当前位置:文档之家› #基于Matlab的一级倒立摆模型的仿真

#基于Matlab的一级倒立摆模型的仿真

#基于Matlab的一级倒立摆模型的仿真
#基于Matlab的一级倒立摆模型的仿真

深圳大学测试答题纸

(以论文、报告等形式考核专用)

二○○九~二○○一零学年度第 2 学期

课程编号课程名称计算机控制系统主讲教师李东评分

学号姓名专业年级2007级光电工程学院测控技术和仪器

教师评语:

题目:一级倒立摆模型的仿真

一、倒立摆模型的研究意义

倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。故其研究意义广泛。

二、倒立摆模型的数学建模

质量为m的小球固结于长度为L的细杆(可忽略杆的质量)上,细杆又和质量为M的小车铰接相连。由经验知:通过控制施加在小车上的力F(包括大小和方向)能够使细杆处于θ=0的稳定倒立状态。在忽略其他零件的质量以及各种摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型

分析过程如下:

如图所示,设细杆摆沿顺时针方向转动为正方向,水平向右方向为水平方向上的正方向。当细杆摆顺时针往右运动时水平方向施加的力应该为水平向右。

现对小车和细杆摆分别进行隔离受力分析:

(1)对小车有: F-F ’sin θ=Mx ’’ (a ) (2)对小球有:

水平方向上运动为 x+lsin θ

故水平方向受力为 F ’sin θ= m (x+lsin θ)’’ =m (x ’+lcos θθ’)’

= mx ’’+mlcos θθ’’-mlsin θ(θ’)^2 (b ) 由(a )、(b )两式得 F= (M+m)x ’’ +mlcos θθ’’-mlsin θ(θ’)^2 <1> 小球垂直方向上位移为 lcos θ

故受力为 F ’cos θ -mg=m(lcos θ)’’

=-ml θ’’sin θ-ml cos θ(θ’)^2 即 F ’cos θ=mg-ml θ’’sin θ-ml cos θ(θ’)^2 (c ) 由(b )、(c )两式得

cos θx ’’ =gsin θ- l θ’’ <2> 故可得以下运动方程组:

F= (M+m)x ’’ +mlcos θθ’’-mlsin θ(θ’)^2

cos θx ’’ =gsin θ- l θ’’

以上方程组为非线性方程组,故需做如下线性化处理:

32

sin ,cos 13!2!θθθθθ≈-≈-

当θ很小时,由cos θ、sin θ的幂级数展开式可知,忽略高次项后, 可得cos θ≈1,sin θ≈θ,θ’’≈0

故线性化后运动方程组简化为 F= (M+m)x ’’ +ml θ’’ x ’’ =g θ- l θ’’

下面进行系统状态空间方程的求解:

以摆角θ、角速度θ’、小车位移x 、加速度x ’为系统状态变量,Y 为输出,F 为

输入

即X=????????????4321x x x x =????

????????x'x 'θθ Y=??????x θ=??????31x x

由线性化后运动方程组得 x1’=θ’=x2 x2’=''θ=

()Ml

g m M +x1-Ml

1 F X3’ =x ’=x4 x4’=x ’’=-M

mg x1+M 1

F

故空间状态方程如下:

X ’=????????????'4'3'2'1x x x x =()?????????

???

??

?

???-+00

10000000010

M

mg

Ml

g m M ?

???

??

??????4321x x x x + ????????

??????????-M Ml 1010 F

Y= ??????31x x =?

?????01000001 ??

??

?

?

??????4321x x x x + 0?F 用MATLAB 将状态方程转化成传递函数,取M=2kg m=0.1kg l=0.5m 代入得 >>A=[0 1 0 0;20.58 0 0 0;0 0 0 1;-0.49 0 0 0] >>B=[0;-1;0;0.5] >>C=[1 0 0 0;0 0 1 0] >>D=[0;0]

>> [num,den]=ss2tf(A,B,C,D,1); >> [num,den]=ss2tf(A,B,C,D,1) num =

0 -0.0000 -1.0000 0 0 0 -0.0000 0.5000 -0.0000 -9.8000 den =

1.0000 0 -20.5800 0 0

由上可以得出角度 对力F 的传递函数:

位移X 对外力F 的传递函数:

三、用MATLAB 的Simulink 仿真系统进行建模 1、没校正之前的θ-F 控制系统

由于未加进控制环节,故系统输出发散 2、加进控制环节,实现时域的稳定控制

给系统加入PID 控制,设置系统稳定值为0,给系统一个初始干扰冲击信号

采用试凑法不断调整PID 参数,使系统达到所需的控制效果

当系统Kp=-100,Ti=Td=0时输出如下:

不断地调整参数,最后得到稳定的响应 Kp=-1000,Ti=1

,Td=-40时

可见调整好参数后,系统基本达到稳定,净差基本为0,超调较小,响应时间较小。再微调

后,得到最终的响应曲线响应时间较小,Tp=0.2s

3、时域达到稳定后,进行离散化分析 离散模型系统控制框图如下

当Kp=-100,Ti=0,Td=0时输出 :发散,需加大Kp 、增加Ti 、Td 控制

Kp=-100,Ti=-2,Td=-1000时输出:仍需要调节PID ,由图可知超调仍大,响应时间稍长,故微增加Kp 、Ti 、Td

58

.201

)()(2

--=

Φs s F s 24

258.208.95.0)()(s s s s F s X --=Transfer Fcn

-s 2s +-20.58s 42Scope

Pulse

Generator

Constant 1

Transfer Fcn

-1

s +-20.582Scope

Pulse

Generator

Integrator 1

s

Gain 3-40Gain 11

Gain -K-Derivative

du/dt

Constant

0Zero -Order

Hold

Transfer Fcn

-1s +-20.582Scope

Pulse Generator

Gain 3-K-Gain 1-2Gain -K-Discrete Filter

1 1-z -1Discrete FIR Filter

1-z

-11

Constant

反复试凑PID 参数后,得到较好的响应曲线如下(Kp=-110,Ti=-4,Td=-1500时)

可见调整好参数后,系统基本达到稳定,净差基本为0,超调较小,响应时间较小。再微调后,得到最终的响应曲线响应时间较小,Tp=0.5s 。 至此,离散域的控制顺利实现

4、位移—角度控制系统框图(此部分为加分部分,可不做)

由于时间关系,此环节未能顺利完成,深感遗憾!

四、实验总结和分析

1、本实验,从数学建模到仿真系统的搭建,再到加进控制环节进行实时控制,最后得出结果的过程中,参考了大量的资料,通过对比整合,设计出了适合自己的一套实验方法:倒立摆数学模型推导部分:首先用牛顿—欧拉方法建立数学模型,接着用动态系统空间状态方程法导出状态方程系数矩阵,然后用MATLAB 对数学模型进行从状态空间到传递函数的变换(包括传递函数的拉氏变换和Z 变换),得到系统的传递函数模型。接着根据数学建模得出的传递函数进行系统模型的搭建,在Simulink 软件上进行系统仿真,采用最为广泛的PID 控制算法,先用连续系统的设计方法设计出模拟控制器,然后在满足一定条件下,对其进行离散化处理,(采用加零阶保持器的Z 变换法)形成数字控制器。接着进行PID 参数整定,利用试凑法,根据PID 控制器各组成环节对系统性能的影响,从一组初始PID 参数开始反复试凑,直至获得,满意的控制效果。此实验中,系统的控制非常稳定,性能较好。

2、由实验中可知,倒立摆系统是一个非线性的较复杂的不稳定系统,故要满足稳定性要求,就得对系统进行线性化近似和稳定控制。本实验中,在做了线性化和加进控制调整后,系统达到了良好的稳定状态。当然,这只是一个理想模型,在实际使用中情况会更加复杂,稳定性也更难获得。不过,通过实验,我们至少掌握了简单控制的基本方法,并得到了预期的实验效果。

3、通过本实验,掌握了倒立摆仿真的整个过程,熟悉了MATLAB 的仿真软件Simulink 的使用,也对系统控制有了较好的理解。作为本次实验的组长,自己更是从中掌握了合作实验开展中的一般步骤,对小组进行分工,掌握实验的主体线路。此次实验中,自始至终发挥了组长的作用,从建模到最后的仿真调试,都秉着认真负责的态度完成了倒立摆仿真研究。

4、此外,通过仿真,再次认识到了自动控制在改善系统性能方面的重要性,并激发了良好的关于系统控制方面的学习兴趣,在此基础上,相信对以后的进一步

研究将会有较大帮助。

Transfer Fcn 1

0.5s +-9.8

2-s

2

Transfer Fcn

-1s +-20.58

2Scope 1

Scope Pulse Generator

Discrete PID Controller 1

PID

Discrete

PID Controller

PID

Constant

基于MATLAB(矩阵实验室)的倒立摆控制系统仿真

基于MATLAB(矩阵实验室)的倒立摆控制系统仿真 摘要 自动控制原理(包括经典部分和现代部分)是电气信息工程学院学生的一门必修专业基础课,课程中的一些概念相对比较抽象,如系统的稳定性、可控性、收敛速度和抗干扰能力等。倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,它是一个理想的教学实验设备,许多抽象的控制概念都可以通过倒立摆直观地表现出来。本文以一级倒立摆为被控对象,用经典控制理论设计控制器(PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,通过MATLAB仿真软件的方法来实现。 关键词:一级倒立摆PID控制器极点配置

Inverted pendulum controlling system simulation based on the MATLAB ABSTRACT Automatic control theory (including classical parts and modern parts) is a compulsory specialized fundamental course of the students majored in electrical engineering. Some of the curriculum concept is relatively abstract, such as the stability, controllability, convergence rate and the anti-interference ability of system. Inverted pendulum system is a typical nonlinear, strong coupling, multivariable and unstable system. It is an ideal teaching experimental equipment as a controlled object, by which many abstract control concepts can be came out directly. This paper chose first-order inverted pendulum as the controlled object. First, the PID controller was designed with classical control theory. Then pole-assignment method was discussed with modern control theory. At last, the effectness of the two methods was verified by MATLAB simulation software. KEY WORDS: First-order inverted pendulum PID controller pole-assignment

直线二级倒立摆的建模和控制综述

西南科技大学 自动化专业方向设计报告 设计名称:直线二级倒立摆的建模和镇定控制 姓名: 学号: 班级: 指导教师: 起止日期:

方向设计任务书 学生班级:学生姓名:学号: 设计名称: 起止日期:指导教师: 方向设计学生日志

直线二级倒立摆的建模与镇定控制 摘要(150-250字) 倒立摆是一个典型的多变量、非线性、强耦合、欠驱动的自然不稳定系统,对倒立摆系统的控制研究,能反映控制过程中的镇定、非线性和随动等问题,因此常用于各种控制算法的研究。而且对倒立摆系统的研究还有重要的工程背景,对机器人行走、火箭的姿态调整等都有重要的现实意义。 本文以直线二级倒立摆系统为模型,阐释了直线二级倒立摆的建模方法和镇定控制算法。其次介绍了直线二级倒立摆系统的结构和参数,应用拉格朗日方程建模方法详细推导了二级倒立摆的数学模型,并对系统的性能进行分析。接下来,本文重点研究了最优控制算法在直线二级倒立摆镇定控制中的应用;在介绍倒立摆系统的最优控制算法的基础上,设计了系统的最优控制器,分析得出控制参数的选择规律;并且在Simulink上完成仿真实验,观察控制系统性能。 关键词:倒立摆;建模;LQR;镇定控制

Modeling and Balance Control of the Linear Double Inverted Pendulum Abstract:Inverted pendulum is a typical multivariable, nonliner, closed coupled and quick movement natural instable system.The process of control research can reflect many key problems in control theory, such as the problem of tranquilization, non linearity, following and so on. So the inverted pendulum is commonly used for the study of many kinds of control theory. The research of inverted pendulum also has important background of engineering, and has practical significance for the Robot walk and Rocket-profile adjustment. In this paper, taking the linear double inverted pendulum system as the control model, reaching of the control system based on lagrange equation and optimal control algorithm. First of all, giving out the research significance and situation of the inverted pendulum system,and introducing the linear double inverted pendulum modeling methods and stabilization control theory. Secondly, introducing the structure and parameters of the inverted pendulum system. Researching of the inverted pendulum mathematical model based on lagrange equation, and giving a detailed derivation, then having stability analysis of the system. Next, this paper studied the inverted pendulum system’s optimal control algorithm,and designed the LQR controller based on it,then coming to the law of selection of control parameters. Finishing the simulation in the Simulink software,observing the performance of the control system. Key words: inverted pendulum, modeling, LQR, balance control

基于matlab的一级倒立摆自适应仿真

第一章绪论 1.1倒立摆系统的简介 1.1.1倒立摆系统的研究背景及意义 倒立摆系统的最初分析研究开始于二十世纪五十年代,是一个比较复杂的不稳定、多变量、带有非线性和强耦合特性的高阶机械系统,它的稳定控制是控制理论应用的一个典型范例[1]。倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统的受到不确定因素的干扰。通过对它的研究不仅可以解决控制中的理论问题,还将控制理论涉及的相关主要学科:机械、力学、数学、电学和计算机等综合应用。在多种控制理论与方法的研究和应用中,特别是在工程中,存在一种可行性的实验问题,将其理论和方法得到有效的验证,倒立摆系统可以此提供一个从控制理论通过实践的桥梁。近些年来,国内外不少专家、学者一直将它视为典型的研究对象,提出了很多控制方案,对倒立摆系统的稳定性和镇定问题进行了大量研究,都在试图寻找不同的控制方法实现对倒立摆的控制,以便检查或说明该方法的严重非线性和绝对不稳定系统的控制能力,其控制方法在军工、航天、机械人领域和一般工业过程中都有着广泛的用途,如精密仪器的加工、机器人行走过程中的平衡控制、火箭发射中的垂直度控制、导弹拦截控制、航空对接控制、卫星飞行中的姿态控制等方面均涉及到倒置问题。因此,从控制这个角度上讲,对倒立摆的研究在理论和方法论上均有着深远意义。倒立摆系统是一个典型的自不稳定系统,其中摆作为一个典型的振动和运动问题,可以抽象为许多问题来研究。随着非线性科学的发展,以前的采用线性化方法来描述非线性的性质,固然无可非议,但这种方法是很有局限性,非线性的一些本质特征往往不是用线性的方法所能体

现的。非线性是造成混乱、无序或混沌的核心因素,造成混乱、无序或混沌并不意味着需要复杂的原因,简单的非线性就会产生非常的混乱、无序或混沌。在倒立摆系统中含有极其丰富和复杂的动力学行为,如分叉、分形和混沌动力学,这方面的问题也值得去探讨和研究。 无论哪种类型的倒立摆系统都具有如下特性[2]: (1)非线性倒立摆是一个典型的非线性复杂系统。实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制,也可以利用非线性控制理论对其进行控制,倒立摆的非线性控制正成为一个研究的热点。 (2)不确定性主要是指建立系统数学模型时的参数误差、量测噪声以及机械传动过程中的减速齿轮间隙等非线性因素所导致的难以量化的部分。 (3)欠冗余性一般的,倒立摆控制系统采用单电机驱动,因而它与冗余机构,比如说冗余机器人有较大的不同。之所以采用欠冗余的设计是要在不失系统可靠性的前提下节约经济成本或者节约有效的空间。研究者常常是希望通过对倒立摆控制系统的研究获得性能较为突出的新型控制器设计方法,并验证其有效性及控制性能。 (4)耦合特性倒立摆摆杆和小车之间,以及多级倒立摆系统的上下摆杆之间都是强耦合的。这既是可以采用单电机驱动倒立摆控制系统的原因,也是使得控制系统的设计、控制器参数调节变得复杂的原因。 (5)开环不稳定性倒立摆系统有两个平衡状态:垂直向下和垂直向上。垂直向下的状态是系统稳定的平衡点(考虑摩擦力的影响),而垂直向上的状态是系统不稳定的平衡点,开环时微小的扰动都会使系统离开垂直向上的状态而进入到垂直向下的状态中。 (6)约束限制由于实际机构的限制,如运动模块行程限制,电机力矩限制等。为制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对于倒立

倒立摆建模

系统建模 系统建模可以分为两种:机理建模和实验建模.实验建模就是通过在研究对象上加上一系列的研究者先确定的输入信号,激励研究对象并通过传感器的检测其可观测的输出,应用数学手段建立起系统输入---输出关系.这里包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容.机理建模就是在了解研究对象在运动规律基础上,通过物理,化学的知识和数学手段建立起的系统内部的输入输出状态关系.系统的建模原则: 1) 建模之前,要全面了解系统的自然特征和运动机理,明确研究目的和准确性要求,选择合适的分析方法。 2) 按照所选分析法,确定相应的数学模型的形式; 3) 根据允许的误差范围,进行准确性考虑,然后建立尽量简化的合理的数学模型。 小车—倒立摆系统是各种控制理论的研究对象。只要一提小车—倒立摆系统,一般均认为其数学模型也已经定型。事实上,小车—倒立摆的数学模型与驱动系统有关,常见到的模型只是对应于直流电机的情况,如果执行机构是交流伺服电机,就不是这个模型了。本文主要分析由直流电机驱动的小车—倒立摆系统。小车倒立摆系统是检验控制方式好坏的一个典型对象,其特点是高阶次、不稳定、非线性、强耦合,只有采取有效的控制方式才能稳定控制. 在忽略空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车忽然均匀质杆组成的系统,如下图所示: 图中F 是施加于小车的水平方向的作用力,x 是小车的位移,φ是摆的倾斜角。若不给小车施加控制力,倒摆会向左或向右倾斜,控制的目的是当倒摆出现偏角时,在水平方向上给小车以作用力,通过小车的水平运动,使倒摆保持在垂直的位置。即控制系统的状态参数,以保持摆的倒立稳定。 M 小车的质量 0.5Kg m 摆杆的质量 0.2Kg X φ F M 图1 直线一级倒立摆系统 θ

倒立摆系统的建模及Matlab仿真资料

第1 页共11 页 倒立摆系统的建模及Matlab仿真 1.系统的物理模型 考虑如图(1)所示的倒立摆系统。图中,倒立摆安装在一个小车上。这里仅考虑倒立摆在图面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g l=1m小车的质量:摆杆的长度:2重力加速度:g=9.8m/M=1kg s摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量?≤10%,调节时间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 ?),在u设小车瞬时位置为z,摆心瞬时位置为(作用下,小车及摆均产生加速远 动,sin?lz根据牛顿第二定律,在水平直线远动方向的惯性力应与u平衡,于是有 22dzd?)?sinu?M?m(zl22dtdt???2????z(M?mml?)cos?mlusin? 即:??①

绕摆轴转动的惯性力矩与重力矩平衡,因而有. 第2 页共11 页 2??d??? sin??lcosm(z?lsinmgl)??2dt?????22???????即: nis?l?ocgcosincoszs?ls??② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直?2?????且可忽略则,立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,1sincos??,项。于是有 ???M?zm?u?ml??)(③ ????g?z?l??④联立求解可得1mg?u?z????MM 1)?m(M????u??MlMl 列写系统的状态空间表达式。2.2??T xx,x,x,,选取系统变量则 xx,x,xx?,42134123xx??211mgux???x?32MM x?x?431)(M?mu?x?x? 34MlMl 即00100????z??1mg??????000?z?????d MM??Bu?Ax?xux????????00001???dt????1gm?(M)????000??????? MlMl??????Cx?0?y?xx1001代入数据计算得到:0100????000?1??????T0D,?0??1BA?,?001,C100??1000??00011?? 11 页3 页共第 3.设计控制器3.1判断系统的能控性和稳定性 1100????0011????23BBAABAB?Q?故被控对象完全可控, rank()=4,Q kk??11?0?10??011?10???22???11?。出现大于零的特征值,故被,,0 解得特征值为 0由特征方程0??11I?A?)(控对象不稳定3.2确定希望的极点, 另一对为远极点,认为系统性能主要由主导,选其中一对为主导极点和希望的极点n=4ss21极点决定,远极点只有微小影响。根据二阶系统的关系式,先确定主导极点???42??1????10.?e??t1.67?有,闭环可得;取误差带,于是取,则6.?059?0.02.?0? pns??n2????1?js??=-10.8j,远极点选择使它和原点的距离大于主导极点与原点 距离主导极点为?n,21s??15倍,取的54,33.3采用状态反馈方法使系统稳定并配置极点 ??kkkk?k;状态反馈系统的状态方程,馈状态反的控制规律为为kxu??3102?,其

一阶倒立摆控制系统

一阶直线倒立摆系统 姓名: 班级: 学号:

目录 摘要 (3) 第一部分单阶倒立摆系统建模 (4) (一)对象模型 (4) (二)电动机、驱动器及机械传动装置的模型 (6) 第二部分单阶倒立摆系统分析 (7) 第三部分单阶倒立摆系统控制 (11) (一)内环控制器的设计 (11) (二)外环控制器的设计 (14) 第四部分单阶倒立摆系统仿真结果 (16) 系统的simulink仿真 (16)

摘要: 该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。 控制理论中把此问题归结为“一阶直线倒立摆控制问题”。另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。 实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。 第一部分单阶倒立摆系统建模

(一) 对象模型 由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。 如图1.1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。 图1.1 一阶倒立摆的物理模型 根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其重心的转动方程为 sin cos y x l F J F l θθθ=-&& (1-1) 2)摆杆重心的水平运动可描述为 2 2(sin )x d F m x l dt θ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为 2 2(cos )y d F mg m l dt θ-= (1-3) 4)小车水平方向运动可描述为 202x d x F F m dt -= (1-4)

20112515直线一级倒立摆机理建模

上海电力学院课程设计报告 课名:自动控制原理应用实践 题目:倒立摆控制装置 院系:自动化工程学院 专业:测控技术与仪器 班级:2011151班 姓名:马玉林 学号:20112515 时间:2014年1月14日

倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。 倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。 1.1 倒立摆的控制方法 倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。 2 直线倒立摆数学模型的建立 直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。 系统建模可以分为两种:机理建模和实验建模。实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。这里面包括输入

倒立摆系统的建模及Matlab仿真

倒立摆系统的建模及Matlab 仿真 1.系统的物理模型 考虑如图(1)面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g 摆杆的长度:l =1m 小车的质量: M=1kg 重力加速度:g=9.8m/2s 摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量δ ≤10%,调节时 间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 设小车瞬时位置为z,摆心瞬时位置为(θsin l z +),在u 作用下,小车及摆均产生加速远动,根据牛顿第二定律,在水平直线远动方向的惯性力应与u 平衡,于是有 u l z dt d m dt z d M =++)sin (22 22θ 即: u ml ml z m M =-++θθθθsin cos )(2&&&&& ① 绕摆轴转动的惯性力矩与重力矩平衡,因而有

θθθsin cos )sin (22mgl l l z dt d m =??? ????+ 即: θθθθθθθsin cos sin cos cos 22g l l z =-+&&&&& ② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直 立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,则1cos ,sin ≈≈θθθ,且可忽略θ θ2&项。于是有 u ml z m M =++θ&&&& )( ③ θθg l z =+&&&& ④ 联立求解可得 u Ml Ml m M u M M mg z 1)(1 -+=+- =θθθ&&&& 2.2列写系统的状态空间表达式。 选取系统变量4321,,,x x x x , []T x x x x x 4321,,,=则 u Ml x Ml m M x x x u M x M mg x x x 1 )(134433221-+= =+-==&&&& 即 []Cx x x y Bu Ax u Ml M x Ml g m M M mg z z dt d x ===+=?????? ? ???????-+?????????? ??? ? +- =???? ????????=000110100)(0 010 0000000 1 1θθ&&& 代入数据计算得到: [][]0,0001,1010,01100 1000010000 1 0==-=? ? ??? ? ??? ???-=D C B A T

一级倒立摆的建模与控制分析

研究生《现代控制理论及其应用》课程小论文 一级倒立摆的建模与控制分析 学院:机械工程学院 班级:机研131 姓名:尹润丰 学号: 201321202016 2014年6月2日

目录 1. 问题描述及状态空间表达式建立 (3) 1.1问题描述 (3) 1.2状态空间表达式的建立 (3) 1.2.1直线一级倒立摆的数学模型 (3) 1.2.2 直线一级倒立摆系统的状态方程 (6) 2.应用MATLAB分析系统性能 (7) 2.1直线一级倒立摆闭环系统稳定性分析 (7) 2.2 系统可控性分析 (8) 2.3 系统可观测性分析 (8) 3. 应用matlab进行综合设计 (9) 3.1状态反馈原理 (9) 3.2全维状态反馈观测器和simulink仿真 (10) 4.应用Matlab进行系统最优控制设计 (12) 5.总结 (13)

1.问题描述及状态空间表达式建立 1.1问题描述 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。 下对于倒立摆系统,经过小心的假设忽略掉一些次要的因素后,它就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。下面采用其中的牛顿—欧拉方法建立直线一级倒立摆系统的数学模型。 1.2状态空间表达式的建立 1.2.1直线一级倒立摆的数学模型

倒立摆系统的建模(拉格朗日方程)

系统的建模及性能分析 倒立摆系统的构成及其参数 1倒立摆系统的基本结构 本设计所用到的倒立摆模型直线一级倒立摆系统。整个系统是由6大部分所组成的一个闭环系统,包括计算机、数据采集卡、电源及功率放大器、直流伺服电机、倒立摆本体和两个光电编码器等模块。如图2.1所示: 图2.1 倒立摆系统的结构组成示意图 Fig 2.1 Structure of the linear single inverted pendulum system 2系统主要组成部分简介 直线一级倒立摆装置如图2.2所示[13]:

图2.2直线一级倒立摆装置 Fig 2.2 Straight linear 1-stage inverted pendulum device Quanser倒立摆系统包含倒立摆本体、数据采集电控模块以及控制平台等三大部分,其中控制平台是由装有Quanser专用实时控制软件的通用PC机组成。 1.直线倒立摆主体 倒立摆主体是由Quanser直线运动控制伺服单元IP02与直线一级摆杆组成,并配有专用的小车直线轨道。这里主要介绍下Quanser直线运动控制伺服单元IP02(即倒立摆运动小车)及导轨的组成:

图2.3伺服单元IP02的组成 Fig 2.3 Servo unit IP02 parts 编号名称英文 (01)IP02小车IP02 Cart (02)不锈钢滑轨Stainless Steel Shaft (03)齿轮导轨Rack (04)小车位移齿轮Cart Position Pinion (05)小车电机传动齿轮Cart Motor Pinion (06)小车电机传动齿轮轴Cart Motor Pinion Shaft (07)摆杆传动轴Pendulum Axis (08)IP02小车位移编码器IP02 Cart Encoder (09)IP02摆杆角度编码器IP02 Pendulum Encoder (10)IP02小车位移编码器接口IP02 Cart Encoder Connector (11)IP02摆杆角度编码器接口IP02 Pendulum Encoder Connector (12)电机接口Motor Connector (13)直流伺服电机DC Motor

Invertedpendulum倒立摆的matlab建模

ECE451 Controll Engineering Inverted pendulum 09/29/2013 Introduction: Inverted pendulum is a typical fast, multi-varaibles, nonlinear, unstable system, it

has significant meaning. We choose the PID controller to fot the inverted pendulum. Assume the input is a step signal , the gravitational acceleration g=9.8m/s^2 and linearize the nonlinear model around the operating point. 1.Mathematic Modling M mass of the car 0.5 kg m mass of the pendulum 0.2 kg b coefficient of friction for cart 0.1 N/m/sec l length to pendulum center of mass 0.3 m I mass moment of inertia of the pendulum 0.006 kg.m^2 F force applied to the cart x coordinate of cart position

θpendulum angle from vertical (down) N and F are the force from horizontal and vertical direction. ) Force analysis Consider the horizontal direction cart force, we get the equation: Consider the horizontal direction pendulum force, we get the equation: To get rid of P and N, we get this equation: Merge these two equations, about to P And N, to obtain a second motion equation: u to represent the controlled object with the input force F, linearized two motion equations Apply Laplace transform to the equation above The transfer function of angle and position

基于matlab的倒立摆仿真设计

基于matlab的倒立摆的仿真与设计姓名:贾永伟专业:测控技术与仪器学号:1123105950 年级:2011级 摘要:倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒 立摆的控制研究无论在理论上和方法上都有深远的意义。 本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。 关键词:一级倒立摆,PID,MATLAB仿真 一、倒立摆模型的研究意义 倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制都有重要意义 倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实卫星飞行中的姿态控制等。故其研究意义广泛。 二、倒立摆模型的数学建模 质量为m的小球固结于长度为L的细杆(可忽略杆的质量)上,细杆又和质量为M的小车铰接相连。由经验知:通过控制施加在小车上的力F(包括大小和方向)能够使细杆处于θ=0的稳定倒立状态。在忽略其他零件的质量以及各种摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型 分析过程如下: 如图所示,设细杆摆沿顺时针方向转动为正方向,水平向右方向为水平方向上的正方向。当细杆摆顺时针往右运动时水平方向施加的力应该为水平向右。 现对小车和细杆摆分别进行隔离受力分析:

模糊控制在倒立摆中的MATLAB仿真应用

TAIYUAN UNIVERSITY OF SCIENCE & TECHNOLOGY 题目: 院(系): 专业: 学生姓名: 学号:

模糊控制在倒立摆中的仿真应用 1、倒立摆系统 简介 倒立摆有许多类型,例如图1-1的a和b所示的分别是轮轨式一级倒立摆系统和二级倒立摆系统的模型。倒立摆是一个典型的快速、多变量、非线性、本质不稳定系统,它对倒置系统的研究在理论上和方法论上具有深远的意义。对倒立摆的研究可归结为对非线性多变量本质不稳定系统的研究,其控制方法和思路在处理一般工业过程中也有广泛的用途。近些年来国内外不少专家学者对一级、二级、三级、甚至四级等倒立摆进行了大量的研究,人们试图寻找不同的控制方法实现对倒立摆的控制,以便检查或说明该方法的严重非线性和本质不稳定系统的控制能力。2002年8月11日,我国的李洪兴教授在国际上首次成功实现了四级倒立摆实物控制,也标志着我国学者采用自己提出的控制理论完成的一项具有原创性的世界领先水平的重大科研成果。 图1-1 倒立摆模型 (a)一级倒立摆模型(b)二级倒立摆模型 倒立摆系统可以简单地描述为小车自由地在限定的轨道上左右移动。小车上的倒立摆一端用铰链安装在小车顶部,另一端可以在小车轨道所在的垂直平面内自由转动,通过电机和皮带传动使小车运动,让倒立摆保持平衡并保持小车不和轨道两端相撞。在此基础上在摆杆的另一端铰链其它摆杆,可以组成二级、三级倒立摆系统。该系统是一个多用途的综合性试验装置,它和火箭的飞行及步行机器人的关节运动有许多相似之处,其原理可以用于控制火箭稳定发射、机器人控制等诸多领域。 倒立摆系统控制原理

单级倒立摆系统的硬件包括下面几个部分:计算机、运动控制卡、伺服系统、倒立摆和测量元件,由它们组成的一个闭环系统,如图1-2所示,就是单级倒立摆系统的硬件结构图。 图1-2 单级倒立摆硬件结构图 通过角度传感器可以测量摆杆的角度,通过位移传感器可以得到小车的位置,然后反馈给运动控制卡,运动控制卡与计算机双向通信。计算机获得实时数据,确定控制策略,发送到运动控制卡,运动控制卡执行计算机确定的控制策略,产生相应的控制量,由伺服电机转动来带动小车在水平轨道往复的运动,使摆杆保持倒立。 倒立摆系统状态方程 θ f 图1-3 单级倒立摆模型图 θ为杆与垂线的夹角,f为作用力,杆的质量m=,杆和小车的总重量m=,半杆长l=,重力加速度g=s2,采样周期T=.倒立摆的数学模型为:

倒立摆系统建模及MATLAB仿真

倒立摆系统的建模及MATLAB仿真 通过建立倒立摆系统的数学模型,应用状态反馈控制配置系统极点设计倒立摆系统的控制器,实现其状态反馈,从而使倒立摆系统稳定工作。之后通过MA TLAB 软件中Simulink工具对倒立摆的运动进行计算机仿真,仿真结果表明,所设计方法可使系统稳定工作并具有良好的动静态性能。 倒立摆系统是1个经典的快速、多变量、非线性、绝对不稳定系统,是用来检验某种控制理论或方法的典型方案。倒立摆控制理论产生的方法和技术在半导体及精密仪器加工、机器人技术、导弹拦截控制系统和航空器对接控制技术等方面具有广阔的开发利用前景。因此研究倒立摆系统具有重要的实践意义,一直受到国内外学者的广泛关注。本文就一级倒立摆系统进行分析和研究,建立倒立摆系统的数学模型,采用状态反馈极点配置的方法设计控制器,并应用MA TLAB 软件进行仿真。 1 一级倒立摆系统的建模 1. 1 系统的物理模型 如图1 所示,在惯性参考系下,设小车的质量为M ,摆杆的质量为m ,摆杆长度为l ,在某一瞬间时刻摆角(即摆杆与竖直线的夹角)为θ,作用在小车上的水平控制力为f 。这样,整个倒立摆系统就受到重力,水平控制力和摩擦力的3 外力的共同作用。 图1 一级倒立摆物理模型 1. 2 系统的数学模型 在系统数学模型中,本文首先假设: (1) 摆杆为刚体。 (2)忽略摆杆与支点之间的摩擦。 (3)忽略小车与导轨之间的摩擦。 然后根据牛顿第二运动定律,求得系统的运动方程为:

方程(1) , (2) 是非线性方程,由于控制的目的是保持倒立摆直立,在施加合适的外力条件下,假定θ很小,接近于零是合理的。则sinθ≈θ,co sθ≈1 。在以上假设条件下,对方程线性化处理后,得倒立摆系统的数学模型: 1. 3 系统的状态方程 以摆角θ,角速度θ',小车的位移x ,速度x'为状态变量,输出为y 。即令: 则一级倒立摆系统的状态方程为: 2 控制器设计及MATLAB 仿真 2. 1 极点配置状态反馈的基本原理

(完整版)倒立摆建模

1.一阶倒立摆建模 在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置 θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度 根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 (2) 摆杆重心的运动方程为 得 (3)小车水平方向上的运动为 22..........(4)x d x F F M d t -= 联列上述4个方程,可以得出 一阶倒立精确气模型: ()()()()()()()2222222222222222 sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ?+++-?= ++-??+-+?=?-++? &&&&&& sin cos ..........(1)y x J F l F l θθθ=-& &2 22 2(sin ) (2) (cos ).........(3)x y d F m x l d t d F mg m l d t θθ=+=-

式中J 为摆杆的转动惯量:3 2 ml J = 若只考虑θ在其工作点附近θ0=0附近(??≤≤-1010θ)的细微变化,则可以近似认为: ?? ? ??≈≈≈1cos sin 02θθθθ& ??? ? ???++-+=++-+= 2.. 2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 2.2 模型建立及封装 1、建立以下模型:

基于MATLAB的倒立摆系统定性分析(1)

信息技术与信息化 自动控制 79  基于MAT LAB 的倒立摆系统定性分析 Qualitative Analysis of I nverted Pendulu m System Based on MAT LAB 张 彬3 郭晓玉 王金凯33高军伟3 ZHAN G B in G UO X iao -yu WAN G J in -kai G AO Jun -w ei 摘 要  倒立摆系统作为控制理论研究中的一种较为理想的实验手段,是检验控制策略效果的不可或缺的工具,也是控制界中研究的热点。判断系统的稳定性、可控性和可观性是设计倒立摆控制器的前提。应用 MAT LAB 对倒立摆系统进行分析、研究,方法方便快捷,实用性强,尤其适用于多级倒立摆系统。 关键词 倒立摆 稳定性 可控性 可观性 MAT LAB Abstract I nverted pendulu m contr ol syste m as a theoretical study is an ideal experi m ental means .This contr ol syste m can not only test the effect of contr ol strategy as an indis pensable t ool,but als o be the hot s pots in the contr ol field .Deter m inati on of the stability,contr ollability and observability are the p re m ise of contr oller de 2sign f or the inverted pendulu m syste m.Analysis and research based on MAT LAB is convenient and p ractical es pe 2cially for multi -stage inverted pendulu m. Keywords I nverted pendulu m Stability Contr ollability Observability MAT LAB 3青岛大学自动化工程学院 山东青岛 26607133安丘市供电公司 山东潍坊 262100 引言 倒立摆(I nverted Pendulu m )是处于倒置不稳定状态、通过人为控制使其处于动态平衡的一种摆。它是一个复杂的快速、非线性、多变量、强耦合的非最小相位系统,是重心在上、支点在下控制问题的抽象。倒立摆系统通常用来检验控制策略的效果,是控制理论研究中较为理想的实验装置。又因其与火箭飞行器及单足机器人有很大的相似之处,引起国内外学者的广泛关注。控制过程中的许多关键问题,如镇定问题、非线性问题、鲁棒性问题、随动问题以及跟踪问题等都可以以倒立摆为例加以研究。 对系统进行定性分析,首先要建立系统的数学模型,并对系统的特性进行分析,包括系统的稳定性、可控性以及可观性。摆杆竖直向上是直线倒立摆系统的不稳定平衡点,由于关心的是系统在平衡点附近的性质,因而可以采用线性模型来分析。一般地,N 级倒立摆系统有Z (N +1)个状态变量,在分析系统特性时,可以运用MAT LAB 的矩阵计算功能来实现上述功能。 1 倒立摆系统的数学模型 为简便起见,建模时一般忽略系统中一些次要的难以建模的因素,例如空气阻力、伺服电机由于安装而产生的静摩擦力、系统连接处的松弛程度、摆杆连接处质量分布不均匀、传动皮带的弹性、传动齿轮的间隙等。将小车抽象为质点,摆杆抽象为匀质刚体,摆杆绕转轴转动,基于以上的假设,可以用欧拉-拉格朗日方程原理建立小车倒立摆系统的动力学模型。 直线二级倒立摆线性化后的数学模型[1]: x θ1 θ2 ¨x 1 ¨θ1¨θ2 =000100000010000001000000 0K 12K 130000 K 22 K 23 0x θ1θ2 x θ1 θ2000 1 K 17K 27u y =x θ1 θ2 1000000100000 1 x 1 θ1θ2 x θ1 θ2 +000 u 其中: K 12=3g (m 1+2m 2+2m 3)(4m 1+3m 2+12m 3)l 1 K 13= 9m 2g -2(4m 1+3m 2+12m 3)l 1K 22=9g (m 1+2m 2+2m 3)-(8m 1+6m 2+24m 3)l 2  k 23= 3g (m 1+3m 2+3m 3) (4m 1+3m 2+3m 3)l 2K 17= 3(2m 1+m 2+4m 3)2(4m 1+3m 2+12m 3)l 1 K 27= 3m 1 -(8m 1+6m 2+24m 3)l 2 式中参量定义及其取值: x,小车位移;θ1,摆杆1与竖直向上方向的夹角;θ2,摆杆2与 竖直向上方向的夹角;M ,小车质量,1Kg;m 1,摆杆1质量,0.05Kg ;m 2,摆杆2质量,0.1Kg m 3;,质量块质量,0.2Kg ;l 1,摆杆1转 动中心到质心的距离,0.1m;l 2,摆杆2转动中心到质心的距离, 0.25m;g ,重力加速度,9.8m /s 2 。 2 倒立摆系统的定性分析 系统的稳定性分析一般可以应用李雅普诺夫稳定性理论。

相关主题
文本预览
相关文档 最新文档