当前位置:文档之家› 地铁车辆在制动方面的优化设计

地铁车辆在制动方面的优化设计

地铁车辆在制动方面的优化设计
地铁车辆在制动方面的优化设计

地铁车辆在制动方面的优化设计

第1章绪论

1.1研究背景

制动系统作为地铁车辆的重要子系统之一,在保证车辆安全方面发挥着重要作用。我国城市轨道交通车辆制动技术的开始于20世纪60年代在北京建成的第一辆地铁车辆,考虑到当时的技术条件,列车采用了DK型自动电磁空气制动系统,基本制动系统采用踏面制动。在电阻制动与空气制动的匹配中,系统采用切换方式。因此,制动力控制性能较差。此后,我国相关企业和高校共同开发了数字化气动电控制动系统,在动力制动与空气制动的协调性、制动性和缓解一致性方面有了明显的提高。然而,在制动力的精确控制和动力制动能力的充分利用方面仍有改进的空间。随后,AR12电控模拟指令制动系统应运而生。该系统采用电气控制和模拟信号传输,实现了动力制动与空气制动的连续配合,制动力控制更为方便。然而,由于该系统是由电子逻辑电路控制的,很难实现拖拉机的电制动能力的利用和系统的通用性。不强,特别是不能实现实时故障监测。简单地说,制动系统的发展经历了纯空气制动、主电制动为辅助控制制动、主空气制动为辅助电制动的过程。制动系统的控制技术也从空气控制、电气控制发展到目前的数字化控制。

近年来,国产制动系统逐步开发并应用到个别的地铁车辆项目中,主要为中国铁道科学研究院和中车四方机车车辆研究所研制的车控及架控制动系统。伴随着国产制动系统的逐步应用,将有利于提高目前城市轨道车辆国产化率,降低整车成本、但目前产品竞争力不足,例如零部件质量不可靠影响产品质量,研发投入不够导致基础试验设备及项目不足等方面,但最主要方面体现在产品的运用经验不足,造成系统性能较之外国产品不够完善,现在使用较多的制动系统伴随中国城市轨道交通市场的不断发展系统性能逐步完善。

1.2研究意义及目的

本文研究的目的:针对城市轨道交的站间距较短(一般都在3公里左右)的特点,这就决定了城轨车辆制动系统的特性必须具备其制动装置必须满足操作灵活、动作迅速、停车平稳准确、制动率及制动功率相对较大等要求。同时,轨道交通的客流量波动大,空载时重量仅为车辆自重,二满载时列车重量突然增加到

极限。要求制动装置应具备各种载荷工况下车辆制动力自动调整的性能,使车辆制动率能够维持不变,从而实现制动的准确性和停车的平稳性。,也便于国产制动系统的借鉴和分析。

本文研究的意义:希望我国制动系统方面的专业人才能够集中力量,共同努力,自主研发出具有市场竞争力、适用于新型城轨车辆的制动系统,以满足我国日益增长的轨道交通产品的需求,同时使我国的制动技术得到新的发展。

1.3我国地铁车辆制动系统现状

制动系统作为地铁车辆上的重要子系统之一,对车辆有着保证运行安全的重要作用。90年代以来,我国城市轨道交通产业持续飞速发展,大部分城市轨道车辆的制动系统均采用国外引进的制动系统,其中,以英国WESTINGHOUSE公司研制,现为克诺尔子公司生产的基于架控的EP2002制动系统应用最为广泛。近年来,国产制动系统逐步开发并应用到个别的地铁车辆项目中,主要为中国铁道科学研究院和中车四方机车车辆研究所研制的车控及架控制动系统。伴随着国产制动系统的逐步应用,将有利于提高目前城市轨道车辆国产化率,降低整车成本、但目前产品竞争力不足,研发投入不够导致基础试验设备及项目不足等方面,但最主要方面体现在产品的运用经验不足,造成系统性能较之外国产品不够完善。

我国地铁制动的国产化,实际上包含两个内容:一是重要设备要实现在国内制造生产,或进口国外零部件国内组装,一些国外公司在国内设立的合资企业生产组装的设备就属于这个范畴;二是要实现关键核心技术的自主创新,这种国产化又称自主化,实际上是国产化所追求的深一层目标,而这个目标正是目前国内品牌制动系统供应商所追求的,每个国内品牌制动系统供应商都为之付出了极大的财力、物力和人力。

早在2015年2月,我国铁道科学院自行开发的制动系统就通过了相关机构的技术鉴定。并且在天津的滨海快速车上进行了实验,实验结果表明,我国自行制造的制动系统完全能够满足要求。而在2007年的最后一次实验中,在国际考评组通过,考评组成员认为,我国自行研发的制动系统不仅达到国内先进水平,及时是在国际上,也是名列前茅。其可靠性、安全性和维护成本都能够达到市场应用的标准。之后我国很多的地铁制动系统都将此系统作为了主要的应用系统,

这个我国铁道车辆制动发展带来了重要的意义。

二、目前地铁车辆制动系统概述及组成

2.1概述

EP2002制动系统采用架控的形式即一个制动控制单元控制一个转向架,如果一个制动阀发生故障,只需要切除一个转向架上的制动阀,使故障对列车运行的影响减至最小。制动系统的核心部件是制动阀,它是机电一体化的模块部件,可以进行制动系统的控制、监控以及与列车控制系统之间的通讯。系统主要由风源系统、制动控制单元、基础制动装置、空气悬挂设备等部分组成。具有常用制动、紧急制动、决速制动、保持制动、停放制动和滑行控制等功能。

2.2地铁制动系统组成

目前我国地铁车辆的制动系统主要由风源系统部分、制动控制系统部分、转向架制动设备部分、微机控制轮对防滑设备部分、空气悬挂设备部分、车钩驱动装置部分和升弓设备部分组成一起组成。

2.2.1风源系统

EP2002风源系统主要包括活塞式(常见vv 120型)带后冷却器空压机、双塔式吸附干燥器、安全阀、滤油器、吊装框架等设备,所有设备被集成为一个风源模块,该模块通过螺栓直接联接到车体底架上。在每节车上均配置了一套压缩空气风源模块。该风源模块的供风能力可以满足地铁车辆用风需求。

图1 风源系统

空气压缩机由冷却器、带粘液祸合器的风扇叶轮、活塞式压缩机和三相交流电动机等组成,采用空气冷却,两级活塞压缩的空压机,由一个三相交流,50Hz,AC380V的电动机驱动。空气压缩机有两个低压气缸和一个高压气缸。拿vv 120型空气压缩机来举例说明,优点,如加长的吸气管,弹性阻尼冷却风扇联轴节,空压机与电机间的柔性联接,弹性减振器,可以尽量降低空压机的噪音水平。空压机的风扇配备了一个粘液祸合器。这样,冷却装置会根据环境温度和压缩机出口温度自行进行无级调节,从而保证压缩机以一个适宜的工作温度来运行。粘液祸合器同时作为滑动离合器使用,以使在风扇结冰或被异物如树枝等卡住的情况下不会造成设备损坏。

空气压缩机通过自带的吸气过滤器吸入空气,保证了对压缩机的最佳保护,空气在第一级被压缩后流经中间冷却器,然后进行第二级压缩。压缩空气在流经空气压缩机的后冷却器后通过一根压力软管到达一个双塔空气干燥器。

压缩空气被通到双塔空气干燥器中,压缩空气在一个干燥塔内进行干燥,同时在另一个干燥塔内回流的洁净总风对干燥剂进行再生处理。在干燥器内的电子计时器控制两个塔的干燥及再生。只有在空气压缩机工作时,该计时器的控制周期才起作用,这样可以确保两个干燥塔可以均衡工作。双塔空气干燥器通过去除系统中的水份并达到等于或小于35%的相对温度。

所有轴颈以及活塞和气缸均采用喷射润滑油的方法进行润滑。连杆浸入油池中,在每次转动时即会造成润滑。润滑油会自己流回油池中。无需附加装置如滤油器、油泵或者阀门等。这种浸入润滑方式的优点是即使在冬季的特殊外界条件下也具有很好的可靠性。

图2 空气压缩机

2.2.2制动控制系统

EP2002制动控制设备主要由单管式、基于各转向架踏面制动单元架控形式的电空控制和空气制动系统组成。制动系统设计组成通过三个核心部分来形成分布式制动控制网络。这三个组件是网关阀、RI0阀和智能阀。在地铁车辆EP2002制动系统设计中,每节带司机室车箱和动车配置有单个网关阀和单个智能阀,在每节带受电弓的车箱上配置有单个智能阀和单个RI0阀。每个阀都安装在相应的转向架上。

EP2002网关阀是一个机电一体的部件,它包含一个被称为气动阀单元(PVU)的直接安装在气动伺服阀上的电子控制部分。通过相应的CAN总线制动信号,每个网关阀对相应转向架上制动缸压力(BCP)进行控制。网关阀对每个转向架的常用制动、紧急制动和防滑保护实施控制。通过软件和硬件结合的方式对网关阀进行监控,还可以发现潜在的故障。通过相应转向架的轴速参数和专门的CAN 总线发出的其它阀门的速度参数共同进行车轮滑动保护。

智能阀是一个机电一体化的部件,包括一个电子控制部分,直接安装在气动伺服阀上。智能阀提供满足制动要求的制动缸压力(BCP)到转向架上的制动器执行机构中。同时还进行每根轴的WSP控制。该阀采用软件和硬件组合的方式予以控制和监视,从而能够检测到潜在的危险故障。车轮滑动保护是采用本车取得

的轴速数据和从其他阀门(网关阀或智育度数据相结合并通过专用CAN制动器总线来提供的。智能阀同时根据由过来的压力要求对制动压力进行调整。

RIO阀(远程输入/输出阀)具有与网关阀同样的输入/输出。RIO阀可以读出可编程输入并通过双通路CAN总线发送给主网关阀。RIO阀可编程输出的状态由主网关阀进行控制。

网关阀、RIO阀和智能阀的内部气路是一样的,都是气动阀单元(PVU)。它的功能区域可分成如下几个部分,气路原理图参见下图:

图3 气动阀单元

2.2.3转向架制动设备

每个轮对上装有2套踏面制动单元,并且其中1套踏面制动单元具有弹簧停放功能。踏面制动单元的停放制动缸用cube上的电磁阀控制及制动阀的端口来监控停放制动的状态。制动单元的弹簧作用部分作为停放执行器,在每个停放制动作用器上还配备了一个手动缓解装置。当压力空气首次施加后,该机械缓解装置将自动复位。

2.2.4微机控制轮对防滑设备

防滑装置由在控制阀内的微机控制电路板、速度传感器和测速齿轮组成。每根车轴端部装有测速齿轮和速度传感器。根据车轮的转动,速度传感器将脉冲信号发给控制该转向架上的制动阀用于防滑控制。

2.2.5空气悬挂设备

每节车均配置有空气悬挂系统,包括一个四点控制及在空气弹簧故障时作用的均衡装置和压力保持装置。空气弹簧压力及车体高度将由高度阀控制。来自总风管的压力空气通过溢流阀,减压阀,截止阀向空气弹簧充风。通向空气悬挂系统的风源可通过截断塞门来隔离。本系统向空气弹簧提供与车体载重相应的压力空气。差压阀的作用是避免两个相联空气簧内的压差大于100 Kpa。

2.2.6车钩驱动装置

设备包括连接软管,截断塞门和电磁阀。通过截断塞门可以隔离每节车的总风管。

2.2.7升弓设备

升EP2002弓设备配置在带受电弓动车,包括脚踏泵、电动泵、供风单元和控制单元,作用是为受电弓的升起和降落提供外部风源和控制。升弓设备与车辆总风管路相连接,正常情况下由车辆向升弓设备供风,当车辆总风压力低时,系统控制电动升弓泵工作进行供风,当车辆蓄电池无法提供110V电源等因素导致电动升弓装置无法工作时,可以通过脚踏泵的手动操作升起受电弓。

2.3系统功能

2.3.1常用制动控制

每个阀测量各自转向架上的载荷,并将各自制动控制卡发出的数据在分布式制动CAN网络间传输。网关阀内的制动控制(BCU)卡根据列车控制数据及转向架载荷数据对每节车的每个转向架产生与车辆载荷成比例的相应制动力命令。这考虑了每个转向架的粘着限制。每个本地制动控制卡通过EP阀和气动阀单元内的传感器反馈信号同时提供空气制动闭环控制。

2.3.2紧急制动控制

为保证车辆安全,列车设有独立的紧急制动控制系统,并采用常时带电方式,任何原因造成紧急电路失电,全列车将自动实施紧急制动。在列车正常工作时,无论是在牵引、惰行或是常用制动时都不会发生紧急制动,但当有下列情况之一发生时,EP2002将立即实施紧急制动:触发司机室中的警惕装置;按下司机室控制台上的紧急制动按钮;列车脱钩;紧急制动电气列车线环路中断或失电和总风欠压等意外情况。

当紧急制动指令发出时,将实施紧急制动,此时电制动被自动切除,全部制动力仅由空气制动独立承担。

2.3.3停放制动功能

EP2002系统配置停放制动功能,在每根轴上设置踏面单元制动单元可以提供弹簧施加和气动缓解的停放制动,能够使AW3的列车停于最大坡道上。当总风压力低于4.8bar时,停放制动自动施加,当总风压力恢复时停放制动能自动缓解并恢复停放制动的正常工作。同时,在司机室操作台上设置按钮可以方便地控制停放制动的施加和缓解,并在转向架上设置手动缓解装置,以便在轨道旁完成对停放制动的手动缓解。

2.3.4保持制动功能

系统具有保持制动功能,在车辆站停时制动系统将施加保持制动,保持制动力的大小为当前载荷下70%最大常用制动力。

2.3.5紧急制动空重车调整

EP2002系统提供本转向架独立的电子加权载荷信号紧急制动控制。气动载荷信号被测量,该信号用来调整入口端调节器控制室的压力。调节器中继阀将供风压力调节到相应载荷下的紧急制动压力水平。电子紧急压力控制装置将调节器的输出压力在空车载荷和超员载荷BCP压力之间进行调整。紧急制动压力调节功能始终处于有效状态。当发出紧急指令时,微控制器的常用制动输出只将控制阀置于WSP状态,以此使制动缸处于经过载荷补偿的紧急制动压力水平。

2.3.6防滑保护控制功能

控制系统将定期执行地速检测,以便更新实际的列车速度。系统能精确地控制滑动程度,从而对轨道进行清扫。这样可以改进后面车轮的粘着环境,在低粘着下使制动力最大化,同时确保没有车轮擦伤。当WSP控制确定粘着条件恢复到正常状态时,则系统将返回到初始状态,定期地速测试将结束。

三、地铁车辆制动系统存在问题

3.1制动切除装置的问题

EP2002制动系统为车辆每个转向架配备一套空气制动力切除装置,主体由带电触点制动切除塞门组成,其作用是在车辆制动系统故障以及检修、救援、试验等特殊情况下,可以对相应转向架的空气制动力进行切除与恢复操作,对制动系统及列车而言有着重要作用。通常是将每节车的两套制动切除塞门分别布置在车辆前后两端制动单元上方的客室内的座椅骨架下。此方案缺点在于切除装置在车辆前后分别布置,对于一列六节编组的地铁列车要分别操作12次,操作繁琐,增加了切除与恢复的操作时间,并且只能在车上实现切除和恢复功能,而在车下无法实现对切除装置的操作。

3.2脚踏泵布置的问题

制动系统为每列带气动受电弓的地铁车辆配备至少一套脚踏泵装置,用于当车辆总风压力低,并且蓄电池无法提供110V电源等因素导致电动升弓装置无法工作时,手动升起受电弓。公司以往项目车辆的传统安装方案参见图,将其安装在客室内的间壁柜内,通过四角安装支架固定在地板上,将脚踏泵水平安装在支架上。此结构缺点是由于受间壁柜内空间及柜门尺寸所限,一旦安装定位尺寸稍有偏差,脚踏泵与间壁柜很容易发生接磨现象,并且使用时,脚踏泵不方便取出。

图4 脚踏阀

3.3停放制动存在的问题

EP2002制动系统通常在司机室操纵台故障指示灯上设置停放制动指示灯,用于司机或检修人员直观、方便地判别车辆停放制动的施加与缓解状态。常见的项目方案的停放制动显示方案原理存在通过将整列车所有网关阀内停放制动缓解开关(闭合缓解,打开施加)串联起来,进行判断。在司机室激活的情况下(CFCR 得电),若所有车辆停放制动缓解,则所有网关阀内停放制动缓解开关闭合,停放制动缓解继电器PBRR得电,操纵台上停放制动指示灯不亮,即停放制动缓解。该方案基本能够如实反应车辆停放制动的状态,但在特定情况下,该方案缺点具有一定的缺点,因为此方案停放制动状态的判断都依赖于制动阀电源,一旦电源故障则不能正确反映停放制动状态。

图6 制动缓解继电器

3.4故障记录系统问题

EP2002系统设置故障记录插件,具有故障记录功能,但存储容量不足1MB,存储容量过小,使得可以存储的信息过少,造成故障信息覆盖周期过短,并且只能通过维护终端读取,操作繁琐并且操作人员的专业性要求过高,给列车故障的及时处理和分析都带来一定的困难。

3.5制动缓解存在问题

制动不缓解功能的定义:当制动系统检测到列车无制动指令,且列车速度大于6km/h,并且检测到制动缸的压力大于0.4bar时,同时满足以上条件且大于5s后,制动系统才会判定列车发生制动不缓解故障,通常会切除牵引力以保护车辆。以往应用系统的项目也都配置此功能,但经过长时期的运营出现一些问题,在列车司控器手柄快速由制动位切换到牵引位时会偶发出现制动不缓解障。3.6网关阀、智能阀和RIO阀安装存在问题

网关阀、RIO阀和智能阀作为地铁车辆系统的核心部件,其高度集成化的特点导致阀体模块成为保证系统功能的关键和日常维护的集中点,所以阀体的安装结构至关重要。常见的问题是这些阀的安装位置多靠近车体转向轮,导致阀体表面经常粘带有轮缘的油污,给网关阀、RIO阀和智能阀带来损坏的危险。

3.7常用制动与快速制动电空配合

常用制动与快速制动的原则是优先采用电制动,如果实际电制动力的大小不能满足车辆制动力需求时,用空气制动进行补偿,并将补偿的空气制动平均分配

到整列车内的拖车上,如果达到拖车的茹着极限还不能满足制动力需求时,则将剩余部分制动力补偿到整列车内动车上。而电制动的建立,导致电制动电流具有滞后性。

四、地铁车辆制动系统优化

4.1制动切除装置的优化

每节车的两套带电触点制动切除塞门模块化设计,并将其集中布置在车辆底架下靠近车外侧便于操作的位置,将切除塞门的结构加以改进,在切除塞上安装机械缓解装置,并在车辆客室内座椅下方的地板上设置操作手柄,得车上和车下的操作手柄相反方向布置,通过机械缓解装置上的万向联轴器的力传递作用实现对切除塞门的车上、车下的同步操作。并应用一带锁塞门箱将其扣罩在地板上。

图7 触点制动切除塞门模块

这样,在车上客室内过道处和车下车辆外侧均可以实现对制动力切除装置的操作,操作方便,另外,此方案结构紧凑,减少了安装空间,同时可以实现车上车下手柄的同步旋转,以达到分别操作的效果,进一步完善了制动系统的性能。

4.2脚踏泵布置的优化

对地铁车辆方案设计时充分考虑上述问题,对原结构进行了合理改进。现有方案本着简单力行的原则,取消原结构的安装支架,将脚踏泵装置集成在安装板上,通过4个紧固螺栓将其挂装在端墙上。此方案结构简单,既节约了成本,又符合轻量化的设计要求,并且使得脚踏泵取出方便,便于应用。

图8 脚踏阀

4.3停放制动状态显示优化方案

地铁车辆对EP2002方案进行了合理改进,停放制动状态的判断不再采用网关阀内的停放制动缓解信号,而是在停放制动管路中设置压力开关,将压力开关布置在每节车辆制动系统的辅助控制模块上,利用压力开关的机械性能解决上述问题,具体为将所有压力开关输出电信号(断开缓解,闭合施加)并联起来判断停放制动状态:其中任意一个压力开关闭合则停放制动施加继电器PBAR得电,操纵台上的停放制动指示灯点亮;所有压力开关断开则停放制动施加继电器PB AR失电,操纵台上的停放制动指示灯不壳。

此优化方案判定停放制动的状态与电源无关,并且由于不与头车继电器联锁,既使司机室没有被激活,停放制动指示灯也能够正确反映出车辆实际停放制动状态。

图9 制动缓解继电器优化后

4.4故障记录优化

EP2002车辆制动系统设计时,专门针对此问题开发了数据存储单元配置在制动系统中。此数据存储单元设置可拆卸SD卡,并将存储容量提升到8GB(可增容),能够将故障信息的覆盖周期提高至半年左右,在存储单元上设置USB接口,可将SD卡拆下以读取数据,也可直接通过USB接口连接外部设备读取,还可以通过专业维护终端读取,增加了读取故障信息的选择性和方便性,极大提高了故障信息的读取效率。

图10 故障记录器

EP2002传统的系统故障记录插件只可以报出大、中、小故障级别,无法明确具体的故障原因。西安地铁三号线车辆制动系统设计时细化了故障数据等级,将所有故障分分为A, B, C, D四个等级,并细化故障信息,部分内容如下: A大故障:正常运行到下一站,清客,返回车辆段;

B中等故障:正常运行一个往返,然后返回车辆段;

C小故障:列车运营到当天结束,不再继续投入运营;

D无任何限制,仅作参考信息。

A类大故障包括:两路CAN总线故障、空气制动未缓解、大事件(包括:制动未

缓解和停放制动未缓解)。

B类中等故障包括:一个转向架上两个速度传感器故障、Asp超出范围、制动力不足、中等事件(包括:Asp超出范围、B cp压力低和超过26小时未自检) C类小故障包括:单个网关阀严重故障、单个网关阀中等故障、单个RIO阀严重故障、单个RIO阀中等故障、单个智能阀严重故障、单个智能阀中等故障、单个速度传感器故障、单路CAN总线故障、小事件(包括:MVB总线故障、常用制动可用和紧急制动有效)。

D类包括:单个网关阀轻微故障、单个RIO阀轻微故障、单个智能阀轻微故障。

4.5制动不缓解优化

地铁车辆制动不缓解的原因所在:当司控器手柄快速由制动位切换到牵引位切换时,制动不缓解信号激活关联的时序电路未能及时采用到制动级位的快速频繁变化,造成故障误报,说明原故障判定逻辑存在一定的不足,即采样周期过长,原采样周期为500ms,导致系统采集数据计算时出现数据判断误差。所以,地铁车辆制动系统进行了优化,充分考虑司机等操作人员的动作极限,将制动不缓解故障的判定逻辑变为如下条件:制动缸检测到压力大于0.4bar;列车速度大于6km/h;没有制动指令。

当以上条件满足且大于5s后,制动不缓解信号才会激活。将制动不缓解激活电路中制动级位的采样周期提升到32ms的快速检测周期。综上所述,EP2002在快速切换制动级位时,原逻辑对于该故障激活电路的处理未能快速响应导致。

4.6网关阀、智能阀和RIO阀安装优化

地铁EP2002系统制动阀安装采用传统的单臂悬挂安装的形式,另外增加了安装板的厚度和翻边高度以增加安装吊板的强度,避免了阀体颤动的问题,并将阀体安装位置进行了优化,向车体外侧移动,与车辆转向架的轮缘表面错开,避免了以往项目中阀体表面粘上轮缘飞溅油污的问题。

图11 制动阀优化后

4.7常用制动与快速制动电空配合优化

车辆设计时确定需要牵引系统在电制动建立前发送电制动能力值信号,以避免过多的使用空气制动。优化方案是基于上述发生空气制动建立时间过长造成减速度不能满足要求的问题进行如下改进:对电制动模拟信号参数进行改进,提高电制动建立斜率,从而缩短电制动建立时间,电制动能力值直接持续最大值1.5s 后变为电制动实际值,使空气制动快速响应提高建立斜率并且不会下降为0,一定程度上保留了部分预压力,这样可以缩短空气制动建立时间,以提高平均减速度指标,从试验数据可以看出,减速度的建立时间从4.2s缩短为2s左右,经过反复试验,均能够满足平均减速度要求。证明了此优化方案的合理性。

五、结论与展望

本文以EP2002地铁车辆制动系统运行中存在问题作为切入点,在深入的对已有的文献进行整理的基础上,结合地铁车辆实际应用的制动系统,基于现有系统进行了优化设计,从机械结构、逻辑控制、故障存储等方面对进一步完善系统的性能,提高了系统的功能性和应用性。本课题主要得出以下研究成果: 机械结构方面的优化:主要包括空气制动力切除装置的设计、脚踏泵安装结构的改进、阀安装结构的改进和阀体模块排风塞门的设计等几个方面,主要提升了系统的操控性和应用性,给相关专业人员的日常操作带来极大的便利。

逻辑控制方面的优化:主要包括制动力管理方案逻辑的优化、制动过程中的电空配合方案的优化、滑行控制过程中电空配合逻辑和参数的优化等方面,几种优化改进方案进一步丰富了系统的性能,提高了系统的可靠性和功能性,也一定程度上保证了车辆运行的安全性提高了乘客乘车的舒适感。

故障存储等日常维护方面的优化:主要包括数据存储单元的设计、制动故障细化分级及TCMS显示的优化以及机械结构方面提到的制动力切除装置的设计等几个方面,便于车辆制动系统的故障判定和分析,提高了系统的可维护性。

新城市轨道交通车辆制动系统习题库

绪论 一、判断: 1、使运动物体减速,停车或阻止其加速称为制动。(×) 2、列车制动系统也称为列车制动装置。(×) 3、地铁车辆的常用制动为电空混合制动,而紧急制动只有空气制动。(√) 4、拖车空气制动滞后补充控制是指优先采用电气制动,不足时再补拖车的气制动(×) 5、拖车动车空气制动均匀补充控制是指优先采用电气制动,不足时拖车和动车同时补充气 制动(√) 6、为了保证行车安全,实行紧急制动时必须由司机按下紧急按钮来执行。(×) 7、轨道涡流制动能把列车动能转化为热能,且不受黏着限制,轮轨间没有磨耗。(√) 8、旋转涡流制动能把列车动能转化为热能,且不受黏着限制,轮轨间没有磨耗。(×) 9、快速制动一般只采用空气制动,并且可以缓解。(×) 10、制动距离和制动减速度都可以反映列车制动装置性能和实际制动效果。(√) 11、从安全的目的出发,一般列车的制动功率要比驱动功率大。(√) 12、均匀制动方法就是各节车各自承担自己需要的制动力,动车不承担拖车的制动力。(√) 13、拖车空气制动优先补足控制是先动车混合制动,不足时再拖车空气制动补充。(×) 14、紧急制动经过EBCU的控制,使BCU的紧急电磁阀得电而实现。(×) 二、选择题: 1、现代城市轨道交通车辆制动系统不包括(C)。 A.动力制动系统 B.空气制动系统 C.气动门系统 D.指令和通信网络系统 2、不属于制动控制策略的是(A)。 A.再生制动 B.均匀制动方式 C.拖车空气制动滞后补足控制 D.拖车空

气制动优先补足控制 3、直通空气制动机作为一种制动控制系统( A )。 A.制动力大小靠司机操纵手柄在制动位放置时间长短决定,因此控制不太精确 B.由于制动缸风源和排气口离制动缸较近,其制动和缓解不再通过制动阀进行, 因此制动和缓解一致性较自动制动机好。 C.直通空气制动机在各车辆都设有制动、缓解电空阀,通过设置于驾驶室的制动 控制器使电空阀得、失电 D.直通空气制动机是依靠制动管中压缩空气的压力变化来传递制动信号,制动管 增压时缓解,减压则制动 4、三通阀由于它和制动管、副风缸及制动缸相通而得名( B ) A.充气缓解时,三通阀内只形成以下一条通路:①制动管→充气沟i→滑阀室→副 风缸; B.制动时,司机将制动阀操纵手柄放至制动位,制动管内的压力空气经制动阀排 气减压。三通阀活塞左侧压力下降。 C.在制动管减压到一定值后,司机将制动阀操纵手柄移至保压位,制动管停止减 压。三通阀活塞左侧压力继续下降。 D.当司机将制动阀操纵手柄在制动位和保压位来回扳动时,制动管压力反复地减 压——保压,三通阀则反复处于冲压位。 5、城市轨道交通在运行过程中,乘客负载发生较大变化时,一般要求制动系统( B ) A.制动功率不变 B.制动率不变 C.制动力不变 D.制动方式不变. 6、下列不属于直通式空气制动机特点的是:(B) A.列车分离时不能自动停车B.制动管增压缓解,减压制动 C.前后车辆的制动一致性不好D.制动力大小控制不精确 7、下列制动方式中,不属于黏着制动的是:(C) A.空气制动B.电阻制动C.轨道涡流制动D.旋转涡流制动 8、下列制动方式中,属于摩擦制动的是:(A ) A.磁轨制动B.电阻制动C.再生制动D.轨道涡流制动 三、填空题:

浅析地铁列车制动系统失效

浅析地铁列车制动系统失效 摘要:制动系统是列车重要的系统,它能使列车迅速的减速或停车,地铁列车由于站距较短,会频繁的使用制动,所以制动系统必须有很高的可靠性,应有效避免整车制动系统失效,造成不能停车。本文从制动系统的执行机构、制动系统的控制机构以及列车主控制系统对制动系统的控制等方面着手,通过对各系统可能出现的引起制动失效故障进行分析,说明列车整车制动系统失效的可能性。 关键词:制动控制;故障风险;失效 Analyzing the subway train braking system failure DENG Pei-jin (Guangzhou Metro Corporation , Guangzhou 510310,China) Abstract: The braking system is important for the train, which enables slow down or stops the train rapidly. The braking system must have high reliability, which due to the shorter distance between each subway station that we should use the brake frequently to avoid the whole brake system invalided resulting not stop. This article describes the possibility of train vehicle brake system failure, which commencing from the actuator braking system, the braking system control mechanism and the control of the train braking system master, and also analyzing each system that may be caused by brake failure fault. Key words:Brake control;Failure risk;Failure 2011年7月23甬温线浙江省温州市境内出现高速列车追尾事故,造成重大的人员伤亡和财产损失,作为同高速动车类似的城市轨道列车,我们经常有疑问,高速行驶的多编组地铁车会不会在紧急情况下有停不住车的可能,列车制动系统的可靠性到底如何,失效的风险有多大,对于这些问题,本文将进行探讨。 制动系统遇有紧急情况应能使电动车组在规定距离内安全停车,一旦出现故障就会有制动失效的可能性,制动失效会使列车不能停车或停不住车,因此就会有列车追尾的危险。作为地铁列车,其设计在这些方面都是有考虑的,下文是引起制动失效的常用故障,以及对这些故障的风险性分析,分析该故障引起制动系统失效的可能性,最后得出结论从车辆本身设计来说出现制动系统失效的可能性很小,是可以有效避免出现安全事故的。 1.制动的实现 地铁电客车通常配备有两套制动系统:一个电制动系统(ED制动);一个气

地铁车辆再生制动能量利用方案

地铁车辆再生制动能量利用方案 摘要:目前,节能减排已成为我国的基本国策,建设低碳型交通基础设施、推广应用低碳型交通运输装备是城市轨道交通建设者责任。地铁由于站间距比较短,制动频繁、列车起动,考虑各钟车型、站距、编组、发车间隔等差异,列车电制动时产生的再生能量可达到牵引能量的40%以上。充分利用列车再生能量将节约大量能量,产生效益可观,为节能减排做出贡献。西安市地铁已经运营1、2号线,在建3、4、5、6号线,如何在保证线路运行安全的前提下,提高供电水平,同时为城市节能减排做出贡献,是我们必须考虑的问题。 关键词:轨道交通;列车制动;能量回馈 1 传统列车车载制动电阻方案存在的问题 目前国内外城市轨道交通动车组列车均采用VVVF牵引/制动系统,采用交流电机驱动列车,制动系统普遍采用空气制动和电制动混合的形式。列车在运行时,牵引系统将电能转为机械能,使机车启动加速;在制动时,一部分采用电制动,将机械能转为电能使列车制动,另一部分采用空气制动,通过刹车闸瓦与车轮踏面摩擦而产生制动使列车减速。传统列车上设置了车载制动电阻。当列车制动时,首先采用再生制动方式,列车电机从电动机状态转换为发电机状态,将机械能转换为电能返回到牵引网系统,返回到牵引网系统的能量部分被相邻列车吸收,由于线路的行车密度等多种因素,很大部分能量不能被回馈,此时大量电能量得不到释放,将会使系统供电网电压

急剧上升,为此列车上设置了制动电阻,将这部分能量通过电阻变成热能吸收,稳定系统电压。电阻所转化的热能,车站环控专业通过隧道活塞风、车站轨顶排风和车站轨底排风,将热量排出车站外。 车载制动电阻使用虽然方便,但也有缺点:(1)列车制动电阻吸收再生制动能量转换为热能白白消耗了,没有起到节能减排作用。(2)列车制动电阻吸收再生制动能量转换为热能散于隧道内,虽然部分可以通过隧道活塞风排出隧道,但还有部分遗留在隧道,这部分热量使隧道温升逐步上升;(3)列车制动电阻重量大,列车运行时,不仅没有节能,还增加列车牵引能耗。(4)制动电阻体积大,而且考虑制动电阻散热需在列车上安装通风设备,这样会使列车底部其他设备安装布局困难;(5)制动电阻发热会对车体底板形成烘烤效应,有引发火灾危险。(6)列车采用车空气制动,增加闸瓦的损耗,加大车辆维修工作量,提高了运营成本,摩擦闸瓦产生大量金属粉尘,造成环境污染。 2 国内外现状 在国外城市轨道交通运输系统中,再生制动能量吸收技术发展历程主要有车载电阻耗能式、逆变回馈式、超级电容储能式以及飞轮储能式吸收等。其中最先发展的车载电阻耗能式因其可靠、结构简单等优点应用最为广泛,相对较少的是能量回馈式和能量存储式的应用。国外轨道交通研究制动能量吸收技术较早,已有成熟产品,而国内在这方面的研究刚起步,使用车载电阻耗能式较多,不能够很好的把再生制动能量充分利用起来。 图1 2.1 车载电阻耗能型吸收

地铁车辆总体介绍题库

地铁车辆总体介绍题库 填空: 1、南京地铁列车车轮直径为840mm (新轮)。 2、南京地铁列车每个牵引制动箱驱动四台并联的牵引电机。 3、南京地铁技改列车全自动车钩和半自动车钩对中装置为机械对中,南延新车全自动车钩 和半自动车钩对中装置为气动对中。 4、南京地铁列车按承载方式分类,有底架承载、底架与侧壁共同承载和整体承载三 种型式。南京地铁南延线车体采用的是整体承载方式。 5、南京地铁列车当列车部分唤醒时(仅仅蓄电池,受电弓不升弓),10 分钟后列车重新 进入休眠模式。 6、南京地铁列车洗车模式用于列车连挂,洗车时移动列车。 7、地铁高压主电路系统包含以下内容:受电弓、牵引逆变器、牵引电动机、接地 回流装置。 8、南延线新车可以通过PCS升弓,如果网络故障时可以通过救援模式选择开关(RMS)进 行升弓操作。 9、南京地铁列车主风管气路压力正常范围为8.4~9.5bar 。 10、南延线新车在正常情况下可与另一列南延线新车连挂以实现救援,但是和一号线老车只 能实现机械连挂和气路连接。 11、南延线新车每台转向架上有2 个停放制动缸。隔离南延线新车停放制动时需要先隔离 BSR 阀再隔离PB 阀,然后拉停放制动拉环。 12、南延线新车在网络故障状态下可以使用司控台上的救援模式选择开关(缩写为:RMS) 升降弓,此开关有三个位置降弓位,网络模式位,紧急牵引位。 13、南延线地铁车辆B车的高压供电转换开关(HVSS)有3个位置分别是接地位、受 电弓位、车间电源位。司机静态检车时应确认它在受电弓位。 14、南京地铁列车最高运行速度为80 km/h,设计构造速度为90 km/h。 15、自动车钩车钩锁具有三个工作位置:准备钩接位置,钩住位置,脱钩位置。 16、南京地铁列车的车钩分别有三种形式:半永久牵引杆(用于连接单元内车辆)、半 自动车钩(连接两个列车单元)、全自动车钩(在A车前端,与其它列车连挂)。

地铁车辆制动系统工作原理

地铁车辆制动系统工作原理 摘要:随着城市规模的快速发展和城市人口的不断增多,所面临的交通问题也越来越严重。本文对地铁车辆的制动功能设计进行了说明,并介绍了制动指令的相关设计,最后介绍了混合制动控制系统设计及相关控制策略,以供读者参考 关键词:地铁车辆;制动系统 随着我国经济建设的不断推进,近年来城市轨道交通快速发展,国内许多大型城市都已有了地铁或者轻轨,随着大量的轨道交通项目投入运营,人们的日常出行变得更加方便,可随之而来的担忧也困扰着人们:“我们经常乘坐的地铁会不会刹车失灵呢、会不会追尾呢?” 1.地铁车辆的制动功能设计 地铁车辆采用减速度控制模式,制动指令为电气指令,即制动系统根据电气减速度指令施加制动力。乘客通过站台固定区域上下车,因而地铁车辆每次停站位置要求准确无误,为满足此要求,ATO系统或司机根据停车距离给定列车减速度电气指令,地铁车辆制动过程中必须能够根据减速度指令快速施加相应制动力,即制动响应准确、迅速。 制动系统设有载荷补偿功能。由于城市轨道交通车辆载客量大,乘客上下频繁,因此要求制动过程中能够根据车辆载荷变化自动调整制动力,称之为载荷调整功能。 常用制动具有防冲动限制功能。制动指令是电气信号,制动指令变化瞬间可以完成,如果制动力跟随制动指令迅速变化,就可能造成冲动,引起乘客不适,而且常用制动需频繁施加,为减少制动时的冲动以避免制动力变化过快引起乘客不适,常用制动过程中需限制制动力的变化速率,称之为冲动限制功能。 2.制动系统功能 2.1常用制动 常用制动采用模拟电气指令方式,是由微处理器控制的直通式电空制动,它采用减速度控制模式,其制动力随输入指令大小无级控制,制动控制单元根据减速度指令和车辆实际载重来计算目标制动力,产生相应的减速度。常用制动具有冲击率限制功能,以改善乘坐的舒适性;常用制动采用空电混合制动并优先使用电制动,不足部分由空气制动补足,以尽可能减少空气制动的负荷。 2.2快速制动 当司机操作主控制器手柄使其处于快速制动位时快速制动被触发。快速制动是一种特殊的制动模式。快速制动与紧急制动的制动率相同。快速制动优先使用

地铁车辆制动系统浅析

毕业论文(设计)任务书题目城轨车辆制动系统浅析 学生姓名李星燃学号 11022315 班级: 110223 专业:城市轨道交通车辆 分院:工程技术分院 指导教师:王洋 2013 年 11 月 1 日

城轨车辆制动系统浅析 0、引言 为适应车辆运行速度高、站间距离短、起动制动频繁等要求,轻轨车辆采用了Knorr公司的微机控制电空制动系统,该系统具有反应迅速、制动距离短、部件集成化程度高、可以实现平稳停车等特点。 车辆在制动过程中电制动优先,然后施加空气摩擦制动。车辆正常状态下使用的空气制动是常用制动,紧急制动是在紧急情况下由司机触发或列车紧急制动环线失电而自动施加的,停放制动是制动系统自动施加的弹簧制动。 列车在运行过程中,当速度在电制动零速点( v=3km/h)与淡出点之间时,通过编码器输出“电制动力达到多大值”信号,使得电制动和空气摩擦制动混合施加。当列车运行在恒电制动力最高速度和电制动淡出点之间时,仅使用电制动,当列车运行速度超过恒电制动力最高速度时,电制动和空气摩擦制动又混合施加(图1)。

下面分别介绍这几种制动方式的制动原理及应用方式。 1、电制动 城市轨道车辆电制动采用再生制动与电阻制动。当“制动列车线”激活发出制动指令时,优先采用电制动。如果“运行系统网络”允许,使用的主要制动模式是再生制动,当接触网网压高于750 V时,不能够吸收再生制动反馈回来的能量,则采用牵引控制单元控制的电阻制动。 (1)再生制动。 在变频调速系统中,电机降速和停机是通过逐渐减小定子给定频率来实现的,由于惯性原因,电机的转子仍旧处于被动的运行状态,当同步转速ω1小于转子ω时,转子电流相位几乎改变了180°,电机从电动机状态变为发电机状态;与此同时,电机轴上的转矩变成制动转矩 T e,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路,再生循环使用。

城市轨道车辆制动系统原理分析

2014届毕业设计说明书课题名称:城轨车辆制动系统分析 二级院校铁道牵引与动力学院 班级宁波检修11级 学生姓名周旺 指导老师左继红 完成日期 2013.12

2014届毕业设计任务书 一、课题名称:城轨车辆制动系统的原理分析 二、指导老师:左继红 三、设计内容与要求 1.课题概要 城市轨道交通运输是我国交通运输网络的重要组成部分,它的发展与城市经济的发展息息相关。目前,世界各地的主要政治、经济、文化等中心城市都兴建了不同形式的轨道交通运输网,有些还成为所在城市的重要景观和标志性建筑。我国北京、上海、广州、南京等城市的地下铁道已经开通,成为这些城市市内交通运输的支柱。另外还有许多其他的城市交通网也在筹建和建设之中。城市轨道交通运输的发展必将为我国经济的发展插上腾飞的翅膀。 地铁车辆制动系统用于保证地铁车辆的运行安全,具有多种操作模式,与传统列车制动系统相比,结构和工作原理更为复杂。 通过对此课题的学习和设计,使学生能更好的理解地铁车辆制动和空气管路系统的工作原理,培养学生运用所学的基础知识和专业知识的能力,提高学生利用所学基本理论和自身具备的技能来分析解决本专业相应问题的能力,使学生树立正确的设计思想,掌握工程设计的一般程序和方法,完成工程技术人员必须具备的基本能力的培养和训练。 2.设计内容与要求 1、熟悉地铁制动在铁路运输中的作用。 2、简单介绍地铁车辆制动系统的组成。 3、详细分析地铁车辆及列车制动系统的工作原理和工作过程。 4分析现有制动系统存在的不足之处,利用自己所学的专业知识,提出改进设计意见和具体实施方案。 四、设计参考书 1.《城市轨道交通车辆制动技术》殳企平编著水利水电出版社 2.《列车制动》侥忠主编中国铁道出版社 3.《电力机车制动机》那利和主编中国铁道出版社 4. https://www.doczj.com/doc/a816606199.html,/ec/C356/kcms-2.htm 5 .https://www.doczj.com/doc/a816606199.html, 6. https://www.doczj.com/doc/a816606199.html, 7. https://www.doczj.com/doc/a816606199.html, 五、设计说明书内容 1.封面 2.目录 3.内容摘要(200—400字左右,中英文)

地铁车辆制动题库

制动题库 一、填空 1、EP2002制动系统控制采用(架控)方式,防滑采用(轴控)方式,采用(MVB接口)与TCMS进行通讯。 2、空压机采用(单双日)工作,当总风压力低于(7.5)bar时,TCMS 会启动主空压机,当总风压力达到(9.0)bar时,TCMS会关闭主空压机;当总风压力持续下降到(7.0)bar时,TCMS会启动辅助空压机,当总风压力达到(9.0)bar时,TCMS会关闭辅助空压机。 3、A09压力开关可用于空压机管理的备份方案。当TCMS出现故障时,如果总风压力下降到(6.8)bar,压力开关会动作启动空压机,当总风压力达到(9.0)bar时,压力开关会关闭空压机。 4、地铁列车设置有总风压力低压力开关,当总风压力下降到(6.0)bar时,压力开关会动作触发紧急制动,以保证车辆安全。当总风压力高于(7.0)bar时,压力开关会闭合,可以缓解紧急制动。 5、大连地铁车辆制动系统采用的是KNORR公司的EP2002制动系统。该系统将(制动控制)与(微机控制)集成为EP2002阀,相关制动部件集成在辅助控制板上,辅助控制板与EP2002阀集成在一起,从而减少了管路连接件的数量,方便了安装、调试和检修。 6、紧急制动平均减速度(≥1.2m/s2),其制动距离小于(206m)。 7、制动控制设备及零件属于B组,该组主要由两大类制动设备/模块组成:(EP2002制动控制阀)、(辅助控制模块)。 8、智能阀是一个机电装置,包括一个(电子控制部分)和一个(气

动阀单元)。 9、当电磁阀B00B09(失电),压缩空气充向停放制动缸从而停放制动被缓解,当电磁阀B00B09(得电),停放缸内的压缩空气通过EP2002阀口排出,停放制动通过弹簧作用施加。 10、在正常情况下,常用制动采用(电-空混合制动),电制动优先,电制动不足时,由(空气制动)进行补充,补充空气制动时采用在粘着极限范围内动-拖车平均分配的方式。 二、单选 1、系统设置有总风压力低压力开关,当总风压力下降到(A)时,压力开关会动作触发紧急制动,以保证车辆安全。 A、6.0bar B、6.5bar C、6.8bar D、7.0bar 2、转向架隔离塞门(B)可以用来缓解对应转向架空气制动力。 A、B04 B、B05 C、B11 D、L06 3、当TCMS出现故障时,如果总风压力下降到6.8bar,压力开关会动作(D)。 A、关闭空压机 B、启动主空压机 C、启动辅助空压机 D、启动双空压机 4、设定值为6.7bar的溢流阀用于在列车初充风时的(C)优先得到压缩空气。 A、受电弓 B、空气弹簧 C、制动风缸 D、轮缘润滑器 5、转向架隔离塞门B05位于(B)。 A、辅助控制模块上 B、制动风缸和EP2002阀之间

地铁车辆概述

第一章车辆总体描述 第一节概述 地铁车辆是地铁用来运输旅客的运输工具,它属于城市快速轨道交通的范畴。现代城市轨道车辆有如下特点: 从构造上:列车采用动力分散布置形式。根据需要由各种非动力车和动力车(或半动力车)组合成相对固定的编组,两头设置操纵台。由于隧道限界的限制,车辆和其各种车载设备的设计要求相当紧凑。 从运用性能上:由于地铁的服务对象是高强度城市活动的人群,并要与公交系统、小汽车形成竞争力,所以对其安全、正点、快速上有很高的要求。同时要提供给乘客适当的空间、安静的环境及空调,使乘客感到舒适、便利。 为了达到这一要求,在车辆的设计、制造上,广州地铁采用了许多世界上的先进技术。广州地铁一号线车辆的主要特点有: 从结构上,车体朝轻量化方向发展,采用了大断面中空挤压铝型材全焊接或模块化车体结构设计,采用整体承载结构;悬挂系统具有良好的减振系统;采用电气(再生制动和电阻制动)和空气的混合制动;车辆连接采用密贴式车钩进行机械、电气、气路的全自动连接;车辆间采用封闭式全贯通通道,通过量大。 在运行方式上,应用列车自动驾驶系统ATO。 在主牵引传动上,采用当今世界先进的调频调压交流传动。在辅助系统中,采用先进的IGBT技术。 列车具有先进的微机控制技术及故障自诊断功能。如:在列车的主要子系统,牵引控制单元(DCU)、辅助逆变器控制单元(DC/AC)、电子制动控制单元(ECU)、空调控制单元(A/C)及二号线车辆的车门控制单元(EDCU)均采用了微机控制技术。 设计上采用了一系列安全保证措施,如:列车自动保护(ATP);采用“警惕按钮”; 自动紧急制动;制动安全电路;高压电气设备安全防护措施;车门“不动”保护;车体具有240kJ大容量的撞击能量吸收功能等。 广州地铁一号线为柔性接触网。供电电压为DC1500V。采用直-交传动,这种传动在国内尚属首次应用。 车辆总体上按以下几个子系统构成: 机械部分:车体电气部分:牵引及电制动 车钩及缓冲器辅助系统 车门系统列车控制技术(SIBAS 32) 转向架列车故障诊断(CFSU) 空气制动通信系统 空调和通风列车自动控制(ATC)车辆是地铁系统中最关键、也是最复杂的设备,他是多专业综合性的产品,涉及机械,电气、控制、材料等多领域。总之,车辆是通过各个相对独立的子系统有机地

国产化地铁A型车牵引与制动系统的配合

国产化地铁 A 型车牵引与制动系统的配合引言 随着城市轨道交通装备国产化进程的日益推进,地铁车辆的核心装备,车辆电气牵引系统也已经由株洲南车时代电气XX公司 完成自主开发并已在国内多个地铁市场完成推广应用。 国内早期的A型地铁列车车辆均由国外整体引进,外方主导了列车各子系统的功能关系。当列车牵引系统实施国产化后,有关牵引与制动系统之间的关系必然由国内车辆集成商与自主牵引供货商共同制订和完成。做为国内最早投入地铁运营的城市之一深圳市为响应国家发改委的号召,在深圳地铁 5 号线部分列车 上实施了牵引系统国产化。其中的电气牵引系统采用了时代电气自主研发的电气牵引系统,列车制动系统采用了KNOR公司的 EP2002制动系统。自主的牵引系统与车辆制动系统的之间配合关系牵涉到列车的牵引与制动性能,因此完善的接口及功能设计至关重要。本文就深圳地铁5号线国产列车牵引系统、制动系统以及两者之间相互配合关系进行了阐述。

1、电气牵引系统 国产 A 型列车地铁采用 4 动 2 拖六辆编组,具体编组型式为- A*B*C=C*B*A- ;三辆车为一单元车组,六辆车为列车编组。列车采用 DC1500V 架空接触网受流。 自主电气牵引系统包含牵引传动系统、辅助电源系统和网络控制和诊断系统。整个列车电气系统包括受电弓、高压电器箱、牵引逆变器、辅助电源箱、110V 蓄电池充电机、牵引电机、齿轮装置、滤波电抗器、制动电阻、避雷器、司控器以及网络控制系统组成。 高压主电路通过B车受电弓受流,首先经过高压电器箱HV01,主要功能是进行电路分配,以及实现为主电路的隔离及保护。经 过高压箱HV01分配后的高压电路,一部分送到动车(B车与C车)高压电器箱HV02为牵引主电路供电,另一部份为辅助系统提供高压输入。高压电器箱HV02主要实现牵引主回路的前级充放电功能,另外还提供接地检测及电抗器储能吸收保护等电路,经过HV02后的高压电送至线路电抗器后到牵引逆变器以提供牵引逆变器的高压输入,经过牵引逆变器的逆变控制产生三相交流电驱动异步牵引电机,最终实现列车的驱动。牵引逆变器配置相应的制动电阻,以提供电阻制动时的能量消耗。 牵引传动系统采用目前地铁车辆较为广泛所采用的VVVF 牵引逆变器- 异步牵引电动机构成的交流传动系统。逆变器控制装置即传

城市轨道交通车辆制动技术题库

城市轨道交通车辆制动技术 题库 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 防滑控制系统主要由、和防滑动作机械部件组成。 2. 上海地铁基础制动装置采用制动机厂生产的。 3. BCU和BECU分别是和系统的缩写。 4. 上海地铁和广州地铁使用的电气指令制动控制系统为式电气指令式制动控制系统。 5. 模拟转换阀是上海地铁车辆KNORR制动系统中使用的一个电磁阀,它由三部分组成:电磁进气阀、和组成。 6. EP阀又称阀,是SD数字式制动控制单元中的一个转换阀。 7. 空压机的驱动电机一般有电机和电机。 8. 经空气压缩机压缩输出的空气压力单位,一般用bar来表示,1bar等于MPa。 9. 空气干燥塔可以将从空气压缩机输出的高压压缩空气中的和分离出去,以达到各用气系统对压缩空气的要求。 10. 空气压缩机组一般由、、、等装置组成。 11. 上海地铁knorr公司的空气压缩机,在进行压缩空气时一般经过两级冷却,分别为冷却和冷却。 12. 除空气制动系统用气外,城市轨道列车还有以下部件需要用到压缩空气:、、、等。 13. 空气压缩机组一般采用方式进行润滑。 14. 空气干燥器一般做成塔式的,有和两种。 15. 电阻制动所采用的制动电阻,材料一般采用合金带钢条,这种合金带钢条不仅具有稳定的,而且具有相当大的。 16. 再生制动失败,列车主电路会自动切断反馈电路转入制动电路。 17. 直流斩波器按列车控制单元及制动控制单元的指令,不断调节斩波器的,无级、均匀地控制,使制动力和再生制动电压持续保持恒定。 18. 电动车组中既有动车又有拖车,拖车没有电动机,只能使用制动,动车带有电动机,可以进行制动。 19. 一般列车在高速时,常用制动都先从制动开始,最后在列车10km/h 以下低速时,由制动将车停止。 20. 动轮与钢轨间切向作用力的最大值与物理学上的最大静摩擦力相比要(大or小)一些,情况要更复杂一点,其主要原因是由于的存在所导致。 21. 伴随着蠕滑产生静摩擦力,轮轨之间才能传递。 22. 一般城市轨道车辆的制动方式主要有三类:、和电磁制动。 23. 电磁制动有两种形式:和。 24. 轮对在钢轨上运行,一般承受载荷、载荷和载荷。 25. 城市轨道交通系统都有明确的车辆运行规程,对于列车制动能力,上海地铁规定,列车在满载乘客的条件下,任何运行速度时,其紧急制动距离不得超过米。 26. 现代城市轨道车辆的制动系统一般都应该具有以下组成部分:、和。 27. 城市轨道车辆制动技术正朝着、、和的目标不断前进。 28. 最近几十年来,制动技术取得了很大进展,出现使电气再生制动成为可能,使制动防滑系统更加精确完善。

浅谈地铁车辆基础制动装置

浅谈地铁车辆基础制动装置 摘要:从地铁电客车诞生的那一刻起,制动系统就对地铁电客车的安全起到至关重要的作用。目前对于地铁电客车制动系统的研究侧重于制动控制,包括制动控制的理论和方法,以及对制动控制新技术的应用。介绍了地铁车辆基础制动装置的特点,分析了踏面制动和盘形制动的不同,得出盘形制动的优势。 关键词:地铁车辆制动盘形制动 引言: 随着我国城市化进程的发展,城市吸引力不断扩大,人口集聚力不断增强,大、中城市人口数量屡创新高。为了更好的缓解城市交通拥堵的问题,许多城市选择了建设轨道交通来改善交通状况。地铁车辆的运行速度也由最初的60km/h,逐渐提高到80 km/h、100 km/h,甚至更高。车辆在高速运行中必须依赖制动系统调节列车运行速度和及时准确地在预定地在预定地点停车,保证列车安全正点地运行。 1、制动系统的发展历史 最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,这时的车 辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装置对机械制动器来说已显得十分必要。这时,开始出现真空助力装置。1932年生产的凯迪拉克采用鼓式制动器,并有制动踏板控制的真空助力装置。1936年,博世公司申请一项电液控制的装置专利促进了防抱制动系统在汽车上的应用。1969年的福特使用了真空助力的制动器。1971年,克莱斯勒车采用了四轮电子控制的装置。这些早期的装置性能有限,可靠性不够理想,且成本高。1979年,默本茨推出了一种性能可靠、带有独立液压助力器的全数字电子系统控制的制动装置。随着大规模集成电路和超大规模集成电路技术的出现,以及电子信息处理技术的高速发展,制动装置已经成为性能可靠、成本日趋下降的具有广泛应用前景的成熟产品。 2、地铁车辆制动的特点 地铁与铁路虽都属于轨道交通,但地铁车辆主要在城市内运营与铁路运输还是存在一些区别,在车辆制动方面主要有以下特点。 2.1 制动类型。 制动系统作为城轨车辆的重要系统,直接涉及到车辆的运行性能和安全,影响乘客的乘坐舒适度。因此,车辆制动系统类型的选择、性能尤为重要。为了适应城市快速轨道车辆运行速度高、站间距离短、启动制动频繁等特点,现代

地铁车辆制动系统的故障与维护

地铁车辆制动系统的故障与维护 本文介绍了地铁车辆制动系统的主要性能及采用的德国克诺尔制动机公司生产的模沙拟式电控制动系统,其中,微处理制动控制与车轮滑行控制电子单元,以及制动控制单元BCU 是该 模拟式电控制动系统的核心控制部件。制动控制单元的所有部件集中地装在一个单独的具有气路的集成板上,进行模块化计, 结构紧凑,便于检修维护。本文主要针对制动系统的故障、维护进行探讨。 我国地铁建设事业在最近的十年内,取得了非常大的进步,针对地铁车辆空 气制动系统常见的故障与维护现状进行分析,并给出一些相关的维护建议。为了适应短距离起停车的特点,必须使列车启动快、制动距离短。这就要求制动系统装置具有操纵灵活,响应迅速,停车平稳、准确和制动力大等特点。城市轨道车辆为动、拖车编组列车,所以要求编组列车的各车辆的制动能力尽可能一致,并且能够适应列车乘客量的变化,具有空、重车的调节功能,以降低制动时列车的纵向冲击。 1、地铁内燃机车空气制动系统常见的故障主要有两种现象。 1.1第一种现象就是在七步闸试验的过程中,出现故障,并且具有重复性,将部件拆开之后,会发现内部的配件已经有些损坏,如金属件磨损超限、橡胶膜板破裂及“ 0"型圈损坏等等, 这时候只需要更换配件即可,此类事故出现的概率较小。针对第一种情况,主要以预防为主,具体预防措施:

1.1.1在定期检查的过程中,一旦发现不良的配件,或者可预测到的破损部件进行及时的更换。 1.1.2在对机车进行大范围的检修时,及时对易损的日常磨损部件进行更换工作,并且对全部的风源管路进行彻底的清洗,还有对所有的逆止阀、截止阀和三通阀进行更新。 1.2第二种现象就是七步闸在试验的过程中,能够运转正常,但是,在拆卸之后,会发现少量的杂质和油水在里面,这时候,只需要进行简单的清洗并吹干即可。 第二种情况发生的概率较低,并且也不容易察觉,但是,故障一旦发生,就会因为处理超时而造成严重的事故发生。导致第二种情况发生的原因主要是其中的空气管路系统变“脏”导致的,由于在运行使用的过程中,会有一些灰尘、沙粒及各种金属氧化物等成分进入风源管路,从而导致“脏”的出现。因此,这种情况下,重在防治。 2、空气管路系统“脏”的具体原因 2.1来自空气中的沙尘现在的地铁轨道,很多都设置在地面上,致使制动风源源于外部空气,当空气中的沙尘过多的时候,过滤系统不能完全的进行阻隔,长久使用之后,就会在管路中出现大量的沙尘沉积。尤其是在一些干燥多沙及隧道内的地区。 2.2在检修过程中异物掉入管路中当工作人员对部件进行拆卸的时候,管口暴露在外面,这段时间内,由于工作的疏忽大意,就会有一些异物掉入到管口之中,而又没有及时的发现,就会为日后的地铁运行带来严重的安全隐患。

《城市轨道交通车辆及操作》期末考精彩试题库

《城市轨道交通车辆及操作》题库 一、填空题 1、世界上第一条城市地下铁道诞生于1863年的()。 2、北京地铁车辆经历了三次更新换代,第一代();第二代();第三代()。 3、客室车门采用()拉门或()拉门两种类型。 4、车门按照安装位置的不同,有()、()和()之分。 5、列车的电器部分是由()和()组成。 6、轨道车辆速度参数包括()、()、()。 7、列车底架就是由各种()和()钢架组成的长方形构架。 8、我国常见的地铁列车车厢主要有三种:()、()和()。 9、客室车厢一般由()、()、()、()、()和其他设备构成的。 10、水平、垂直扶手和侧边屏风有抛光的()材料制成。 11、按照功能,可将轨道交通车辆车门分为()、()、()、()。 12、按照车门的驱动系统,可将轨道交通车门分为()和()。 13、按照车门的运动轨迹以及车体的安装方式可分为()、()、()和()。 14、客室塞拉式车门主要有客室()塞拉门和客室()塞拉门两种。 15、客室端门有()和()两种。 16、驾驶室侧门通常采用()或()。 17、车钩缓冲装置由()、()、()和()构成。 18、车钩可分为()、车钩和()车钩。 19、连接式车钩按照牵引联挂装置的连接方式可分为()、()和()三种。 20、全自动车钩有()、()和()3种状态。 21、解钩有两种方式进行,一种为()解钩,另一种为()解钩。 22、转向架是车市轨道交通车辆的重要走行部件,安装在()与()之间。 23、转向架根据是否装有动力设备分为()转向架和()转向架。 24、一系悬架提供的是()和()之间的连接。 25、二系悬架提供的是()和()之间的连接。 26、城市轨道交通车辆制动方式一般有()和()制动两种。 27、螺杆式空气压缩机的工作过程分为()、()和()三个阶段。 28、空气制动系统按其作用原理的不同,可以分为()制动机、()制动机和()

城市轨道车辆制动系统设计毕业设计(开题报告)

毕业设计(论文) 开题报告 题目跨座式城市单轨交通车辆 制动系统设计 专业城市轨道车辆工程 班级08级城轨1班 学生戴学宇 指导教师赵树恩 重庆交通大学 2012年

1. 选题的目的和意义 随着我国城市化进程的加快,城市交通拥堵、事故频繁、环境污染等交通问题日益成为城市发展的难题。城市轨道交通以其大运量、高速准时、节省空间及能源等特点,已逐渐成为我国城市交通发展的主流。在城市轨道交通系统中,跨坐式单轨交通制式因其路线占地少,可实现大坡度、小曲率线径运行,且线路构造简单、噪声小、乘坐舒适、安全性好等优点而逐渐受到关注。 在我国城市轨道交通迅速发展的同时,其运营安全保障已成为目前面临的重要问题。车辆作为城市轨道交通运输的载体,由于速度快、载客量大、环境复杂,其运行安全状况不容乐观——车辆故障不断出现、事故常有发生,这些故障不但严重的影响到正常运营,一旦引发事故将会带来巨大的人员伤亡和经济损失。制动系统是城市轨道交通车辆的关键系统,直接影响其安全运行,为提高车辆运行的安全性,对制动系统的设计便显得尤为关键。 2.国内外研究现状及分析 基础制动装置是确保城市轨道交通车辆行车安全的措施之一。在分析城市轨道车辆运输特点基础上, 李继山,李和平,严霄蕙(2011)《盘形制动是城市轨道车辆基础制动装置的发展趋势》[1]结合城市轨道车辆基础制动装置具体类型,分析了城市轨道车辆踏面制动与盘形制动的优缺点, 用有限元模拟城轨车辆车轮 踏面温度场及热应力, 表明速度100 km/ h 及以上的城轨列车基础制动不适宜采用踏面制动, 指出盘形制动是城市轨道交通车辆基础制动的发展的必然趋势。丁锋(2004)在《城市轨道交通车辆制动系统的特点及发展趋势》[2]一文中介绍并分析了我国城市轨道交通车辆制动系统的形式、构成、技术特点及发展趋势。吴萌岭,裴玉春,严凯军(2005)在《我国城市轨道车辆制动技术的现状与思考》[3]中较为详细地回顾了我国城市轨道车辆制动系统的发展历程,分析了目前我国新型城市轨道车辆制动系统的特点,并与我国自主研发适用于高速动车组的同类型制动系统作了技术比较。分析了我国自主研发城市轨道车辆制动系统的技术基础,指出国内技术与产品和国外相比存在着系统理念、设计经验和系统可靠性方面的差距,同时指出自主研发城市轨道车辆制动系统存在的问题,并提出了建议。邹金财(2010)《一种轨道车辆空气制动系统优化及仿真》[4]利用Simulationx 仿真软件对工矿窄轨土渣车的空气制动系统的改进前以及改进方案进行仿真,在与试验真实值对比后得到了正确的结论,通过对该空气制动系统优化中仿真手段应用过程的阐述,为机车车辆系统优化方法提供了参考。师蔚,方宇(2010)《城

南京地铁车辆制动系统特点分析

2005年第5期2005年9月10日机车电传动 ELECTRICDRIVEFORLOCOMOTIVES№5, 2005 Sep. 10, 2005 男,工程师,从事电传动内燃机车、地铁车辆维修技术管理工作。 摘要:根据南京地铁车辆制动系统的特点,分析了该地铁车辆制动系统的作用原理及作用过 程,对电制动、能耗制动、空气制动分别作了较为详尽的分析和说明。 关键词: 地铁;制动系统;车辆;特点分析;南京 中图分类号:U231;U266.2 文献标识码:A 文章编号:1000-128X(2005)05-0047-03 收稿日期:2005-03-16;收修改稿日期:2005-08-10 Analysis on characteristics of braking system in Nanjing metro vehicle ZHANG He-ping (Vehicle Department, Nanjing Metro Co., Ltd., Nanjing, Jiangsu 210012, China) Abstract: In the light of the characteristics of the braking system in Nanjing metro vehicle, it is analyzed the working principle andprocedures. The electric braking, energy consumption braking along with pneumatic braking are analyzed and illustrated in details. Key words: metro; braking system; vehicle; characteristic analysis; Nanjing 0引言 南京地铁1号线车辆采用法国ALSTOM公司生产的动车组。为了适应城市快速轨道车辆运行速度高、站间距离短、启动制动频繁等特点,在动车组制动系统的设计中,本着安全、可靠的原则,采用了微机控制的电空制动。该制动系统具有启制动快、制动距离短、反应迅速、停车稳、准确性高、制动力大、安全可靠等特点。制动部件集成化程度高,维护简单、重量轻,并具有自我诊断及故障保护显示功能。 1制动组合方式 南京地铁1号线车辆制动系统由电制动及空气制 动系统组成,以电制动为主。电制动包括再生制动和电阻制动,两者能连续交替使用。在网压高于DC 1 800 V时,再生制动能平稳地转到电阻制动;在整个运行速度范围内,电阻制动力能单独满足制动的要求;紧急制动时,制动力由空气制动提供;车辆停放时的制动力由弹簧力提供,压缩空气缓解。 在电制动力不足的情况下,动车和拖车分别根据各自车辆所接收的制动指令,同时施加空气制动。在电制动失效或紧急制动过程中,空气制动将替代电制动,且根据列车载重施加空气制动。 低速运行时,由空气制动代替电制动,实施保持制动使整列车停车。当车辆需要运行时,保持制动由牵引指令进行缓解,并随车辆牵引力的不断增大,保持制动逐渐缓解,可以防止牵引力不足时,制动完全缓解造成的车辆后退。 2电制动 2.1作用原理 在变频调速系统中,电机的减速和停机是通过逐渐降低定子给定频率来实现的。再生制动时,电机从电动机状态变为发电机状态,电机再生的电能经牵引逆变器反馈到直流电路(即地铁直流供电网)。由于直流电路的电能无法回馈到交流电网,仅靠变频器本身的电容吸收,或供列车所在直流接触网供电区段上的其他车辆牵引用。其他车辆能消耗部分电能,但电容仍有短时间的电荷堆积,形成“泵升”电压,使直流电压Ud升高,过高的直流电压会使各部分器件受到损害。 因

地铁列车司机复习材料-试题库-版-100题

北京市城轨电动列车司机安全技术 培训考核题库

一.选择(单选) 1. 按照信号的接收效果,可以将其分为:( C ) A视觉信号和车载信号B地面信号和手信号C视觉信号和听觉信号D地面信号和车载信号2. 按照信号机设置的位置不同,可以将其分为:( D ) A视觉信号和车载信号B地面信号和手信号C视觉信号和听觉信号D地面信号和车载信号 3. 车载信号设备安装在列车的( D ) A. 车下电气箱内 B. 动车轴头 C. 拖车轴头 D. 驾驶室 4. 城市轨道交通信号的基本要求:( A ) 各种信号机的灯光排列顺序、颜色、外形尺寸应符合规定的标准 信号机的显示方式和表达的含义必须统一并且符合规定的要求 信号机的设置须能够进行实时检测、故障报警,为列车运行提供安全保障、正确指示为了保证信号显示明确,防止行车有关人员误认,在地铁沿线及站内,禁止设置妨碍确认信号的红、黄、绿色装饰彩布、广告、标语和灯光。当车站内已装有妨碍确认信号的灯光设施时,应改装或采取遮光措施。另外,站内所装设施妨碍司机瞭望信号时,对该设施要采取移位或拆除 A B C D 5. 通常地面信号机设置于隧道墙壁上,特殊情况(如受到设备限界、其他建筑物或线 路条件等影响时)可设于列车运行方向的或其他位置。( B ) A右侧 B左侧 C上侧 D后侧 6. 城市轨道交通的信号的基本颜色为( B ) A. 红、绿 B. 红、绿、黄 C. 红、黄 D. 红、绿、黄、白 7. 城市轨道交通的信号中的月白色灯光主要用于( C ) A. 出站信号 B. 防护信号 C. 调车信号 D. 阻挡信号 8. 信号机防护的一方叫;信号机显示的一方叫( A ) A内方;外方 B前方;后方

相关主题
文本预览
相关文档 最新文档