁体远离霍尔元件,电脑正常工作:当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态.如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为υ.当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压U,以此控制屏幕的熄灭.则元件的() A.前表面的电势比后表面的低 B.前、后表面间的电压U与υ无关 C.前、后表面间的电压U与c成正比 D.自由电子受到的洛伦兹力大小为eU a 3.(2020·江苏省高三月考)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的

是 A .增大匀强电场间的加速电压 B .增大磁场的磁感应强度 C .减小狭缝间的距离 D .减小D 形金属盒的半径 4.(2020·江苏省高三月考)磁流体发电机的结构简图如图所示。把平行金属板A 、B 和电阻R 连接,A 、B 之间有很强的磁场,将一束等离子体(即高温下电离的气体,含有大量正、负带电粒子)以速度v 喷入磁场,A 、B 两板间便产生电压,成为电源的两个电极。下列推断正确的是( ) A .A 板为电源的正极 B .电阻R 两端电压等于电源的电动势 C .若减小两极板的距离,则电源的电动势会减小 D .若增加两极板的正对面积,则电源的电动势会增加 5.(2020·四川省高三二模)反质子的质量与质子相同,电荷与质子相反。一个反质子从静止经电压U 1加速后,从O 点沿角平分线进入有匀强磁场(图中未画岀)的正三角形OAC 区域,之后恰好从A 点射岀。已知反质子质量为m ,电量为q ,正三角形OAC 的边长为L ,不计反质子重力,整个装置处于真空中。则( ) A B .保持电压U 1不变,增大磁感应强度,反质子可能垂直OA 射出

高考物理解题技巧与时间分配

高考物理解题技巧与时间分配 (一)选择题 1、分时间以课标卷高考为例,高考物理一共8个选择题,按照高考选择题总时间在35--45 分钟的安排,物理选择题时间安排在15一25 分钟为宜,大约占所有选择题的一半时间(由于生物选择题和化学选择题的计算量不大,很多题目可以直接进行判断,所以物理选择题所占的时间比例应稍大些).在物理的8个选择题中,时间也不能平均分配,一般情况下,选择题的难度会逐渐增加,物理选择题也不会例外,难度大的题目大约需要 3 分钟甚至更长一点的时间,而难度较小的选择题一般 1 分钟就能够解决了, 7、8个选择题中,按照 2 : 5 : 1 的关系,一般有 2 个简单题目, 4、5个中档题目和 1 个难度较大的题目(开始时难题较少)。 2 .析本质 选择题一般考查的是考生对基本知识和基本规律的理解及应用这些知识进行一些定性推理,很少有较复杂的计算.解题时一定要注意一些关键词,例如“不正确的”“可能”与“一定”的区别,要讨论多种可能性.不要挑题做,应按题号顺序做,而且开始应适当慢一点,这样刚上场的紧张心情会逐渐平静下来,做题思维会逐渐活跃,不知不觉中能全身心进入状态.一般地

讲,如遇熟题,题图似曾相识,应陈题新解;如遇陌生题,题图陌生、物理情景陌生,应新题常规解,如较长时间分析仍无思路,则应暂时跳过去,先做下边的试题,待全部能做的题目做好后,再来慢慢解决(此时解题的心情已经会相对放松,状态更易发挥).确实做不出来时,千万不要放弃猜答案的机会,先用排除法排除能确认的干扰项,如果能排除两个,其余两项肯定有一个是正确答案,再随意选其中一项,即使一个干扰项也不能排除仍不要放弃,四个选项中随便选一个.尤其要注意的是,选择题做完后一定要立即涂卡. 3 .巧应对 高考物理选择题是所有学科中选择题难度最大的,主要难点有以下几种情况:一是物理木身在各个学科中就属于比较难的学科;二是物理选择题是不定项选择,题目答案个数不确定,造成在选择的时候瞻前顾后,不得要领;三是大部分选择题综合性很高,涉及的知识点比计算题和填空题还要多,稍有不慎,就会顾此失彼;四是有些选择题本身就是小型的计算题,计算量并不比简单的计算题小. 虽然说高考物理选择题在解决的时候有这样那样的困难,但是如果方法选择好,解决起来还是有章可循的,为了能够在处理高考选择题时游刃有余,我们首先要了解选择题一般的特点,把高考选择题进行分类,然后根据各自的类型研究对策.

高考理综答题时间分配及考试技巧

高考理综答题时间分配及考试技巧 导读:我根据大家的需要整理了一份关于《高考理综答题时间分配及考试技巧》的内容,具体内容:理综考试的试卷结构是按学科排布的;因此,考生们要掌握答题技巧,做好答题时间的分配安排。下面我为大家分享的是的详细内容,希望对大家有帮助!高考理综答题时间分配技巧如果... 理综考试的试卷结构是按学科排布的;因此,考生们要掌握答题技巧,做好答题时间的分配安排。下面我为大家分享的是的详细内容,希望对大家有帮助! 高考理综答题时间分配技巧 如果要在150分钟内处理300分的题目,则每分钟平均要处理2分的难度中等的题目,练习中要注意时间与节奏把控。 具体时间分配课参考下述说明: 一卷上有21道选择题,不同地区选择题会有单项选择题和不定向选择题两类,每一小题都是6分,那么120分的第一卷答题时间应该大体控制在50分钟,每一分钟的时间应该至少拿下两分,选择题应该在2分或者不超过3分钟的时间里面解决,到了后面计算题中也要大致按照这样的策略,每一分钟大概完成两分,对大题原则上要8、9分钟,不能超过10分钟。 物理、化学、生物三个学科从考试时间上最好依次控制在1、1、0.5小时左右(可以有正负十分钟的浮动,根据学生科目的强弱调节),也就是说生物应该保持在半个小时尽可能拿到自己会做的分数为宜。 先做哪个学科可按自己习惯,也可先答自己的优势学科及基础试题,不要

在某一道难题上停留时间过久,使本来会的题目由于时间分配不好或者答题技巧掌握不好影响到理综成绩。事实证明,做得过慢直接丢掉整道大题的话,得分往往都比做得快但是正确率略微下降要低,而我们在练习中,需要有意识的提升自己在紧张状态下的"一次正确率"。 一、科学分配考试时间 理科综合三科合一,按分值分配,生物需30-35分钟完成,化学需50—55分钟完成,物理需要1小时完成,剩下的分钟为机动时间,这是最合理的安排。 二、做题顺序 自信,就从头到尾做;不自信,就可以有选择的先做。一般情况下,各科都不太难。只是因为有的学生在前面用的时间很多,后边相对简单一点的题没有时间做。而后面多是大分值的题。这属于时间安排上的失误。而有的题时间再充裕,也不一定做出来,这就应该主动地放弃,给可做出的题腾出一点时间。 做题顺序有几种,如,先做各科简单题,再做难一点的,但是尽量不要分科做。因为读完一个题后,才能知道是哪一科的题,如果不想做,放过去,做下面的题,但是回过头来再看刚才这一题的时候,还得从新熟悉,那么读题就浪费了时间。所以只要挨着做题就行。 三、选择题怎么做虽然是"选择题",但重要的不是在"选",不是看着选项去挑。在练习中,应该明白选项对,为什么不对,改成什么样子就对了。养成推导的习惯,掌握过程,要知道是"因为是怎样的,所以才怎样的"。做选择时,不要轻易地把生活经验往物理题上套。应该用物理规律往物理题上做。选择题是做出来的,不是选出来的。

高考物理速度选择器和回旋加速器专题训练答案及解析

高考物理速度选择器和回旋加速器专题训练答案及解析 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。求: (1)射出粒子的速率; (2)射出粒子的比荷; (3)MN 与挡板之间的最小距离。

电场磁场计算题专项训练及答案

电场磁场计算题专项训练 【注】该专项涉及运动:电场中加速、抛物线运动、磁场中圆周 1、(2009浙江)如图所示,相距为d 的平行金属板A 、B 竖直放置,在两板之间水平放置一绝缘平板。有一质量m 、电荷量q (q >0)的小物块在与金属板A 相距l 处静止。若某一时刻在金属板A 、B 间加一电压U AB =- q mgd 23μ,小物块与金属板只发生了一次碰撞,碰撞后电荷量变为-q /2,并以与碰前大小相等的速度反方向弹回。已知小物块与绝缘平板间的动摩擦因数为μ,若不计小物块几何量对电场的影响和碰撞时间。则 (1)小物块与金属板A 碰撞前瞬间的速度大小是多少? (2)小物块碰撞后经过多长时间停止运动?停在何位置? 2、(2006天津)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度应大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界的交点C 处沿+y 方向飞出。 (1)判断该粒子带何种电荷,并求出其比荷q /m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B /,该粒子仍以A 处相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B /多大?此粒子在磁场中运动所用时间t 是多少? 3、(2010全国卷Ⅰ)如下图,在a x 30≤ ≤区域内存在与xy 平面垂直的匀强磁场,磁感 应强度的大小为B 。在t = 0时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向夹角分布在0~180°范围内。已知 B

高考物理数学物理法常见题型及答题技巧及练习题

高考物理数学物理法常见题型及答题技巧及练习题 一、数学物理法 1.如图所示,ABCD是柱体玻璃棱镜的横截面,其中AE⊥BD,DB⊥CB,∠DAE=30°, ∠BAE=45°,∠DCB=60°,一束单色细光束从AD面入射,在棱镜中的折射光线如图中ab所示,ab与AD面的夹角α=60°.已知玻璃的折射率n=1.5,求:(结果可用反三角函数表示) (1)这束入射光线的入射角多大? (2)该束光线第一次从棱镜出射时的折射角. 【答案】(1)这束入射光线的入射角为48.6°; (2)该束光线第一次从棱镜出射时的折射角为48.6° 【解析】 试题分析:(1)设光在AD面的入射角、折射角分别为i、r,其中r=30°, 根据n=,得: sini=nsinr=1.5×sin30°=0.75 故i=arcsin0.75=48.6° (2)光路如图所示: ab光线在AB面的入射角为45°,设玻璃的临界角为C,则: sinC===0.67 sin45°>0.67,因此光线ab在AB面会发生全反射 光线在CD面的入射角r′=r=30° 根据n=,光线在CD面的出射光线与法线的夹角: i′="i=arcsin" 0.75=48.6° 2.质量为M的木楔倾角为θ,在水平面上保持静止,质量为m的木块刚好可以在木楔上表面上匀速下滑.现在用与木楔上表面成α角的力F拉着木块匀速上滑,如图所示,求:

(1)当α=θ时,拉力F 有最小值,求此最小值; (2)拉力F 最小时,木楔对水平面的摩擦力. 【答案】(1)mg sin 2θ (2)1 2 mg sin 4θ 【解析】 【分析】 对物块进行受力分析,根据共点力平衡,利用正交分解,在沿斜面方向和垂直于斜面方向都平衡,进行求解采用整体法,对m 、M 构成的整体列平衡方程求解. 【详解】 (1)木块刚好可以沿木楔上表面匀速下滑时,mg sin θ=μmg cos θ,则μ=tan θ,用力F 拉着木块匀速上滑,受力分析如图甲所示,则有:F cos α=mg sin θ+F f ,F N +F sin α=mg cos θ, F f =μF N 联立以上各式解得:() sin 2cos mg F θ θα= -. 当α=θ时,F 有最小值,F min =mg sin 2θ. (2)对木块和木楔整体受力分析如图乙所示,由平衡条件得,F f ′=F cos(θ+α),当拉力F 最小时,F f ′=F min ·cos 2θ=1 2 mg sin 4θ. 【点睛】 木块放在斜面上时正好匀速下滑隐含摩擦系数的数值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,结合数学知识即可解题. 3.图示为直角三角形棱镜的截面,90?∠=C ,30A ?∠=,AB 边长为20cm ,D 点到A 点的距离为7cm ,一束细单色光平行AC 边从D 点射入棱镜中,经AC 边反射后从BC 边上的F 点射出,出射光线与BC 边的夹角为30?,求: (1)棱镜的折射率; (2)F 点到C 点的距离。

2020年高考物理考点题型归纳与训练专题十一 带电粒子在组合场、复合场中的运动(含解析)

2020高考物理考点题型归纳与训练 专题十一 带电粒子在组合场、复合场中的运动 题型一、带电粒子在复合场中运动的应用实例 【典例1】.(1)(2019·安徽省示范高中高三调研)如图所示为一种质谱仪的工作原理示意图,此质谱仪由以下几部分构成:离子源、加速电场、静电分析器、磁分析器、收集器。静电分析器通道中心线MN 所在圆的半径为R ,通道内有均匀辐射的电场,中心线处的电场强度大小为E ;磁分析器中分布着方向垂直于纸面,磁感应强度为B 的匀强磁场,磁分析器的左边界与静电分析器的右边界平行。由离子源发出一个质量为m 、电荷量为+q 的离子(初速度为零,重力不计),经加速电场加速后进入静电分析器,沿中心线MN 做匀速圆周运动,而后由P 点进入磁分析器中,最终经过Q 点进入收集器。下列说法中正确的是( 0 A .磁分析器中匀强磁场的方向垂直于纸面向内 B .加速电场中的加速电压U =12 ER C .磁分析器中轨迹圆心O 2到Q 点的距离d = mER q D .任何带正电的离子若能到达P 点,则一定能进入收集器 【答案】 B 【解析】 该离子在磁分析器中沿顺时针方向转动,所受洛伦兹力指向圆心,根据左手定则可知,磁分析器中匀强磁场的方向垂直于纸面向外,A 错误;该离子在静电分析器中做匀速圆周运动,有qE =m v 2R ,在加速电场中加速有qU =12mv 2,联立解得U =1 2ER ,B 正确;该离 子在磁分析器中做匀速圆周运动,有qvB =m v 2r ,又qE =m v 2R ,可得r = 1 B mER q ,该离子经Q 点进入收集器,故d =r = 1 B mER q ,C 错误;任一初速度为零的带正电离子,质量、电荷

高考物理选择题型分析及解题技巧基本规律专项辅...

高考物理选择题型分析及解题技巧基本规律专项辅导 第一部分:理论研究 选择题是现代各种形式的考试中最为常用的一种题型,它分为单项选择和不定项选择、组合选择和排序选择(比如一些实验考查题)等形式.在江苏高考物理试卷中选择题分数占试卷总分的27%,在全国高考理科综合试卷中占40%.所以,选择题得分的高低直接影响着考试成绩. 从高考命题的趋势来看,选择题主要考查对物理概念、物理现象、物理过程和物理规律的认识、判断、辨析、理解和应用等,选择题中的计算量有逐年下降的趋势. 一、选择题的特点与功能 1.选择题的特点 (1)严谨性强.物理中的每一个概念、名词、术语、符号乃至习惯用语,往往都有明确、具体而又深刻的含义,这个特点反映到选择题中,表现出来的就是试题有很强的严谨性.所以,解题时对题中的一字一句都得认真推敲,严防产生思维定势,不能将物理语言与日常用语混淆.解答时切莫“望文生义”,误解题意. (2)信息量大.选择题对考查基本概念和基本规律具有得天独厚的优势,它可以考查考生对某个或多个物理概念的含义或物理规律的适应条件、运用范围的掌握和理解的程度,也可以考查考生对物理规律和物理图象的较浅层次上的应用等等.选择题考查的知识.点往往较多,对所考查知识的覆盖面也较大,它还可以对重点内容进行多角度多层次的考查. (3)有猜测性.众所周知,解选择题时,在分析和寻求答案的过程中,猜测和试探几乎是不可避免的,而且就其本身而言,它也是一种积极的思维活动.没有猜想与预测,就没有创造性思维.对物理选择题的猜答,往往是在思索求解之后仍难以作出决断的时候,凭借一定的依据而选出的.多数考生的猜答并非盲目的,而是凭着自己的知识、经验和决断能力,排除了某些项之后,才作出解答的.知识和经验不足、能力差的考生,猜错的机会较多;反之,知识和经验较多、能力较强的考生,猜错率较低. 2.选择题的功能 (1)选择题能在较大的知识范围内,实现对基础知识、基本技能和基本思想方法的考查. 每道选择题所考查的知识点一般有2~5个,以3~4个居多,因此,10道选择题构成的题组其考查点便可达到近30个之多,而一道计算或论述题,无论如何也难以实现对三、四十个知识点的考查. (2)选择题能比较准确地测试考生对概念、规律、性质、公式的理解和掌握程度. 选择题严谨性强、信息量大的特点,使其具有较好的诊断功能.它可从不同角度有针对性地设置干扰选项,考查考生能否区别有关概念和规律的似是而非的说法以及能否认识相关知识的区别和联系,从而培养考生排除干扰进行正确判断的能力. (3)在一定程度上,选择题能有效地考查学生的逻辑推理能力、空间想象能力以及灵活运用数学工具解决物理问题的能力(但要求一般不会太高). (4)选择题还具有客观性强、检测的信息度高的优点. 二、选择题的主要类型 1.识记水平类 这是选择题中低水平的能力考查题型,主要用于考查考生的再认能力、判断是非能力和比较能力.主要题型有: (1)组合型 (2)填空型 以上两种题型的解题方法大致类似,可先将含有明显错误的选项予以排除,那么,剩下

质谱仪专项训练卷

试卷第1页,总30页 绝密★启用前 2013-2014学年度北京师范大学万宁附属中学 质谱仪专项训练卷 考试范围:电磁场;命题人:王占国;审题人:孙炜煜 学校:___________姓名:___________班级:___________考号:___________ 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.图中所示为某种质谱仪的工作原理示意图。此质谱仪由以下几部分构成:粒子源N ;P 、Q 间的加速电场;静电分析器,即中心线半径为R 的四分之一圆形通道,通道内有均匀辐射电场,方向沿径向指向圆心O ,且与圆心O 等距的各点电场强度大小相等;磁感应强度为B 的有界匀强磁场,方向垂直纸面向外;胶片M 。由粒子源发出的不同带电粒子,经加速电场加速后进入静电分析器,某些粒子能沿中心线通过静电分析器并经小孔S 垂直磁场边界进入磁场,最终打到胶片上的某点。粒子从粒子源发出时的初速度不同,不计粒子所受重力。下列说法中正确的是 A .从小孔S 进入磁场的粒子速度大小一定相等 B .从小孔S 进入磁场的粒子动能一定相等 C .打到胶片上同一点的粒子速度大小一定相等 D .打到胶片上位置距离O 点越远的粒子,比荷越大 【答案】C 【解析】 试题分析:粒子经加速电场加速后根据动能定理22011 22 qu mv mv = -,在四分之一圆形通道内,有径向的均匀辐射电场,粒子最终经小孔S 垂直磁场边界进入磁场,说明在 圆形通道内做圆周运动,电场力提供向心力,从小孔S 进入磁场的粒子,在圆形通道内 经过的位置电场强度相同,圆周运动半径相同。根据2 v qE m R =,虽然半径相同,但是

相关主题
文本预览
相关文档 最新文档