当前位置:文档之家› 拟南芥基因组DNA提取方法

拟南芥基因组DNA提取方法

拟南芥基因组DNA提取方法
拟南芥基因组DNA提取方法

拟南芥基因组DNA提取方法

1.干净的叶片放在2.0 ml EP 管中,加入750ul EB buffer ,一颗珠子,机械破碎;2.65℃保温10min;

3.加入250ul 3.5M 乙酸钾buffer,冰浴20min;

4.21000g离心10min;

5.小心的取出上清置于另一个新的干净的1.5ml EP管中;

6.加入500ul 异丙醇,颠倒混合,-20℃放置20min;

7.21000g 离心15min,弃上清,风干;

8.加入700ul 80% 乙醇清洗沉淀,21000g离心10min,弃上清,风干;

9.加入50ul-60ul无菌水及0.5ul RNase,50℃溶解DNA,如果有沉淀,则再离心10min,吸取上清至新EP管。

提取液配方:

EB buffer(提取缓冲液):100mmol Tris-HCI,pH 值8.0;50mmol3EDTA,pH 值8.0;500mmol NaCl;2%SDS(w/v);l%PVP-360(w/v);0.1%β-巯基乙醇(体积比),用之前在通风橱中加。

3.5 M 乙酸钾:用于沉淀蛋白质和多糖。

人类基因组计划.doc

【篇一】人类基因组计划随着人类基因组计划的完成 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到2005 年,以Illumina 公司的Solexa技术和ABI 公司的SOLiD 技术为标志的新一代测 序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范

植物基因组DNA提取试剂盒(北京天根)

植物基因组DNA提取试剂盒 1 取植物新鲜组织约100 mg或干重组织约30 mg,加入液氮充分研磨。 2 将研磨好的粉末迅速转移到预先装有700 μL 65℃预热缓冲液GP1的离心管中(实验前在预热的GP1中加入巯基乙醇,使其终浓度为0.1%),迅速颠倒混匀后,将离心管放在65℃水浴20 min,水浴过程中颠倒离心管以混合样品数次。 3 加入700 μL氯仿,充分混匀,12,000 rpm(~13,400×g)离心5 min。 注:若提取富含多酚或淀粉的植物组织,可在第3步前,用酚:氯仿/1:1进行等体积抽提。 4 小心的将上一步所得水层上相转入一个新的离心管中,加入700 μL缓冲液GP2,充分混匀。 5 将混匀的液体转入吸附柱CB3中,12,000 rpm(~13,400×g)离心30 s,弃掉废液。(吸附柱容积为700μL左右,可分次加入离心。) 6 向吸附柱CB3中加入500 μL缓冲液GD(使用前请先检查是否已加入无水乙醇),12,000 rpm(~13,400×g)离心30 s,倒掉废液,将吸附柱CB3放入收集管中。 7 向吸附柱CB3中加入600 μL漂洗液PW(使用前请先检查是否已加入无水乙醇),12,000 rpm(~13,400×g)离心30 s,倒掉废液,将吸附柱CB3放入收集管中。 8 重复操作步骤7。 9 将吸附柱CB3放回收集管中,12,000 rpm(~13,400×g)离心2 min,倒掉废液。将吸附柱CB3置于室温放置数分钟,以彻底晾干吸附材料中残余的漂洗液。 注意:这一步的目的是将吸附柱中残余的漂洗液去除,漂洗液中的乙醇的残留会影响后续的酶反应(酶切、PCR等)实验。 10 将吸附柱CB3转入一个干净的离心管中,向吸附膜的中间部位悬空滴加50-200 μL洗脱缓冲液TE,室温放置2-5 min,12,000 rpm(~13,400×g)离心2 min,将溶液收集到离心管中。 注意:洗脱缓冲液体积不应少于50 μL,体积过小影响回收率。洗脱液的PH值对于洗脱效率有很大影响。若用水做洗脱液应保证其pH值在7.0-8.5范围内(可以用NaOH将水的pH值调到此范围),pH值低于7.0会降低洗脱效率;且DNA产物应保存在-20℃,以防DNA降解。为增加基因组DNA的得率,可将离心得到的溶液再加入吸附柱CB3中,室温放置 2 min,12,000 rpm (~13,400×g)离心2 min。

拟南芥的图位克隆技术

拟南芥基因的图位克隆技术 浙江大学生命科学学院徐冰 浙江杭州310029 1 国内外研究现状 拟南芥(Arabidopsis thaliana)是一种模式植物,具有基因组小(125 Mbp)、生长周期短等特点,而且基因组测序已经完成(The Arabidopsis Genomic Initiative, 2000)。同时,拟南芥属十字花科(Cruciferae),具有高等植物的一般特点,拟南芥研究中所取得成果很容易用于其它高等植物包括农作物的研究,产生重大的经济效益,特别是十字花科中还有许多重要的经济作物,与人类的生产生活密切相关,因此目前拟南芥的研究越来越多地受到国际植物学及各国ZF的重视。 从遗传学的观点来看,基因克隆的途径可概括为正向遗传学和反向遗传学两种。正向遗传学途径指的是通过被克隆基因的产物或表现型突变去进行;反向遗传学途径则指的是依据被克隆基因在染色体上的位置来实现。虽然一些模式生物(如拟南芥)的基因组测序已经完成,但还有40%的基因(在拟南芥中)的功能还是未知的。 图1 图位克隆所需努力的比较(1995年和2002年)(Jander等,2002) 图位克隆(map-based cloning)又称定位克隆(positional cloning),1986年首先由剑桥大学的Alan Coulson提出(Coulson等,1986),用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。近几年来随着拟南芥基因组测序工作的完成,各种分子标记的日趋丰富和各种数据库的完善,在拟南芥中克隆一个基因所需要的努力已经大大减少了(图1)。 目前完成整个拟南芥的图位克隆过程大约需要一年时间。在这个过程中,我们从筛选突变体开始,逐渐找到和表型相关的基因。这和反向遗传学的方法正好相反。图位克隆能实现,关键在于全基因组测序计划的完成和各种分子标记的发现。这些数据被储存在专门的数据库中

已完成基因组测序的生物(植物部分)分析解析

水稻、玉米、大豆、甘蓝、白菜、高粱、黄瓜、西瓜、马铃薯、番茄、拟南芥、杨树、麻风树、苹果、桃、葡萄、花生 拟南芥籼稻粳稻葡萄番木瓜高粱黄瓜玉米栽培大豆苹果蓖麻野草莓马铃薯白菜野生番茄番茄梨甜瓜香蕉亚麻大麦普通小麦西瓜甜橙陆地棉梅毛竹桃芝麻杨树麻风树卷柏狗尾草属花生甘蓝 物种基因组大小和开放阅读框文献 Sesamum indicum L. Sesame 芝麻(2n = 26)293.7 Mb, 10,656 orfs 1 Oryza brachyantha短药野生稻261 Mb, 32,038 orfs 2 Chondrus crispus Red seaweed爱尔兰海藻105 Mb, 9,606 orfs 3 Pyropia yezoensis susabi-nori海苔43 Mb, 10,327 orfs 4 Prunus persica Peach 桃226.6 of 265 Mb 27,852 orfs 5 Aegilops tauschii 山羊草(DD)4.23 Gb (97% of the 4.36), 43,150 orfs 6 Triticum urartu 乌拉尔图小麦(AA)4.66 Gb (94.3 % of 4.94 Gb, 34,879 orfs 7 moso bamboo (Phyllostachys heterocycla) 毛竹2.05 Gb (95%) 31,987 orfs 8 Cicer arietinum Chickpea鹰嘴豆~738-Mb,28,269 orfs 9 520 Mb (70% of 740 Mb), 27,571 orfs 10 Prunus mume 梅280 Mb, 31,390 orfs 11 Gossypium hirsutum L.陆地棉2.425 Gb 12 Gossypium hirsutum L. 雷蒙德氏棉761.8?Mb 13 Citrus sinensis甜橙87.3% of ~367 Mb, 29,445 orfs 14 甜橙367 Mb 15 Citrullus lanatus watermelon 西瓜353.5 of ~425 Mb (83.2%) 23,440 orfs 16 Betula nana dwarf birch,矮桦450 Mb 17

人类基因组计划研究的进展及其意义

人类基因组计划研究的进展及其意义 摘要:文章综述了人类基因组计划研究和进展的情况 关键词: 正文: 定义 人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约4万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。命人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。被誉为生科学的"登月计划"。 人类基因组计划(英语:Human Genome Project, HGP)是一项规模宏大,跨国跨学科的科学探索工程。其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。基因组计划是人类为了探索自身的奥秘所迈出的重要一步,是继曼哈顿计划和阿波罗登月计划之后,人类科学史上的又一个伟大工程。截止到2005年,人类基因组计划的测序工作已经完成。其中,2001年人类基因组工作草图的发表(由公共基金资助的国际人类基因组计划和私人企业塞雷拉基因组公司各自独立完成,并分别公开发表)被认为是人类基因组计划成功的里程碑。 背景 20世纪是物理学和化学的世纪,21世纪是生物学的世纪。生命科学将取代物理学和化学成为带头学科,从而为其他学科的研究和发展提供新的思路和方法,生物工程产业将成为支柱产业。早在上世纪中叶,生物技术就被称作是21世纪的关键技术。许多科学家预言,生物技术将与信息技术、材料技术以及能源技术共同构成新的技术革命的基础,生物技术将重塑医学、农业以及生命科学研究本身,进而改造社会,改变人类的生活方式。一些重大的研究项目如人类基因组计划、体细胞克隆技术、转基因技术等的影响已超出了学科的范围,引起了公众的广泛关注。在生命科学领域随着分子生物学研究的不断深入,80年代末出现了一个新的研究领域———基因组学(Genomics)。基因组研究被称作是20世纪末21世纪初最重大的全球性的科研项目,其中以人类基因组计划(HGP)最为重要 人类基因组计划研究的目的,是获得人类染色体的物理图谱和基因图谱以及测定核苷酸的全序列 进展 人类基因组计划是由美国国立研究院和能源都1990年发起,后来有德、日、英、法、中等国科学家加入,有至少16个实验室及1100名生物学家、计算机专家和技术人员参与,预计耗资30亿美元,在15年内完成。人类基因组计划正式启动以来,受到人类各界的极大关心,经过全球科学家的努力,各阶段进展一再提前,已提前完成绘制出基因的遗传图谱和物理图谱的草图,现在已进入大规模的测序阶段。目前已完成了人类基因组约50%的测序,预期在2005年将能

基因组DNA提取方法

1 快速微量提取法A.取1.5ml菌体培养物于一灭菌Ep管中,12000rpm离心1min, 丢去上清夜,收集菌体。 B.加入400ul裂解液(40mMTris-醋酸,20mM醋酸钠,1mMEDTA,1%SDS,pH7.8)混匀,置于37oC水浴1hr。C.然后加入200ul5mol/L的氯化钠溶液,混匀后于13000rpm离心15min。D.取上清液,用苯酚抽提2次,氯仿抽提1次。E.加两倍体积无水乙醇,1/10体积醋酸钾(3M ,pH8.0),-20度保存1小时后,13000rpm离心15min,弃上清液,沉淀用70%乙醇洗2次;置于室温干燥后,溶于50ulTE 溶液中,置4oC保存备用。 2 蛋白酶/SDS法制备先用10ml含适当抗生素的GBM过夜培养Delftia sp.,第二天4000rpm离心10min收集菌体,用Washing TE (50mmol/LTris-HCl pH8.0,10mmol/LEDTA pH8.0)洗菌体2次,之后将菌体充分悬浮在5ml 1×TE缓冲液中,先后加入0.5ml 5mg/L的蛋白酶、0.5ml 10% SDS,轻轻混匀后50℃放置3h~5h,接着用等体积的Tris饱和苯酚抽提2次,苯酚/氯仿/异戊醇抽提一次,氯仿抽提一次后,乙醇沉淀DNA,用自动移液器吸管头将絮状DNA沉淀块吸附到Ep管中,70%乙醇洗2次,干燥后溶于适当1×TE或ddH2O中。 3 1) 细菌培养:细菌接种于5ml 液体培养基中,37℃摇床(300rpm)培养过液。2) 细菌收集:取1ml培养物于1.5ml EP 管中,室温8000rpm离心5min,弃上清,沉淀重新悬浮于1ml TE(pH8.0)中(用ddH2O 也行)。3) 菌体裂解:加入6μl 50mg/ml的溶菌酶,37℃作用2h。再加2mol/LNaCl50μl,10%SDS 110μl,20mg/ml的蛋白酶K 3μl,50℃作用3h或37℃过夜。(此时菌液应为透明粘稠液体)4) 抽提:菌液均分到两个1.5ml EP管,加等体积的酚∶氯仿∶异戊醇(25∶24∶1),混匀,室温放置5-10min。12000rpm离心10min。抽提两次。(上清很粘稠,吸取时应小心,最好枪头尖应剪去)5) 沉淀:加0.6倍体积的异丙醇,混匀,室温放置10min。1 2000rpm离心10min。6)洗涤:沉淀用75%的乙醇洗涤。7) 抽(凉)干后,溶于50μl ddH2O中,取2-5μl电泳。作PCR模板用。

CTAB法提取拟南芥DNA-基因组测序质量

CTAB法提取拟南芥DNA 1.试剂: 1L CTAB DNA提取缓冲液: Tris-HCl(pH 8.0): 100mM EDTA(pH8.0): 20mM 121℃灭菌15min待用 NaCl: 1.4M CTAB: 2%(W/V) PVP40000: 1%(W/V) 2.实验方法: 1,CTAB buffer于65℃预热15min。 2,取叶片组织0.2 g, 液氮下磨碎至粉末状,用干净的药勺转移粉末到2ml 离心管中,加入1 ml预热的CTAB buffer(0.2g叶片对应1mlCTAB)。 混匀后置65℃水浴中保温15min,并不时轻轻摇动试管。(此时应4° 预冷离心机)。 3,冷却至室温后,加入800 ul Tris-平衡酚(pH8.0,含8-羟基喹啉),颠倒混匀,室温静置15 min。加入200 ul氯仿,充分混匀后置于冰上5min。 4,12000g 4℃离心15min,转移上清至新的离心管中(约1 ml,保证质量可取800ul),加入0.8倍上清体积(800 ul/640ul)的异丙醇(-20°预冷),混 匀,-20℃沉淀2h以上(此步可过夜)。 5,室温12000g离心15min回收DNA沉淀。 6,加200ul RNase水,于37度溶解6min。 7,冷却至室温后,加入160ul Tris-平衡酚,颠倒混匀室温静置15min。加入40ul 氯仿,充分混匀后置于冰上5min。 8,12000g 4度离心15min,吸取180ul上清至新的1.5ml离心管,加入1.5倍体积(144ul)的异丙醇(-20度预冷)及0.5V 7.5M 醋酸铵,混匀,-20 度沉淀1h以上(也可过夜)。 9,室温12000g离心15min回收DNA沉淀。 10,80%乙醇清洗DNA,弃去上清液;离心10sec,用枪头移去残留液后,

(整理)人类基因组计划.

人类基因组计划 HGP(Human Genome Projects) 1、HGP简介 ?人类基因组计划是由美国科学家于1985年率先提出、于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。 ?诺贝尔奖获得者Renato Dulbecco于1986年发表短文 《肿瘤研究的转折点:人类基因组测序》(Science, 231: 1055-1056)。 ?文中指出:如果我们想更多地了解肿瘤,我们从现在起必须关注细胞的基因组。…… 从哪个物种着手努力?如果我们想理解人类肿瘤,那就应从人类开始。……人类肿瘤研究将因对DNA 的详细知识而得到巨大推动。” 什么是基因组(Genome) ?基因组就是一个物种中所有基因的整体组成 ?人类基因组有两层意义: ——遗传信息 ——遗传物质 ?从整体水平研究基因的存在、基因的结构与功能、基因之间的相互关系。 人类染色体 HGP的诞生 ?1984年12月Utah州的Alta,White R受美国能源部的委托,主持召开了一个小型会议,讨论DNA重组技术的发展及测定人类整个基因组的DNA序列的意义。 ?1985年6月,在美国加州举行了一次会议,美国能源部提出了“人类基因组计划”的初步草案。?1986年6月,在新墨西哥州讨论了这一计划的可行性。随后美国能源部宣布实施这一草案。?1987年初,美国能源部与国家医学研究院(NIH)为“人类基因组计划”下拨了启动经费约550万美元,1987年总额近1.66亿美元。同时,美国开始筹建人类基因组计划实验室。 ?1989年美国成立“国家人类基因组研究中心”。诺贝尔奖金获得者J.Waston出任第一任主任。?1990年,历经5年辩论之后,美国国会批准美国的“人类基因组计划”于10月1日正式启动。美国的人类基因组计划总体规划是:拟在15年内至少投入30亿美元,进行对人类全基因组的分析。 HGP诞生过程中的质疑 ?计划的必要性问题 ?计划的现实性问题 ?科学研究领域的选择问题 ?为什么不选择基因组小的或有经济意义的生物 ?认为?°制图?±是在沙漠里建公路,?°测序?±是把?°垃圾?±分类,选择?°模式动物?±是拼凑?°诺亚方舟?±。

人类基因组研究的几个伦理问题

收稿日期:2003-03-29 修回日期:2003-07-20 作者简介:姚建国(1960 ),男,江西贵溪人,讲师,从事医学教学管理;雷锦程(1964 ),男,江西东乡人,副教授,主要从事医学伦理与法 律研究。 人类基因组研究的几个伦理问题 姚建国,雷锦程 (江西医学院,江西南昌 330006) 摘 要:人类基因组研究伴生诸多伦理问题。个人或家族的基因隐私权是不受他人侵犯的自然权利;基因歧视侵犯了人的基本权利和基本自由,社会应运用立法来防止基因歧视;对基因功能的认识属于科学发现的范畴,不应有基因专利;基因决定论以及在此基础上的 优生学 会导致伦理灾难;对基因技术的运用,伦理学评价应置于优先地位。 关键词:基因隐私权;基因歧视;基因专利;基因决定论;伦理 中图分类号:B82-057 文献标识码:A 文章编号:1006-0448(2003)05-0031-04 在当代高科技中,生物技术具有最诱人的前景,诸如细胞工程、基因工程、克隆技术、人类基因组计划等,仿佛给人类展现出十分美好的未来。无怪乎许多科学家和技术官员都欢欣鼓舞地宣称:21世纪是生物科学的世纪。然而,正当科学家信心百倍地向生物技术深入挺进时,伦理学家和社会学家却忧心忡忡。生物技术比人类历史上拥有过的任何技术都更为深入地侵扰、干预了自然秩序,人类正面临着前所未有的伦理挑战。在诸多的生物技术中,人类基因组研究被誉为人类生命科学史上最伟大的工程,它可与人类登月计划和曼哈顿计划相媲美。由于不可估量的商业价值和技术本身诱惑力的驱动,人类基因组研究正飞速发展,相关伦理问题已引起了生命伦理学界和全世界的高度关注。本文试图从基因隐私权及知情权、基因组图谱的信息使用与人的社会权利、基因专利与资源争夺、基因决定论与优生学、基因组研究成果应用的不可预测性等角度来谈谈人类基因组研究中存在的伦理问题。 一 个人及家族遗传信息的权利归属问题 人类基因组计划的一个主要目标是绘制遗传链锁图。研究者在利用不同来源的基因资源绘制遗传 链锁图时,可能获得对某些家族或个人来说有意义的预警信号 该家族对某一种疾病具有易感性,患该种疾病的几率相对较大。这时就会产生问题:涉及该家族特有遗传信息的信息权利归属于谁?是归属于提供基因资源来源的个人或其家族?抑或归属于研究者?个人或家族对自身的信息有否知情权?知情权如何实现?研究者是否应当像医生尊重病人的隐私权一样充分尊重该家族的遗传信息隐私权并履行保密义务?研究者是否应向该家族发出预警信号,甚至采取保护性、预防性措施呢?有论者认为应该以实行隐私权为主,只有当医学上确定会出现严重的、不可避免的疾病时,才可解除保密,告知当事家族。 笔者以为,有关个人或家族特有遗传信息,特别是涉及某些遗传性疾病的信息,其信息所有权应当归属于个人或家族,这是人的自然权利的一种 基因隐私权。研究者所做的工作仅仅是揭示了这些信息的含义。这和医生在治病过程中了解到病人的病情与病人的隐私一样,医生不因此而获得病人病情信息的所有权。研究者作为生物医学专家,他有能力理解并揭示遗传信息的含义,并不等于他就此拥有了这些信息并有权随意处置这些信息。人类社会生活中存在这样的情形,一个有文化的人帮助一 第34卷第5期2003年9月南昌大学学报(人社版) JOU RN AL OF N AN CHA NG U NI VERSIT Y Vol.34No.5Sep.2003

植物基因组DNA提取

植物基因组DNA提取 一、实验目的 1、掌握植物基因组总DNA的抽提方法和基本原理。 2、学习根据不同的植物和实验要求设计和改良植物总DNA抽提方法。 二、实验原理 通常采用机械研磨的方法破碎植物的组织和细胞,由于植物细胞匀浆含有多种酶类(尤其是氧化酶类)对DNA的抽提产生不利的影响,在抽提缓冲液中需加入抗氧化剂或强还原剂(如巯基乙醇)以降低这些酶类的活性。在液氮中研磨,材料易于破碎,并减少研磨过程中各种酶类的作用。 十六烷基三甲基溴化铵(hexadyltrimethyl ammomum bromide,简称为CTAB)、十二烷基硫酸钠(sodium dodecyl sulfate,简称SDS)等离子型表面活性剂,能溶解细胞膜和核膜蛋白,使核蛋白解聚,从而使DNA得以游离出来。加入苯酚和氯仿等有机溶剂,能使蛋白质变性,并使抽提液分相,因核酸(DNA、RNA)水溶性很强,经离心后即可从抽提液中除去细胞碎片和大部分蛋白质。上清液中加入无水乙醇使DNA沉淀,沉淀DNA溶于TE溶液中,即得植物总DNA溶液。 三、实验仪器及试剂 实验仪器:高速离心机;烘箱;冰箱;水浴锅;高压灭菌锅;Nanodrop。 实验试剂:玻璃珠,十二烷基磺酸钠(SDS);三羟甲基氨基甲烷(Tris);乙二胺四乙酸(EDTA);氯化钠;苯酚;氯仿;无水乙醇等。 四、实验步骤 1.SDS提取缓冲液在65℃水浴中预热。 2.将叶片置于1.5ml离心管中,液氮速冻,组织研磨器打样。 3.加入700 l的SDS提取缓冲液,涡旋摇匀。 4.置于65℃的水浴中,每隔10 min轻轻摇动,30 min后取出。

5.加入200 μl KAc溶液,摇匀,放入-20℃冰箱30 min。 6.10000 rpm离心5 min,上清移至新离心管中,12000 rpm离心5 min。 7.上清移至新离心管中,加入700 μl异丙醇,-20℃冰箱30 min。 8.10000 rpm离心5 min,弃上清,加入500 μl 70%乙醇漂洗。 9.弃液体,晾干。 10. DNA纯度与浓度测定(使用nanodrop)。 (1)DNA纯度:DNA的OD260/OD280一般为1.8左右。 OD260/OD280 ≈ 1.8:说明较纯; OD260/OD280 > 1.8:说明可能有RNA污染; OD260/OD280 < 1.8:说明可能有蛋白质污染。 五、注意事项 1. 叶片磨得越细越好。 2. 注意移液器的正确使用。 3. 由于植物细胞中含有大量的DNA酶,因此,除在抽提液中加入EDTA抑制酶的活性外,第一步的操作应迅速,以免组织解冻,导致细胞裂解,释放出DNA酶,使DNA降解。 六、结果与分析 1.植物DNA提取所用试剂的作用? 2.植物DNA提取的关键步骤有哪些? 3.植物DNA提取后的用途有哪些? 4.从化学结构、化学性质、存在场所以及功能等方面比较DNA和RNA的异同。

已基因组测序物种

已完成植物基因组测序情况(更新至2014年11月) 中文名拉丁名发表时间刊物科、属基因组大小拟南芥Arabidopsis thaliana 2000.12 Nature 十字花科、鼠耳芥属125M 水稻Oryza sativa. ssp. indica 2002.04 Science 禾本科、稻属466M 水稻Oryza sativa. ssp. japonica 2002.04 Science 禾本科、稻属466M 杨树Populus trichocarpa 2006.09 Science 杨柳科、杨属480M 葡萄Vitis vinifera 2007.09 Nature 葡萄科、葡萄属490M 衣藻Chlamydomonas reinhardtii 2007.01 Science 衣藻科、衣藻属130 M 小立碗藓Physcomitrella pattens 2008.01 Science 葫芦藓科、小立碗藓属480M 番木瓜Carica papaya 2008.04 Nature 番木瓜科、番木瓜属370M 百脉根Lotus japonicus 2008.05 DNA Res. 豆科472 Mb 三角褐指藻Phaeodactylum tricornutum 2008.11 Nature 褐指藻属27.4M 高粱Sorghum bicolor 2009.01 Nature 禾本科、高粱属730M 玉米Zea mays ssp. mays 2009.11 Science 禾本科、玉米属2300M 黄瓜Cucumis sativus 2009.11 Nature Genetics 葫芦科、黄瓜属350M 大豆Glycine max 2010.01 Nature 豆科、大豆属1100M 二穗短柄草Brachypodium distachyon 2010.02 Nature 禾本科、短柄草属260M 褐藻Ectocarpus 2010.06 Nature 水云属196M 团藻Volvox carteri 2010.07 Science 团藻属138M 蓖麻Ricinus communis 2010.08 Nature Biotechnology 大戟科、蓖麻属350M 小球藻Chlorella variabilis 2010.09 Plant Cell 小球藻科46M 苹果Malus × domestica 2010.09 Nature Genetics 蔷薇科、苹果属742M 森林草莓Fragaria vesca 2010.12 Nature Genetics 蔷薇科、草莓属240M 可可树Theobroma cacao 2010.12 Nature Genetics 梧桐科、可可属430-Mb 野生大豆Glycine soja 2010.12 PNAS 豆科、大豆属915.4 Mb 褐潮藻类Aureococcus anophagefferens 2011.02 PNAS 57M 麻风树Jatropha curcas 2010.12 DNA Res. 大戟科、麻风树属410M 卷柏Selaginella moellendorffii 2011.05 Science 卷柏属212M 枣椰树Phoenix dactylifera 2011.05 Nature biotechnology 棕榈科685M 琴叶拟南 芥 Arabidopsis lyrata 2011.05 Nature Genetics 十字花科、鼠耳芥属206.7 Mb 马铃薯Solanum tuberosum 2011.07 Nature 茄目、茄科、茄属844M 条叶蓝芥Thellugiella parvula 2011.08 Nature Genetics 盐芥属140M

人类基因组计划论文

人类基因组计划的重要性 “以破解人类遗传和生老病死之谜,解决人类健康问题为目的的人类基因组计划,对人类自身的生存和发展具有重要的意义。其旨在通过测定人类基因组DNA约3×109对核苷酸的序列,探寻所有人类基因并确定它们在染色体上的位置,明确所有基因的结构和功能,解读人类的全部遗传信息,使得人类第一次在分子水平上全面认识自我。” 基因作为掌控人类自身性状、特征和遗传的根本因子,以其简单的双螺旋结构、复杂的排列方式,使全世界范围内的每一个人类都有着相同的本质和不同的特质。基因的轰动范围极为广泛,我们身上的每一处体态特征几乎都由基因所决定,大到一个人的身高、外貌,小到一颗牙形的状,甚至是一根头发的直径都与基因有着密不可分的联系。众所周知,基因由五种碱基对以庞大的数量按一定顺序排列组合而成,其本质是核糖核苷酸和脱氧核糖核苷酸。在一个活跃的细胞内,特定的基因通过解旋、转录、翻译等一系列过程,来实现RN A、蛋白质等相应物质的合成,这些数以万计的不同形态不同功能的RN A、蛋白质在细胞内外发挥出他们自身的作用,从而达到控制人类机体、完善结构功能、协调组织器官运作的神奇效果。 由以上的事实我们可以看出,要想解开人类自身的秘密,就要从破解基因的密码做起。 人类基因组计划便应运而生了。该计划是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波1罗计划并称为三大科学计划。 “HDP(人类基因组计划)的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。”

基因组DNA提取步骤

基因组DNA提取步骤 1.从无水乙醇中取出少许组织(约50mg)加入干净灭菌的EP管中, 剪碎; 2.加入400ul 1%的SDS,8ul(20mg/ml)的蛋白酶K,充分浸润, 入55℃摇床(100转/分),期间振荡助溶至澄清(5-6h); 3.取出消化液,加入6mol/L的NaCl300ul,氯仿200ul,轻柔正反 颠倒,使其充分乳化,4℃13000转/分离心30min; 4.取出上清(约400ul),加入等体积氯仿抽提一次,轻柔颠倒后, 4℃13000转/分离心10min; 5.上清加入5μl RNaseA(10μg/μl), 37℃10分钟, 除去RNA(RNA对DNA的操作、分析一 般无影响,可省略该步骤)。 6.取上清加入等体积异丙醇,轻柔混匀后-20℃沉淀10min; 7.4℃13000转/分离心15min,弃上清; 8.用75%乙醇洗涤1-2次(1000ul,11000转/分离心2min),弃上 清; 9.冰冻无水乙醇洗涤1-2次(1000ul,11000转/分离心4min)弃上 清,自然晾干或烘干,DDW溶解,30-50ul。 基因组DNA的提取通常用于构建基因组文库、Southern杂交(包括RFLP)及PCR分离基因等。利用基因组DNA较长的特性,可以将其与细胞器或质粒等小分子DNA分离。加入一定量的异丙醇或乙醇,

基因组的大分子DNA即沉淀形成纤维状絮团飘浮其中, 可用玻棒将其取出,而小分子DNA则只形成颗粒状沉淀附于壁上及底部, 从而达到提取的目的。在提取过程中,染色体会发生机械断裂,产生大小不同的片段,因此分离基因组DNA时应尽量在温和的条件下操作,如尽量减少酚/氯仿抽提、混匀过程要轻缓, 以保证得到较长的DNA。一般来说,构建基因组文库, 初始DNA长度必须在100kb以上,否则酶切后两边都带合适末端的有效片段很少。而进行RFLP和PCR分析, DNA长度可短至50kb, 在该长度以上,可保证酶切后产生RFLP片段(20kb以下),并可保证包含PCR所扩增的片段(一般2kb以下)。 不同生物(植物、动物、微生物)的基因组DNA的提取方法有所不同; 不同种类或同一种类的不同组织因其细胞结构及所含的成分不同,分离方法也有差异。在提取某种特殊组织的DNA时必须参照文献和经验建立相应的提取方法, 以获得可用的DNA大分子。尤其是组织中的多糖和酶类物质对随后的酶切、PCR反应等有较强的抑制作用,因此用富含这类物质的材料提取基因组DNA时, 应考虑除去多糖和酚类物质。 本实验以水稻幼苗(禾本科)、李(苹果)叶子、动物肌肉组织和大肠杆菌培养物为材料,学习基因组DNA提取的一般方法。 从植物组织提取基因组DNA 一、材料 水稻幼苗或其它禾本科植物,李(苹果)幼嫩叶子。 二、设备 移液器,冷冻高速离心机,台式高速离心机,水浴锅,陶瓷研钵,50ml离心管(有盖)及5ml和 1.5ml离心管,弯成钩状的小玻棒。 三、试剂 1、提取缓冲液Ⅰ:100mmol/L Tris·Cl, pH8.0, 20mmol/L EDTA, 500mmol/L NaCl, 1.5% SDS。 2、提取缓冲液Ⅱ:18.6g葡萄糖,6.9g二乙基二硫代碳酸钠,6.0gPVP,240ul巯基乙醇,加水至300ml。 3、80:4:16/氯仿:戊醇:乙醇 4、RnaseA母液:配方见第一章。 5、其它试剂:液氮、异丙醇、TE缓冲液,无水乙醇、70%乙醇、3mol/L NaAc。 四、操作步骤: (一)水稻幼苗或其它禾木科植物基因组DNA提取 1. 在50ml离心管中加入20ml提取缓冲液Ⅰ, 60℃水浴预热。 2. 水稻幼苗或叶子5-10g, 剪碎, 在研钵中加液氮磨成粉状后立即倒入预热的离心管中, 剧烈摇动混匀, 60℃水浴保温30-60分钟(时间长,DNA产量高), 不时摇动。 3. 加入20ml氯仿/戊醇/乙醇溶液, 颠倒混匀(需带手套, 防止损伤皮肤),室温下静置5-10分钟, 使水相和有机相分层(必要时可重新混匀)。 4. 室温下5000rpm离心5分钟。 5. 仔细移取上清液至另一50ml离心管,加入1倍体积异丙醇,混匀,室温下放置片刻即出现絮状DNA沉淀。 6. 在1.5ml eppendorf中加入1ml TE。用钩状玻璃棒捞出DNA絮团,在干净吸水纸上吸干,转

模式植物拟南芥遗传应用综述

模式植物拟南芥遗传应用综述 摘要:拟南芥作为一种比较经典的“模式植物”,在研究相关的其他生物的生命活动规律中,因其结构简单,相似性高,而表现出其他生物无法比拟的优越性,成为了科学家们最理想的研究对象。本文分别从问题的提出、历史的发展、现状的分析和前景的预测四个方面对拟南芥在科学界的地位及作用进行了综合性的总结和叙述。 关键词:拟南芥;模式植物;遗传;应用 一、前言 纵观过去和现在,科学界对拟南芥的重视程度以及拟南芥在生物遗传学的地位有着巨大的差异。尤其是近几年来,科学界对拟南芥的热衷程度日渐加深,完全不同于90年代以前的冷淡。而且现在的科学家们对于拟南芥的研究方向是各种各样的,越来越广泛。本文就是对拟南芥在不同研究课题下所起的作用、在遗传应用上所表现的优越性进行一个总结性的综述,探讨产生此种现象的原因,从而得出此种作物在生物学上的大致研究方向,并作出相应的前景预测,让我们对它的研究潜力进行进一步的挖掘,让它的贡献更大化。此外,也希望通过本文,让大家对拟南芥在过去和现在的发展有一个更加清楚的了解,把握住大致的脉络,并对今后的研究提供相应的指导和帮助。 二、历史的发展: 虽然孟德尔以豌豆为实验材料开创了现代遗传学, 后来麦克林托克又研究了玉米, 发现了惊人的“跳跃基因”, 但总的来说, 这些植物都不是研究分子遗传学的良好材料。高等植物通常需要较大的种植面积, 特殊的条件, 而且繁殖周期长。更糟的是, 植物的基因组通常都很大(例如, 玉米的基因组比果蝇的大两个数量级), 使人们难以分离到特定的基因[1]。因此, 虽然K’Roberts早就认为植物是研究发育的良好系统,但迄今为止, 在研究植物的细胞分化和形态发生等方面一直进展迟缓。长期以来, 分子生物学家们一直希望能在植物中找到象动物中的黑腹果蝇(Drosophila me-lanogaster)那样繁殖快, 易于在实验室中培养,并能用分子生物学和遗传学技术进行广泛研究的实验材料,以便从根本上改变植物遗传学研究的长期落后状况。1985年4月13-19日在美国科罗拉多州召开的植物遗传学UCLA上, 科学家们宣布, 他们终于确定了植物王国中的“果蝇”—拟南芥,而这也奠定了拟南芥在将来时期的地位。 2.1拟南芥的研究进度以及介绍 拟南芥(Arabidopsis thaliana) 是一种极普通的草本植物,常用俗名鼠耳芥,是一种十字花科植物,广泛用于植物遗传学、发育生物学和分子生物学的研究,已成为一种典型的“模式”植物。近年来,植物科学中许多有价值的发现几乎都是以拟南芥为实验材料取得的,因此它被誉为植物界的“果蝇”。拟南芥具有以下主要特点:(1)形态个体小,高度只有30 cm左右;(2)生长周期快,从播种到收获种子一般只需6周左右;(3)种子多,每株每代可产生数千粒种子;(4)形态特征简单;(5)基因组小,只有5对染色体。早在1907年,Strasburger就利用拟南芥研究了染色体的连续性。他的学生Laibach于同年发现拟南芥间期核中的异染色质体的数目与其中期染色体数相同,这种现象在植物界中是比较少见的。拟南芥的染色体数目为2n=10,其

拟南芥基因克隆的策略与途径

拟南芥基因克隆的策略与途径 拟南芥(Arabidopsis thaliana)是一种模式植物,具有基因组小(125 Mbp)、生长周期短等特点,而且基因组测序 已经完成(The Arabidopsis Genomic Initiative, 2000)。同时,拟南芥属十字花科(Cruciferae),具有高等植物 的一般特点,拟南芥研究中所取得成果很容易用于其它高等植物包括农作物的研究,产生重大的经济效益,特别是十字 花科中还有许多重要的经济作物,与人类的生产生活密切相关,因此目前拟南芥的研究越来越多地受到国际植物学及各 国政府的重视。 基因(gene)是遗传物质的最基本单位,也是所有生命活动的基础。不论要揭示某个基因的功能,还是要改变某个基因的功 能,都必须首先将所要研究的基因克隆出来。特定基因的克隆是整个基因工程或分子生物学的起点。本文就基因克隆的 几种常用方法介绍如下。 1、图位克隆 Map-based cloning, also known as positional cloning, first proposed by Alan Coulson of the University of Cambridge in 1986, Gene isolated by this method is based on functional genes in the genome has a relatively stable loci, in the use of genetic linkage analysis or chromosomal abnormalities of separate groups will queue into the chromosome of a specific location, By constructing high-density molecular linkage map, to find molecular markers tightly linked with the aimed gene, continued to narrow the candidate region and then clone the gene and to clarify its function and biochemical mechanisms. 图位克隆(map-based clonig)又称定位克隆(positoinal cloning),1986年首先由剑桥大学的Alan Coulson提出。用该方法分离基因是根据功能基因在基因组中都有相对较稳定的基因座,在利用分离群体的遗传连锁分析或染色体异常将基因伫到染色体的1个具体位置的基础上,通过构建高密度的分子连锁图,找到与目的基因紧密连锁的分子标记,不断缩小候选区域进而克隆该基因,并阐明其功能和生化机制。 用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。近几年来随着拟南芥基因组测序工作的完成,各种分子标记的日趋丰富和各种数据库的完善,在拟南芥中克隆一个基因所需要的努力已经大大减少了(图1)。

人类后基因组计划及研究进展

人类后基因组计划及研究进展 摘要:2003年4月14日生命科学诞生了一个新的重要里程碑,人类基因组计划完成,后基因组时代正式来临。着重介绍了人类基因组计划的提出、目标与任务、实施与进展等方面的基本情况,讨论了后基因组时代的时间界定,分析展望了后基因组时代与人类基因组计划密切相关的生物信息学、功能基因组学、蛋白质组学、药物基因组学等几个重要研究领域。 关键词:人类基因组计划;研究进展 2003年4月14日,美国人类基因组研究项目首席科学家Collins F博士在华盛顿隆重宣布:人类基因组序列图绘制成功,人类基因组计划(human genome project,HGP)的所有目标全部实现。这标志“人类基因组计划”胜利完成和“后基因组时代”(post genome em,PGE)正式来l临,在举世庆祝“DNA双螺旋结构”提出50周年之际,生命科学诞生了一个新的里程碑。HGP被誉为可与“曼哈顿原子弹计划”、“阿波罗登月计划”相媲美的伟大系统工程,是人类第一次系统、全面地解读和研究人类遗传物质DNA的全球性合作计划。人类基因组序列图的成功绘制是科学史上最伟大的成就之一,奠定了人类认识自我的重要基石,推动了生命与医学科学的革命性进展。在后基因组时代,生命科学关注的范围越来越大,涉及的问题越来越复杂,采用的技术越来越高,取得的成就将越来越多,生命科学及其相关科学将大有作为。 1人类基因组计划的产生与目标 1984年12月,美国犹他大学的Wenter受美国能源部的委托,主持讨论了DNA重组技术及测定人类整个基因组DNA序列的意义.1985年6月,美国能源部提出“人类基因组计划”(Humangenome project,HGP)的初步草案.最早提出测定人类基因组序列的是美国科学家罗伯特·辛西默(Robert Sinshimer).1986年3月,美国的诺贝尔奖获得者雷纳多·杜尔贝柯石(Renato Dulbecco)在《科学》杂志上发表的短文中率先提出“测定人类的整个基因组序列”的主张[1],后经世界性的讨论取得共识.1987年,美国开始筹建“人类基因组计划”实验室.1988年,科学家开始讨论如何才能更快、更多、更好地研究与人类的生老病死有关的所有基因——全部的人类基因组.1989年,美国成立“国家人类基因组研究中心”,诺贝尔奖获得者、DNA分子双螺旋结构模型的提出者Jamse Wateson担任第一任主任.1990年10月,美国首先正式启动“人类基因组计划”(HGP),完成人类全部DNA分子核苷酸序列的测定.1993年,美国对这一计划做了修订,其中最重要的任务就是人类基因组的基因图构建与序列分析,需最优先考虑、必须保质保量完成的是DNA序列图.随后,英国、法国、日本、加拿大、前苏联、中国等许多国家积极响应,都开始了不同规模、各有特色 的人类基因组研究。 1999年12月1日,人类首次成功地完成人体染色体基因完整序列的测定.2000年6 月26日,六国科学家公布人类基因组工作框架图,成为人类基因组计划进展的一个重要里程碑.2001年2月12日,人类基因组图谱及初步分析结果首次公布.2003年4月15日,美、英、德、日、法、中6个国家共同宣布人类基因组序列图完成,人类基因组计划的所有目标全部实现,提前2年实现了目标。 2人类基因组计划的内容

相关主题
文本预览
相关文档 最新文档