当前位置:文档之家› SBR法污水处理工艺设计计算书

SBR法污水处理工艺设计计算书

SBR法污水处理工艺设计计算书
SBR法污水处理工艺设计计算书

SBR法污水处理工艺设计计算书

第一章课程设计任务书

一、课程设计目的和要求

本课程设计是水污染控制工程教学的重要实践环节,要求综合运用所学的有关知识,在设计中熟悉并掌握污水处理工艺设计的主要环节,掌握水处理工艺选择和工艺计算的方法,掌握平面布置图、高程图及主要构筑物的绘制,掌握设计说明书的写作规范。通过课程设计使学生具备初步的独立设计能力,提高综合运用所学的理论知识独立分析和解决问题的能力,训练设计与制图的基本技能。

二、课程设计内容

1、污水水量、水质

(1)设计规模

设计日平均污水流量Q=学号1 —25*8000

学号26 —48*3000 m3/d ;

设计最大小时流量QaF设计日平均污水流量/12 —学号*100m3/h

(2)进水水质

COD =600mg/L, BOD=300mg/L , SS = 300mg/L,NH-N = 35mg/L

2、污水处理要求

污水经过二级处理后应符合以下具体要求:

COD < 100mg/L,BOI5K 20mg/L,SS< 20mg/L,NHkN < 15mg/L。

3、处理工艺流程

污水拟采用学号1 —10活性污泥法

学号26—48生物膜法工艺处理。

4、气象资料

该市地处内陆中纬度地带,属暖温带大陆性季风气候。年平均气温9~13.2 C, 最热月平均气温

21.2~26.5 C,最冷月-5.0~-0.9 C。极端最高气温42C,极端最低气温-24.9 C 年日照时数2045小时。

多年平均降雨量577毫米,集中于7、8、9月,占总量的50~60%受季风环流影响,冬季多北风和西北风,

夏季多南风或东南风,市区全年主导风向为东北风,频率为18%年平均风速2.55 米/秒。

5、污水排水接纳河流资料:

该污水厂的出水直接排入厂区外部的河流,其最高洪水位(50年一遇)为380.0m,常水位为378.0m,枯水位为375.0m。

6厂址及场地现状

该镇以平原为主,污水处理厂拟用场地较为平整,交通便利。厂址面积为35000吊。厂区地面标高384.5~383.5米,原污水将通过管网输送到污水厂,来水管管底标高为8米(于地面下8米)。受纳水体最高洪水位6米,最低水位标高在-4米。

三、课程设计具体安排

1、确定污水处理厂的工艺流程,对处理构筑物选型做说明;

2、对主要处理设施(格栅、沉砂池、初沉池、污泥浓缩池)进行工艺计算(附必要的计算草图);

3、按扩初标准,画出平面布置图,内容包括表示出处理厂的范围,全部处理构筑物及辅助建筑物、主要

管线的布置、主干道及处理构筑物发展的可能性;

4、按扩初标准,画出高程布置图,表示出原污水、各处理构筑物的高程关系、水位高度以及处理出水的

出厂方式;

5、按扩初标准,画出主要处理构筑物的平面剖面构造图;

6编写设计说明书、计算书。

四、设计成果

1、设计计算说明书一份;

2、设计图纸:平面和高程布置图、构筑物平剖面。(共5张2号图纸)

第二章SBR 工艺流程方案的选择

2.1、SBR 工艺主要特点及国内外使用情况:

SBR 是序列间歇式活性污泥法的简称,与传统污水处理工艺不同,

SBF 技术

采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态 生化反应,静置理想沉淀替代传统的动态沉淀。它的主要特征是在运行上的有 序和间歇操作,SBF 技术的核心是SBF 反应池,该池集均化、初沉、生物降解、 二沉池等功能于一池,无污泥回流系统。经过这个废水处理工艺的废水可达到 设计要求,可以直接排放。处理后的污泥经机械脱水后用作肥料。

此工艺在国内外被引起广泛重视和研究日趋增多的一种污水生物处理新技 术,目前,已有一些生产性装置在运行之中。它主要应用在城市污水、工业废 水处理方面。

2.2、工艺流程图:

脱 水 机 房

图2.1 SBR 法处理工艺流程图

第三章设计计算

加氯间

'汎砂池

U 初沉池

n

-

接触池

污 泥 浓 缩 池

干泥外运 机

'■

S1

污泥

3.1原始设计参数

原水水量

Q=42 x 30000=126000m 3/d=5250m 3

/h

设计流量 Q max =126000- 12-42 x 100=6300m 3

/h=1.75m 3

/s 3.2格栅

3.2.1设计说明

格栅(见图3-1)一般斜置在进水泵站之前,主要对水泵起保护作用,截去 生活水中较大的悬浮物,它本身的水流阻力并不大,水头损失只有几厘米,阻 力主要产生于筛余物堵塞栅条,一般当格栅的水头损失达到

10~15厘米时就该

清洗。格栅按形状可分为平面格栅和曲面格栅两种,按格栅栅条间隙可分为粗 格栅(50~100mm ),中格栅(10~40mm ),细格栅(3~10mm )三种。

工作平台

根据清洗方法,格栅和筛网都可设计成人工清渣和机械清渣两类,当污染

物量大时,一般应采用机械清渣,以减少人工劳动量。本设计栅渣量大于0.2m 3

/d 为改善劳动与卫生条件,选用机械清渣,由于设计流量小,悬浮物相对较少, 采用一组中格栅,既可达到保护泵房的作用,又经济可行,设置一套带有人工 清渣格栅的旁通事故槽,便于排除故障。

栅渣量与地区特点,格栅的间隙大小,污水流量以及下水道系统的类型等 因素有关,在无当地资料时,可采用:

(1) 格栅间隙16~25mm ,处理0.10-0.05栅渣/103

m 3

污水

(2) 格栅间隙30~50mm ,处理0.03-0.01栅渣/103

m 3污水 栅渣的含水率一般

h?

hi

h

1

//

' 1 H

J

.

li 500(1 lytga r looo

h

____

图3-1格栅结构示意图

为80%,容重约为960kg/ m3。

栅条的断面形状有圆形、锐边矩形、迎水面为半圆形的矩

形、迎水面背水面均为半圆的矩形几种。而其中迎水面为半

圆形的矩形的栅条具有强度高,阻力损失小的优点。

3.2.2设计参数

(1)平均日流: Q d =126000 m 3/d =5250 m3/h =1.46( m 3/s )

(2)最大日流量:Q max =1.75( m3/s)

(3)设过栅流速:v=0.8m/s (取0.6~1.0m/s)

(4)通过格栅的水头损失:(取0.08~0.25m )

(5)栅前水深:h=0.4m (取0.3~0.5m)

(6)格栅安装倾角:60 (取 60°~75°)

(7)机械清渣设备:采用链条式格栅除污机

3.3.3设计计算

(1)中格栅(3个)

格栅间隙数n=Qmax5/^= 1.75“”6°56 个

3b h 3 0.03 0.8 0.4

Q max ----- 最大废水设计流量m3/S

――格栅安装倾角 60°~75°取60o h――栅前水

深m b――栅条间隙宽度取30mm

--- 过栅流速m/s

验算平均水量流速=0.80m/s 符合(0.65~1.0)

(2)栅渠尺寸

B2=s(n-1)+nb=0.02 (56-1)+0.03 56=2.78(m)

圆整取B2=3m

s――栅条宽度取0.02m

B 2――格栅宽度m

Q

1.75

Bi =_max =

3

=2(m)

h 0.8 0.4

B i ——进水渠宽 m

栅前扩大段

B 2 B-! 3 2

L 1= 2

- = 3 2 °=1.37(m)

2 tan 2 tan 20 渐宽部分的展开角,一般采用 20° 栅后收缩段 L 2=0.5 L i =0.67(m)

h L=L i +0.5+———

+1.0+L 2 tan

0.4 0.3

=1.37+0.5+ - +1.0+0.67

tan 60°

=3.94(m)

=0.12(m)

W= Q maxW 86400 =「75 0.03 864°0 =3 65 3/d) 1000K z ―

W i 取0.03,宜采用机械清渣。

设备宽度400mm,有效栅宽250mm ,有效栅隙30mm ,运动速度3m/min.

水流速度w 1m/s,安装角度60°,电机功率0.25kw,支座长度960mm ,格栅槽深 度500mm,格栅地面高度360mm

h 2

栅条总长度 h 2

栅前渠道超高,采用0.3m

(3) 水通过格栅的水头损失

设栅条断面为锐边矩形断面

s 彳 (b )3

=2.42 k=3 h 1

sin k

2.42

业 sin60

°

3

19.6

(4) 栅渣量(总)

1000 1.24

选用 NC —400型机械格栅三台。

3.3污水提升泵房

根据污水流量,泵房设计为L X B=1O X 10m。

提升泵选型:

采用LXB型螺旋泵

型号:LXB-1100

螺旋外径D: 1100mm

转速:48r/mi n

流量Q: 875m3/h

提升高度:5m

功率:15Kw

购买6台,5台工作,1台备用。

3.4泵后细格栅(4个)

公式计算同上

1.75 F'sin60 =181(个)

(1)格栅间隙数n = °噺^^=

3b h 4 0.005 0.9 0.5

其中b取5mm 取0.9m/s h取0.4m

反带验算得=1.0m/s 符合(0.6~1.0m/s)

(2)栅渠尺寸

B2=s( n-1)+nb=0.01 (181-1)+0.005 181=2.7(m)

圆整2.0m

栅条宽度s取0.01m

进水渠宽B1=Q max= 1.75/4 =0.97(m)

h 0.9 0.5

栅前扩大段L1 = = 2.7哼=1.50(m)

2tan 2ta n30

取30o

栅后收缩段L2=0.5 L仁0.75m

栅条总长度L L1 0.5丄』1.0 L2

tan60

0.5 0.3

1.50 0.5 - 1.0 0.75

tan 60o

fl

2

hi

sin k 2g

=0.50m

(4)每日栅渣量 W : W

Qma

86400

K z 1000

在b=5mm 情况下,设栅渣量为0.05m 3

/103

m 3

污水

XA/

1.75 86400 0.05 —c … 3“

W ---------------- 6.09 >0.2( m 3/d)

1.24 1000

采用机械清渣。选用NC- 300型机械格栅三台。

设备宽度300mm,有效栅宽200mm ,有效栅隙5mm ,运动速度3m/min,水流速度w 1m/s,安 装角度60o ,电机功率0.18kw,支座长度960mm ,格栅槽深度500mm,格栅地面高度360mm

3.5曝气沉砂池 3.5.1设计说明

沉砂池有4种:平流式、竖流式、曝气式、钟式和多尔式。普通平流沉砂 池的主要缺点是沉砂中含有15%勺有机物,使沉砂的后续处理难度增加。采用曝 气沉砂池(见图3-2 )可以克服这一缺点。

=4.2(m)

(3) 水通过格栅的水头损

=1.83

1.83 ( 0.01 0.00

4

)3 0.92

19.sin 60o

坡度=0.1-0.5

L

二亠斗■..集砂

1

■■■「槽.

图3-2曝气沉砂池示意图

长宽比可达5,当池长比池宽大得多时,应考虑设置横向挡板 1m 3

污水的曝气量为0.2m 3

空气

调节气量的闸门

向挡板

方向一致,出水方向应与进水方向垂直,并宜考虑设置挡板

(10)池内应考虑设消泡装置[7]

(1)池子总有效容积(V )设t=2min ,则

V Q max t 60

1.75 2 60

210

(2)水流断面积(A )设v ,=0.1m/s (水平流速),则

支管 扩散设备

3.5.2 设计参数

(1) 旋流速度应保持:0.25~0.3m/s (2) 水平流速为0.06~0.12 m/s (3) 最大流量时停留时间为1~3min

(4) 有效水深应为2~3m ,宽深比一般采用1~2

头部 支座

(5) (6) (7)空气扩散装置设在池的一侧,距池底约

0.6~0.9m,送气管应设置

(8)池子的形状应尽可能不产生偏流或死角,

在集砂槽附近可安装纵

(9)池子的进口和出口布置应防止发生短路,

进水方向应与池中旋流

3.5.3 设计计算

m 3

A=Q max = 1

^ =17.5(m 2) v 1

0.1

(3)池总宽度(B )设h 2 2.5m (设计有效水深),则

B=JA =l^=7(m) h 2

2.5

每格池子宽度(b )设n=2格,则

B 7

b B =-=3.5(m) n 2

池长(L )

L = V =型=12(m) A 17.5

每小时所需空气量(q )设d=0.2m 3/m 3 ( 1 m 3污水所需空气量),则

K z ――生活污水流量总变化系数

(8)每个沉砂斗容积(V 。)设每一分格有2个沉砂斗,则

7 3 V 0= 一=1.75( m 3

)

2 2

(9)沉砂斗各部分尺寸 设斗底宽a (=0.5m ,斗壁与水平面的倾角为55o

斗高h 3=0.35m ,沉砂斗上口宽:

a 斗+a 1 = 4+0.5=1.0(m) tan 55o

1.428

(5) (6)

q d Q max 3600 =0.2 1.75 3600=12

60(m 3/h )

(7)沉砂室所需容积(V )设T=2d (清除沉砂的间隔时间) ,则

式中,

30

\/_Q max X T 86400 1.75 30 2 86400

V= max

K z 106

6

1.24 10

7(m 3)

X --- 城市污水沉砂量[m 3

/106

m 3

(污水)]取

最终定沉砂斗容积:

V0 = h3 (2 a2 2aa12a:)

6

0.35 2 2 3

= (2 122 1 0.5 2 0.52)=0.2(m3)

6

(10)沉砂室高度(h3)采用重力排

砂,设池底坡度为0.06,坡向砂斗,则,

h3 = h3+0.06 2.65=0.35+0.159=0.5 (m)

(11)池总高度(H)设超高h1=0.3m,则H=h+h2+h3=0.3+2.5+0.5=3.3(m)

(12)进水渠道:设计中取进水渠道宽 B1=3m 水深H1=1m

贝U V =_^ 二143 =0.48 听。

B1H1 3 1 心

(13)出水装置:

出水采用沉砂池末端薄壁出水堰跌落出水,出水堰可保证沉砂池内水位标

高恒定,堰上水头0.2m。排水干管采用钢管,管径DN=1000mm

(14)排砂装置:

采用吸砂泵排砂,吸砂泵设置在沉砂斗内,借助空气提升将排出沉砂斗至

砂水分离器,吸砂泵DN=300mm

3.6、初沉池设计

本工艺采用选用辐流式沉淀池。

最大设计流量:Q max 1.75m3/s

Q 3600

3.6.1、沉淀部分有效面积:F ------------

q

式中:Q――设计流量,m3/s ;

2

q ----- 表面水力负荷,m3/(m h) ; (1.5?2.5),取2.0

1.75 3600 2

贝U,F 3150m

2.0

4 3150 “

则,D{-亦T 63m

3.6.3、沉淀池有效水深:h2 q t

式中:t ――沉淀时间,一般取1.0?3.0h ;设计中取3.0h

则h2 2.0 3.0 6m

3

Q —沉淀池设计流量,m / d;

沉淀池中悬浮物的去除率,% 一般取40%-60%

P ---- 污泥含水率,%

3

污泥密度,以1000kg/m计。

设计中取=60% P=97%采用重力排泥,两次清楚污泥间隔时间取1d,

、,100 200 0.4 126000 1 “ 3

V W 3336m

10 (100 97) 1000

辐流式沉淀池采用重力排泥,将污泥排入污泥斗,然后用静水压力将污泥

排出池外。

365、沉淀斗容积:

有效高度h5 (2 1)

tan 60°1.73m。

设计中选择圆形污泥斗, 污泥斗上口半径2m底部半径1m倾角600

1 2污泥斗容积乂§h5(a

2、aa〔)

校核沉淀池直径与水深之比, D/h, 63/6 10.5符合在6?12之间。

3.6.4、沉淀部分所需容积:V W

100c0 Q max

103 (100 P)

式中:V W初沉污泥量, m3/d ;

c o 进水中悬浮物质量浓度,mg/L;

式中:h5――污泥斗有效高度,m

a—污泥斗上口边长,m

a i ――污泥斗底部边长,m

I 2 2 3

贝U, V 1.73 (2 2 1 12) 4.04m3

3

1 2 2

沉淀池底部圆锥体体积V2 - h4(R Rr r )

3

式中:h4——沉淀池底部圆锥体高度,m

R ----- 沉淀池半径,m

r ----- 沉淀池底部中心圆半径,m设计中取r=1m

设池底径向坡度为0.05,则h4(31.5 1) 0.05 1.525m

贝U, V2 1 3.14 1.525 (31.5231.5 1 12) 1635.6m3

3 3

所以,沉淀斗总容积V 4.04 1635.6 1639.64m > 80 m,符合

3.6.6、沉淀池总高度:H h1 h2 h3

式中:h1——沉淀池超高,一般取0.3m;

h3 ――沉淀池缓冲层高度,一般采用0.3m;

贝U, H 0.3 6 0.3 1.525 1.73 9.855m

3.6.7、进水装置:

本工艺辐流式沉淀池采用池中心进水,通过配水花墙和稳流罩向池四周流动。进水管道采用钢管,管径DN=1000m,管内流速1.81m/s。

3.6.8、出水装置:

出水采用池末端薄壁出水堰跌落出水,出水堰可保证池内水位标

Q 2<

高恒定,堰上水头H ( ) 3

v2gmb,

式中:H---堰上水头(m ;

Q---沉淀池内设计流量(m/s);

m---流量系数,一般采用0.4?0.5

b2---堰宽(m,等于沉淀池宽度。

2

/ 1.525 “

则,H

( -------- )3=0.47m

0.5 2.14 ?? 2 9.8

出水堰自由跌落0.2m后进入出水渠,出水渠宽B2 2m水流流速V2 0.89 m/s,采用出水管道在出水槽中部与出水槽连接,出水管道

采用钢管,管径DN=1000m,管内流速V=1.81m/s。

排水干管管径:Qmax=1.525m3/s,取管径DN=1000mm流速

VS=1.81m/s。

3.6.9、排泥管:

沉淀池采用重力排泥,排泥管管径DN400m,排泥管伸入污泥斗底部,排泥静压头采用1.2m,将污泥排到池外集泥井内。

3.6.10、出水挡渣板:

浮渣用浮渣刮泥板收集,定期清渣,刮泥板装在刮泥机桁架的一侧,高出水面0.2m,在出水堰前设置浮渣挡板拦截浮渣,排渣管管径取为DN400mmn

3.7 SBF反应池

3.7.1设计说明

根据工艺流程论证,SBF法具有比其他好氧处理法效果好,占地面积小,投资省的特点,因而选用SBF法。SBR是序批式间歇活性污泥法的简称。该工艺由按一定时间顺序间歇操作运行的反应器组成。其运行操作在空间上是按序排列、间歇的。

污水连续按顺序进入每个池,SBR反应器的运行操作在时间上也是按次序排列的。SBR工艺的一个完整的操作过程,也就是每个间歇反应器在处理废水时的操作过程,包括进水期、反应期、沉淀期、排水排泥期、闲置期五个阶段,如图3-3。这种操作周期是周而复始进行的,以达到不断进行污水处理的目的。对于单个的SBR反应器来说,在时间上的有效控制和变换,即达到多种功能的要求,非常灵活。

进水期反应期沉淀期排水期闲置期

图3-3 SBR工艺操作过程

SBR X艺特点是:

(1)工程简单,造价低;

(2)时间上有理想推流式反应器的特性;

(3)运行方式灵活,脱N除P效果好;

⑷良好的污泥沉降性能;

(5)对进水水质水量波动适应性好;

(6)易于维护管理。

3.7.2 SBR反应池容积计算

处理要求:

表3-1处理要求

项目进水水质(mg/l) 出水水质(mg/l)

BOD 300 ^20

COD 600 W00

SS 300 <20

N H3 N 35 < 15

设计处理流量

3

V si V F V b =5250( m /h)

BOD5/COD cr=0.50

设SBR运行每一周期时间为8h,进水1.0h,反应(曝气)(4.0~5.0h)取4h, 沉淀2.0h,排水(0.5h~1.0h)取1h

周期数:

24

SBR处理污泥负荷设计为 N s0.4kgBOD 5/(kgMLSS d)

根据运行周期时间安排和自动控制特点,SBR反应池设置6个

(1)污泥量计算SBR反应池所需污泥量为

MLSS=MLVS S_QS^

0.75 0.75N s

3

=12600 (300 20) 10 36540 =121800[kg(干)]=121.8(t)

0.7 0.4 0.3

设计沉淀后污泥的SVI (污泥容积指数)=90ml/g,

(SBR工艺中一般取80~150)SVI在100以下沉降性能良好[9]。

则污泥体积为:

Vs=1.2 SVI MLSS=1.2 90 10-3 121800=13154.4(m3)

(2) SBR反应容积

SBR反应池容积V =V si V F V b

式中V si ――代谢反应所需污泥容积m3

V F--- 反应池换水容积(进水容积)m3

Vb -- 保护容积m3

126000 ,小LCLC/ 3、

V F = ----- 1.0 =5250(m

24

V s=13154.4m3,则单池污泥容积为V si =V^6=2192.4(m3;

贝U V =2192.4+5250+V b=7442.4+V b

(3) SBF反应池构造尺寸SBR反应池为满足运行灵活及设备安装需要,设计为长方

形,一端为进水区,另一端为出水区

SBR反应池单池平面(净)尺寸为50 30 m2(长比宽在11~21)

污水处理厂工艺的设计计算书

5000T 污水处理厂设计计算书 设计水量: 近期(取K 总=1.75):Q ave =5000T/d=208.33m 3/h=0.05787 m 3 /s Q max =K 总Q ave =364.58m 3/h=0.10127m 3 /s (截留倍数n=1.0)Q 合=n Q ave =416.67 m 3/h=0.1157m 3 /s 远期(取K 总=1.6):Q ave =10000T/d=416.67m 3/h=0.1157m 3 /s Q max =K 总Q ave =667m 3/h=0.185m 3 /s 一.粗格栅(设计水量按远期Q max =0.185m 3 /s ) (1)栅条间隙数(n ): 设栅前水深h=0.8m ,过栅流速v=0.6m/s ,栅条间隙b=0.015m ,格栅倾角a=75°。 °max sin 0.185sin 75=25Q n α==(个) (2)栅槽宽度(B ) B=S (n-1)+bn=0.01(25-1)+0.015*25=0.615m 二.细格栅(设计水量按远期Q max =0.185m 3 /s ) (1)栅条间隙数(n ): °max sin 0.185sin 60=430.003 2.20.6 Q n bhv α==??(个) (2)栅槽宽度(B ) B=S (n-1)+bn=0.01(43-1)+0.003*43=0.549m 三.旋流沉砂池(设计水量按近期Q 合=0.1157m 3 /s ),取标准旋流沉砂池尺寸。

四、初沉池(设计水量按近期Q 合=416.67 m 3/h =0.1157m 3 /s ) (1)表面负荷:q (1.5-4.5m 3 /m 2 ·h ),根据姜家镇的情况,取1.5 m 3 /m 2 ·h 。 面积2max 416.67 277.781.5 Q F m q = == (2)直径418.8F D m π = =,取直径D=20m 。 (3)沉淀部分有效水深:设t=2.4h , h2=qt=1.5*2.4=3.6m (4)沉淀部分有效容积: 2232*20*3.61130.44 4 V D h m π π '= = = 污泥部分所需的容积:设S=0.8L/(人·d ),T=4h , 30.8120004 1.610001000124 SNT V m n ??= ==?? 污泥斗容积:设r1=1.2m ,r2=0.9m ,a=60°,则 512()(1.8 1.5)60=0.52h r r tg tg α=-=-o ,取0.6m 。 222235 111220.6 ()(1.8 1.5 1.8 1.5) 5.143 3 h V r r r r m ππ= ++= +?+= (5)污泥斗以上圆锥体部分污泥容积:设池底径向坡度0.1,则 4()0.1(10 1.8)*0.10.82h R r m =-?=-=,取0.8m 222234 2110.8 ()(1010 1.8 1.8)101.523 3 h V R Rr r m ππ= ++= +?+= (6)污泥总容积: V 1+V 2=5.14+101.52=106.66m 3>1.6 m 3 (7)沉淀池总高度:设h 1=0.5m , H= 0.5+3.6+0.8+0.6=5.5m (8)沉淀池池边高度 H ′=0.5+3.6=4.1m

水污染课程设计汇本报告书

1 设计任务 1.1项目概况 某污水处理厂是某市污水处理的主要工程,位于某市大城区东南。主要服务围是该市中市区、东市区、西南郊的生活污水和东市区、西南郊的部分经初步处理但尚未达标的工业废水。服务人口约30万。 1.12 设计进出水质 城市混合污水平均水质 1.13 设计出水水质 由于该厂处理后的污水排进某河流,最终流进太湖流域。因太湖流域现在污染较为严重,为实现国务院的碧水计划,确保太湖湖水达标任务,该污水处理厂的排水必需达到以下指标: 1.2 设计要求 试根据该生产废水水质特点和排放要求,给出合理的废水处理流程,提供设计说明书和计算书,要求容完整、简洁明了、层次清楚、文理通顺、书写工整、装订整齐,还应计算准确,并附有计算草图,标注所计算的尺寸,要求线型分明、

比例准确、正确清晰,符合制图标准有关规定,同时提供一总平面布置图和一流程图(要求用CAD绘制A3图纸)。 具体要求: 1)请按照给定废水的水量、水质以及排放的水质要求,编写废水处理工程 初步设计方案,方案容包括: ?废水产生概况 ?设计依据和设计思路 ?方案比较和选择 ?工艺流程(框图) ?工艺流程说明 ?处理效果预测 ?各单元计算书 ?各建、构筑物尺寸 2)提供CAD设计的工艺流程图、平面图 1.3 废水处理工程设计计划安排 第15周: (1)星期一:设计动员、下达设计任务书; (2)星期二:搜集资料、阅读教材、确定工艺流程; (3)星期三、四、五:工艺设计计算(包括编写设计说明书草稿) ,设备结构设计计算(包括编写设计说明书草稿; (4)星期六:绘制平面布置图和工艺流程草图; (5)星期七:完成绘制平面布置图和工艺流程图;

厌氧池和DE氧化沟污水处理毕业设计计算书

X X 工业大学 毕业设计说明书 作者:XX 学号:XXXXXX 学院:土木工程学院 系(专业):给水排水工程 题目:我国水污染现状 及某市25万吨污水处理工程设计 指导者:XXX 讲师 评阅者: (姓名) (专业技术职务) 2016 年12 月

中文摘要

外文摘要

目录 中文摘要 (1) 外文摘要 (2) 1绪论 ................................................................................................................................. - 1 -1.1 污水处理厂的基础资料 ........................................................................................ - 1 -1.1.1设计资料 ................................................................................................................. - 1 -1.1.2水质特点 ................................................................................................................. - 1 -1.2我国水污染现状....................................................................................................... - 2 -1.3国内外研究现状....................................................................................................... - 4 -1.3.1研究现状 ................................................................................................................. - 4 -1.3.2处理工艺的比较.................................................................................................... - 5 - 1.4工艺流程的确定....................................................................................................... - 8 - 2 污水处理构筑物的设计计算................................................................................. - 10 -2.1 格栅........................................................................................................................... - 10 -2.1.1设计概述 ............................................................................................................... - 10 -2.1.2设计要点 ............................................................................................................... - 11 -2.1.3设计参数:........................................................................................................... - 12 -2.1.4设计计算 ............................................................................................................... - 12 -2.2 污水提升泵房设计计算 ...................................................................................... - 15 -2.2.1 泵房选择条件................................................................................................... - 15 -2.2.2 设计计算............................................................................................................ - 16 -2.3泵后细格栅的计算................................................................................................. - 17 -2.3.1设计参数:........................................................................................................... - 17 -2.3.2设计计算 ............................................................................................................... - 18 -

污水处理厂计算书

污水处理厂计算书 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

污水厂设计计算书 一、粗格栅 1.设计流量 a.日平均流量Q d =30000m 3/d ≈1250m 3/h=s=347L/s K z 取 b. 最大日流量 Q max =K z ·Q d =×30000m 3/d=42000 m 3/d =1750m 3/h=s 2.栅条的间隙数(n ) 设:栅前水深h=,过栅流速v=s,格栅条间隙宽度b=,格栅倾角α=60° 则:栅条间隙数4.319 .08.002.060sin 486.0sin 21=???== bhv Q n α(取n=32) 3.栅槽宽度(B) 设:栅条宽度s= 则:B=s (n-1)+en=×(32-1)+×32= 4.进水渠道渐宽部分长度 设:进水渠宽B 1=,渐宽部分展开角α1=20° 5.栅槽与出水渠道连接处的渐窄部分长度(L 2) m B B L 3.020tan 29.011.1tan 2221=? -=-=α 6.过格栅的水头损失(h 1) 设:栅条断面为矩形断面,所以k 取3 则:m g v k kh h 18.060sin 81 .929.0)02.0015.0(42.23sin 2234 201=?????===αε 其中ε=β(s/b )4/3

k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,m ε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=将β值代入β 与ε关系式即可得到阻力系数ε的值 7.栅后槽总高度(H) 设:栅前渠道超高h 2= 则:栅前槽总高度H 1=h+h 2=+= 栅后槽总高度H=h+h 1+h 2=++= 8.格栅总长度(L) L=L 1+L 2+++ H 1/tan α=++++tan60°= 9. 每日栅渣量(W) 设:单位栅渣量W 1=栅渣/103m 3污水 则:W 1=05.01000 86400347.010********??=??W Q =m 3d 因为W> m 3/d,所以宜采用机械格栅清渣及皮带输送机或无轴输送机输送栅渣 二、细格栅 1.设计流量Q=30000m 3/d ,选取流量系数K z =则: 最大流量Q max =×30000m 3/d=s 2.栅条的间隙数(n ) 设:栅前水深h=,过栅流速v=s,格栅条间隙宽度e=,格栅倾角α=60° 则:栅条间隙数69.1049 .08.0006.060sin 486.0sin 21=???==ehv Q n α(n=105) 设计两组格栅,每组格栅间隙数n=53

污水处理厂课程设计设计说明书及方案(模版)(参考模板)

1 概述 1.1 工程概况 依据城市总体规划,华东某市在城西地区兴建一座城市污水处理厂,以完善该地区的市政工程配套,控制日益加剧的河道水污染,改善环境质量。该城市现状叙述如下: 1、2号居住区人口3万,污水由化粪池排入河道;3、4号居住区人口5万,正在建设1年内完成;5号居住区人口4.5万,待建,2年后动工,建设周期2年。还有部分主要公共建筑,宾馆5座,2000个标准客房;医院2座,1500张床。以上排水系统均采用分流制系统。同时新区内还有部分排污工厂:电子厂每天排水1500m3,BOD5污染负荷为3000人口当量;食品厂每天排出污水量500 m3,污染负荷为1500人口当量。 旧城区原仅有雨水排水系统,污水排水系统的改造和建设工程计划在10年内完成,届时整个排水区域服务人口将达到18万。 依据上述情况,整个工程划分为近期和远期两个建设阶段,现在实施的工程为近期建设。近期建设周期大概在3年左右,设计服务范围应该包括新区5个已建和待建的居住区、新区内部分主要公共建筑以及2个工厂。依据环保部门以及排放水体的状况,排放水要求达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级B标准。 1.2 设计依据 《城镇污水处理厂污染物排放标准》(GB 18918-2002) 《室外排水设计规范》(GB50101) 《城市污水处理工程项目标准》 《给水排水设计手册》,第5册城镇排水 《给水排水设计手册》,第10册技术经济 城市污水处理以及污染物防治技术政策(2002) 污水排入城市下水道水质标准CJ3082-1999 地表水环境质量标准GB3838-2002 城市排水工程规划规范GB50381-2000 1.3设计任务和范围 (1)收集相关资料,确定废水水量水质及其变化特征和处理要求; (2)对废水处理工艺方案进行分析比较,提出适宜的处理工艺方案和工艺流程; (3)确定为满足废水排放要求而所需达到的处理程度; (4)结合水质水量特征,通过经济技术分析比较,确定各处理构筑物的型式; (5)进行全面的处理工艺设计计算,确定各构筑物尺寸和设备选型; (6)进行废水处理站平面布置及主要管道的布置和高程计算; (7)进行工程概预算,说明废水处理站的启动运行和运行管理技术要求 2 原水水量与水质和处理要求: 2.1 原水水量与水质 一期工程: Q=36000m3/d

污水处理基本计算公式

污水处理基本计算公式 水处理公式是我们在工作中经常要使用到的东西,在这里我总结了几个常常用到的计算公式,按顺序分别为格栅、污泥池、风机、MBR、AAO进出水系统以及芬顿、碳源、除磷、反渗透、水泵和隔油池计算公式,由于篇幅较长,大家可选择有目的性的观看。 格栅的设计计算 一、格栅设计一般规定 1、栅隙 (1)水泵前格栅栅条间隙应根据水泵要求确定。 (2) 废水处理系统前格栅栅条间隙,应符合下列要求:最大间隙40mm,其中人工清除25~40mm,机械清除16~25mm。废水处理厂亦可设置粗、细两道格栅,粗格栅栅条间隙50~100mm。 (3) 大型废水处理厂可设置粗、中、细三道格栅。 (4) 如泵前格栅间隙不大于25mm,废水处理系统前可不再设置格栅。 2、栅渣 (1) 栅渣量与多种因素有关,在无当地运行资料时,可以采用以下资料。 格栅间隙16~25mm;0.10~0.05m3/103m3 (栅渣/废水)。 格栅间隙30~50mm;0.03~0.01m3/103m3 (栅渣/废水)。

(2) 栅渣的含水率一般为80%,容重约为960kg/m3。 (3) 在大型废水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。 3、其他参数 (1) 过栅流速一般采用0.6~1.0m/s。 (2) 格栅前渠道水流速度一般采用0.4~0.9m/s。 (3) 格栅倾角一般采用45°~75°,小角度较省力,但占地面积大。 (4) 机械格栅的动力装置一般宜设在室,或采取其他保护设备的措施。 (5) 设置格栅装置的构筑物,必须考虑设有良好的通风设施。 (6) 大中型格栅间应安装吊运设备,以进行设备的检修和栅渣的日常清除。 二、格栅的设计计算 1、平面格栅设计计算 (1) 栅槽宽度B

污水处理场设计计算书

第二篇设计计算书 1.污水处理厂处理规模 1.1处理规模 污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。 1.2污水处理厂处理规模 污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。最高日水量为生活污水最高日设计水量和工业废水的总和。 Q设= Q1+Q2 = 5000+5000 = 10000 m3/d 总变化系数:K Z=K h×K d=1.6×1=1.6 2.城市污水处理工艺流程 污水处理厂CASS工艺流程图 3.污水处理构筑物的设计 3.1泵房、格栅与沉砂池的计算 3.1.1 泵前中格栅 格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。 3.1.1.1 设计参数:

(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ; (4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个 max sin Q n bhv α= 式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ; (2)栅槽宽度B ,m 取栅条宽度s=0.01m B=S (n -1)+bn (3)进水渠道渐宽部分的长度L 1,m 式中,B 1-进水渠宽,m ; α1-渐宽部分展开角度,(°); (4)栅槽与出水渠道连接处的渐窄部分长度L 2,m (5)通过格栅的水头损失h 1,m 式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ; k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3; 1 112tga B B L -= 1 25.0L L =αε sin 22 01g v k kh h ==

污水处理厂课程设计书

广州大学市政技术学院课程设计书 课程设计名称:某城市污水处理厂设计 系部环境工程系 专业 14环境 班级 14环工 姓名邓敏艳 指导教师王昱 2016 年 5 月 30 日

目录 一、课程设计内容说明 (3) 二、设计原始数据资料 (3) (一)城镇概况 (3) (二)工程设计规模: (4) (三)厂区附近地势资料 (4) (四)气象资料 (5) (五)水文资料 (5) 三、课程设计基本要求 (6) 四、课程设计 (6) (一)、计算设计流量 (6) (二)、计算设计格栅 (6) (二)、沉砂池 (9) (三)、曝气池 (10) 1、曝气池的计算与各个部位尺寸的确定 (10) 2、曝气系统的计算与设计 (12) 3、供气量的计算 (13) 4.空气管系统计算 (14) (四)、二沉池设计 (19) 4.1、二沉池池体计算 (19) 4.2、二次沉淀池污泥区的设计 (20) 4.3、二沉池总高度: (21) 五、污水处理厂平面布置图 (22) 六、污水处理厂的高程布置 (22) 6.1、水力损失的计算 (22) 6.1.1、构筑物水力损失表: (22) 6.1.2、污水管道水力计算表: (22) 6.2、构筑物水面标高计算表: (23) 6.3、污水处理厂的高程布置 (23) 七、参考文献资料 (24) 八、总结 (24)

一、课程设计内容说明 进行某城镇污水处理厂的初步设计,其任务包括: 1、根据所给的原始资料,计算进厂的污水设计流量; 2、根据水体的情况、地形和上述计算结果,确定污水处理方法、流程及有关处理构筑物; 3、对各构筑物进行工艺设计计算,确定其型式、数目与尺寸; 4、进行各处理构筑物的总体布置和污水流程的高程设计; 5、设计说明书的编制。 二、设计原始数据资料 (一)城镇概况 该城市地处东南沿海,北回归线横贯市区中部,该市在经济发展的同时,城市基础设施的建设未能与经济协同发展,城市污水处理率仅为3.4%,大量的污水未经处理直接排入河流,使该城市的生态环境受到严重的破坏。为了把该城市建设成为经济繁荣、环境优美的现代化城市,筹建该市的污水处理厂已迫在眉睫。该城镇计划建设污水处理厂一座,并已获上级计委批准。 目前,城镇面积约28Km2,根据城镇总体规划,城镇面积40Km2,其出水进入B江,B江属地面水Ⅲ类水体,要求排入的污水水质执行《污水综合排放标准》(GB18918-2002)中的一级标准中的B类标准,

sbr工艺计算

sbr工艺计算 日平均流量:Q=10000m3/d 水质: 参数选取 3.1 运行参数 生物池中活性污泥浓度: XVSS=1400mgMLVSS/l 挥发性组分比例: fVSS=0.7(一样0.7~0.8) 3.2 碳氧化工艺 污泥理论产泥系数: Y=0.6 mgVSS/mgBOD5 (范畴0.4~0.8,一样取0.6) 20℃时污泥自身氧化系数: Kd(20)=0.06 1/d (范畴0.04~0.075,一样取0.06) 3.3 硝化工艺参数 硝化菌在15℃时的最大比生长速率: μm(15) =0.47 1/d (范畴0.4~0.5,一样取0.47或0.45) 好氧池中溶解氧浓度: DO=2.0 mg/l NH4-N的饱和常数(T=Tmin=12℃): KN=10(0.051×T-1.158)=0.28 mg/l 硝化菌的理论产率系数: YN=0.15 mgVSS/mgNH4-N (范畴0.04~0.29,一样取0.15)

20℃时硝化菌自身氧化系数: KdN(20)=0.04 1/d (范畴0.03~0.06,一样取0.04) 安全系数: FS=2.5 (范畴1.5~4,一样取2.5) 氧的饱和常数: KO=1.0 mg/l (范畴0.25~2.46,一样取1.0) 二. 好氧池工艺设计运算 1. 参数修正 Kd (Tmin)=Kd(20)×1.05(Tmin-20)=0.041 1/d μm=μm(15)×e0.098(Tmin-15)×[1-0.833×(7.2-pH)]×[DO/(DO+KO)] =0.331 1/d KdN (Tmin)=KdN(20)×1.05(Tmin-20)=0.027 1/d 2.运算设计泥龄 最大基质利用率: k’=μm/YN=2.21 mgBOD5/(mgVSS﹒d) 最小硝化泥龄: tcmin=1/(YN×k’-KdN)=3.29 d 设计泥龄: tc=Fs×tcmin=14.8 d 污泥负荷 硝化污泥负荷: Un=(1/tc+KdN)/YN=0.63 mgNH4-N/(mgVSS﹒d) 出水氨氮浓度: 由UN=k’×[Ne/(KN+Ne)] 得Ne=UN×KN/(k’-UN)=0.11mg/l 碳氧化污泥负荷: US=(1/tc+Kd)/Y=0.18 mgBOD5/(mgVSS﹒d) 好氧池容积运算 BOD氧化要求水力停留时刻:

某市污水处理厂课程设计计算表

某城镇污水处理厂计算表 1.流量和水质的计算 生活污水设计流量:查《室外给水设计规范》中的综合生活用水定额,生活污水平均流量取252L/(人·d);则25万人生活污水量:252×25×104=63000 m 3/d;内插法求得总变化系数为K 总=1.35;则最大流量Q m ax =1.35×63000=85050 m 3/d。 工业废水量:540+1300+4200+2000+5000=13040 m3/d; K 总=K 时 =1.3;则工业 废水最大流量为13040×1.3=16952 m3/d。 总设计流量为16952+85050=102002 m3/d=1.182 m3/s。 进水水质: 生活污水进水水质:查《室外排水设计规范》BOD 5 可按每人每天25——50g 计算,取25g/(人·d);SS可按每人每天40——65g计算,取40 g/(人·d);总氮可按每人每天5——11g计算,取11 g/(人·d) ;总磷可按每人每天0.7——1.4g 来计算,取0.7g/(人·d)。则BOD 5 =99mg/L; SS=159 mg/L; COD= BOD 5 /0.593=167mg/L.(0.593值的来源:重庆市工学院 建筑系.城市污水BOD 5 与COD关系讨论) 工业废水进水水质: 注:(1)表中值为日平均值 (2)工业废水时变化系数为1.3 (3)污水平均水温:夏季25度,冬季10度 (4)工业废水水质不影响生化处理。

2.距污水处理厂下游25公里处有集中给水水源,在此段河道内无其他污水排放口。 河水中原有的BOD 5与溶解氧(夏季)分别为2与6.5mg/l 则BOD 5= 5000 2000420013005405000 320200048142001851300500540105++++?+?+?+?+?=310 mg/L ; COD= 5000 2000420013005405000 4782000857420049610001300540180++++?+?+?+?+?=582 mg/L ; SS= 50002000420013005405000 20020001311001300540410++++?+?+?+?=124 mg/L ; 油=50002000420013005404200 36++++?=12 mg/L 。 综合污水水质: BOD 5=1182 196 31099986?+?=134mg/L ; COD=1182 196582167986?+?=236mg/L ; SS=1182 196124159986?+?=153 mg/L ; 油=118219612?=2 mg/L 2.粗格栅: 采用回转式机械平面格栅。 设计参数: 格栅槽总宽度B : B=S(n-1)+b ·n S ——栅条宽度,m b ——栅条净间隙,m n ——格栅间隙数。n 可由n= v h b Q ··sin max α 确定 Q m ax ——最大设计流量,m 3/s; b ——栅条间隙,m

10万方-城镇生活污水处理计算书

工艺计算书

1设计总说明 (3) 工程项目概况 (3) 进水水质及处理目标 (3) 污水处理工艺流程 (3) 污泥处理工艺流程 (3) 污染物预期去除率 (4) 2建设规模 (4) 3粗格栅计算 (5) 4集水井计算 (6) 集水井提升泵选型 (6) 集水井有效容积 (6) 集水井尺寸设计 (6) 5细格栅计算 (6) 6沉砂池计算 (8) 7初沉池计算 (9) 8A2/O池计算 (11) 9二沉池计算 (17) 10消毒接触池计算 (19) 11污泥池计算 (19) 12脱水间计算 (20)

1设计总说明 1.1工程项目概况 处理规模:10万吨/日。 处理对象:本项目处理对象为生活污水。 1.2进水水质及处理目标 本工程污水进水水质指标如下: 本项目处理后的尾水污染物排放标准执行(GB18918-2002)中一级A标准。各主要指标如下: 注:括号外数值为水温>12℃时的控制指标,括号内数值为水温≤12℃时的控制指标。 1.3污水处理工艺流程 粗格栅→集水井→细格栅→沉砂池→初沉池→A2/O池→二沉池→消毒池排放 1.4污泥处理工艺流程 污泥→污泥浓缩池→污泥压滤机脱水→干泥外运处置

1.5污染物预期去除率 2建设规模 本污水处理厂建设规模为10万m3/d。 根据《室外排水设计规范》(GB50014-2006)污水处理厂的进水流量总变化系数表,采用内插法得本项目流量总变化系数Kz,本工程设计污水流量为:平均流量Q:Q=100000t/d≈100000m3/d=4167 m3/h=1.157m3/s 设计流量Q max :Q max =130000 t/d≈130000 m3/d=5417m3/h= m3/s

SBR工艺设计说明书

前言 随着科学技术的不断发展,环境问题越来越受到人们的普遍关注,为保护环境,解决城市排水对水体的污染以保护自然环境、自然生态系统,保证人民的健康,这就需要建立有效的污水处理设施以解决这一问题,这不仅对现存的污染状况予以有效的治理,而且对将来工、农业的发展以及人民群众健康水平的提高都有极为重要的意义,因此,城市排水问题的合理解决必将带来重大的社会效益。 第一章绪论 1.1、本次课程设计应达到的目的: 本课程设计是水污染控制工程教学的重要实践环节,要求综合运用所学的有关知识,在设计中熟悉并掌握污水处理工艺设计的主要环节,掌握水处理工艺选择和工艺计算的方法,掌握平面布置图、高程图及主要构筑物的绘制,掌握设计说明书的写作规范。通过课程设计使学生具备初步的独立设计能力,提高综合运用所学的理论知识独立分析和解决问题的能力,训练设计与制图的基本技能。1.2、本课程设计课题任务的内容和要求: m/3,进水水质如下:某城镇污水处理厂设计日平均水量为20000d ⑴、污水处理要达到《城镇污水处理厂污染物排放标准》中的一级B标准。

⑵、生化部分采用SBR工艺。 ⑶、来水管底标高446.0m.受纳水体位于厂区南侧150m。50年一遇最高水位448.0m。 ⑷、厂区地势平坦,地坪标高450.0m。厂址周围工程地质良好,适合修建城市污水处理厂。 ⑸、所在地区平均气压730.2mmHg柱,年平均气温13.1℃,常年主导风向为东南风。 具体设计要求: ⑴、计算和确定设计流量,污水处理的要求和程度。 ⑵、污水处理工艺流程选择(简述其特点及目前国内外使用该工艺的情况即可) ⑶、对各处理构筑物进行工艺计算,确定其形式、数目与尺寸,主要设备的选取。 ⑷、水力计算,平面布置设计,高程布置设计。

污水处理厂课程设计说明书(附计算书)

目录 1工程概述 1.1 设计任务与设计依据 1.2 城市概况及自然条件 1.3 主要设计资料 2 污水处理厂设计 2.1污水量与水质确定 2.2 污水处理程度的确定 2.3 污水与污泥处理工艺选择 2.4处理构筑物的设计 按流程顺序说明各处理构筑物设计参数的选择,介绍各处理构筑物的数量、尺寸、构造、材料及其特点,说明主要设备的型号、规格、技术性能与数量等。 2.5污水处理厂平面与高程布置 2.6泵站工艺设计 3 结论与建议 4 参考文献 附录(设计计算书)

第一部分设计说明书 第一章工程概述 1.1设计任务、设计依据及原则 1.1.1设计任务 某城镇污水处理厂处理工艺设计。 1.1.2设计依据 ①《排水工程(下) 》(第四版),中国建筑工业出版社,2000年 ②《排水工程(上) 》(第四版),中国建筑工业出版社,2000年 ③《给水排水设计手册》(第二版),中国建筑工业出版社,2004年2月(第 一、五、十一册) ④《室外排水设计规范》(GB 50014—2006) 1.1.3编制原则 本工程的编制原则是: a.执行国家关于环境保护的政策,符合国家的有关法规、规范及标准。 b.根据招标文件和设计进出水水质要求,选定污水处理工艺,力求技术先进成熟、处理效果好、运行稳妥可靠、高效节能、经济合理,确保污水处理效果,减少工程投资及日常运行费用。 c.在污水厂征地范围内,厂区总平面布置力求在便于施工、便于安装和便于维修的前提下,使各处理构筑物尽量集中,节约用地,扩大绿化面积,并留有发展余地。使厂区环境和周围环境协调一致。 d.污水处理厂的竖向布置力求工艺流程顺畅、合理,污水、污泥处理设施经一次提升后达到工艺流程要求,处理后污水自流排入排放水体。 e.单项工艺构、建筑物设计力求可靠、运行方便、实用、节能、省地、经济合理,尽量减少工程投资,降低运行成本。 f.妥善处理、处置污水处理过程中产生的栅渣、污泥,避免产生二次污染。 g.为确保工程的可靠性及有效性,提高自动化水平,降低运行费用,减少日常维护检修工作量,改善工人操作条件,本工程设备选型考虑采用国内先进、可靠、高效、运行维护管理简便的污水处理专用设备,同时,积极稳妥地引进国外先进设备。 h.采用现代化技术手段,实现自动化控制和管理,做到技术可靠、经济合理。 i.为保证污水处理系统正常运转,供电系统需有较高的可靠性,采用双回路电源,且污水厂运行设备有足够的备用率。 j.厂区建筑风格力求统一,简洁明快、美观大方,并与厂区周围景观相协调。 k.积极创造一个良好的生产和生活环境,把滨湖新城污水处理厂设计成为现代化的园林式工厂。

SBR反应池的设计计算

. . 资 第3章 设计计算 3.1 原始设计参数 原水水量 Q =5000m 3/d=208.33m 3/h=57.87L /s ,取流量总变化系数 K T =1.72,设计流量 Q max = K T Q =0.05787×1.72=0.1m 3/s 。 3.2 格栅 3.2.1 设计说明 格栅一般斜置在进水泵站之前,主要对水泵起保护作用,截去生活水中 较大的悬浮物,它本身的水流阻力并不大,水头损失只有几厘米,阻力主要产生于筛余物堵塞栅条,一般当格栅的水头损失达到10~15厘米时就该清洗。格栅按形状可分为平面格栅和曲面格栅两种,按格栅栅条间隙可分为粗格栅(50~100mm ),中格栅(10~40mm ),细格栅(3~10mm )三种。 根据清洗方法,格栅和筛网都可设计成人工清渣和机械清渣两类,当污 染物量大时,一般应采用机械清渣,以减少人工劳动量。由于设计流量小,悬浮物相对较少,采用一组中格栅,既可达到保护泵房的作用,又经济可行,设置一套带有人工清渣格栅的旁通事故槽,便于排除故障。 栅条的断面形状有圆形、锐边矩形、迎水面为半圆形的矩形、迎水面背 水面均为半圆的矩形几种。而其中迎水面为半圆形的矩形的栅条具有强度高,阻力损失小的优点。 3.2.2 设计参数 (1)变化系数:K T =1.72; (2)平均日流量:Q d =5000m 3/d ; (3)最大日流量:Q max =0.1 m 3/s ; (4)设过栅流速:v =0.9m/s ; (5)栅前水深:h =0.4m ;

. . 资 (6)格栅安装倾角:α=60°。 3.2.3 设计计算 (1)格栅间隙数: 13n ==≈ (3—1) Q max ——最大废水设计流量m 3/s ?——格栅安装倾角, 取60° h ——栅前水深 m b ——栅条间隙宽度,取21mm v ——过栅流速 m/s (2)栅渠尺寸: B 2=s(n-1)+nb=0.01×(13-1)+13×0.021=0.403m (3—2) s ——栅条宽度 取0.01m B 2——格栅宽度 m max 10.1 0.321m 0.780.4Q B v'h ===? (3—3) B 1——进水渠宽 m v’——进水渠道的流速 设为0.78m/s 栅前扩大段: 2 110.403 0.321 0.12m 2tan 2tan 20B B L α--===?? (3—4) α——渐宽部分的展开角,一般采用20 栅后收缩段:L 2=0.5×L 1=0.06m (3—5) 通过格栅的水头损失h 1:

A2O五万吨污水处理厂课程设计

目录 第一章设计任务及设计资料 (1) 1.1设计任务 (1) 1.2设计资料 (1) 1.2.1 污水来源 (1) 1.2.2污水水质水量 (1) 1.2.3工程设计要求 (1) 1.2.4处理工艺 (1) 第二章设计说明书 (3) 2.1去除率的计算 (3) 2.1.1溶解性BOD5的去除率 (3) 2.1.2 CODcr的去除率 (3) 2.1.3 氨氮的去除率 (4) 2.1.4 TP的去除率 (4) 2.1.5 SS的去除率 (4) 2.2污水处理构筑物的设计.............................................4_Toc268174000

2.2.3细格栅 (5) 2.2.4沉砂池 (5) 2.2.5初沉池 (6) 2.2.6厌氧池 (7) 2.2.7缺氧池 (7) 2.2.8曝气池 (7) 2.2.9二沉池 (7) 2.3污水厂平面及高程置 (8) 2.3.1平面布置 (8) 2.3.2管线布置 (8) 2.3.3高程布置 (9) 第三章污水厂设计计算书 (10) 3.1污水处理构筑物设计算 (10) 3.1.1粗格栅 (10) 3.1.2进水泵房 (11) 3.1.3细格栅 (15) 3.1.4沉砂池 (16) 3.1.5初沉池 (18)

3.1.7缺氧池 (20) 3.1.8曝气池 (20) 3.1.9二沉池 (26)

第一章:设计任务及设计资料 1.1 设计任务 某城市污水处理厂工程工艺设计。 1.2设计资料 1.2.1 污水来源 生活污水和工业废水;项目服务面积8.70km 2,服务人口约9万人。 1.2.2污水水质水量 污水处理水量:50000m3/d ; 污水进水水质:CODcr 300mg/L ,BOD5 150 mg/L ,氨氮40mg/L ,TP 5mg/L , SS 200 mg/L 。 1.2.3工程设计要求 出水要求符合《城镇污水处理厂污染物排放标准》GB18918-2002中的二级标准,见表。 1.2.4 处理 工艺 本工程采用生物脱氮除磷的2/A O 工艺。 这种工艺的特点是利用原污水中可生化降解物质作为碳源,在去除污水中的指标 COD cr BOD 5 NH 4+-N TP SS 数值(mg/L ) 100 30 25 3 30

污水处理厂计算书

污水厂设计计算书 一、粗格栅 1、设计流量 a、日平均流量Q d=30000m3/d≈1250m3/h=0、347m3/s=347L/sK z 取1、40 b、最大日流量 Q max =K z ·Q d =1、40×30000m3/d=42000 m3/d =1750m3/h=0、48 6m3/s 2、栅条得间隙数(n) 设:栅前水深h=0、8m,过栅流速v=0、9m/s,格栅条间隙宽度b=0、02m,格栅倾角α=60° 则:栅条间隙数(取n=32) 3、栅槽宽度(B) 设:栅条宽度s=0、015m 则:B=s(n-1)+en=0、015×(32-1)+0、02×32=1、11m 4、进水渠道渐宽部分长度? 设:进水渠宽B 1=0、9m,渐宽部分展开角α 1 =20° 5、栅槽与出水渠道连接处得渐窄部分长度(L 2 ) 6、过格栅得水头损失(h 1 ) 设:栅条断面为矩形断面,所以k取3 则 其中ε=β(s/b)4/3 k—格栅受污物堵塞时水头损失增大倍数,一般为3 h —-计算水头损失,m ε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2、4 将β值代入β与ε关系式即可得到阻力系数ε得值 7、栅后槽总高度(H)

设:栅前渠道超高h 2 =0、4m 则:栅前槽总高度H 1=h+h 2 =0、8+0、4=1、2m 栅后槽总高度H=h+h 1+h 2 =0、8+0、18+0、4=1、38m 8、格栅总长度(L) L=L 1+L 2 +0、5+1、0+ H 1 /tanα=0、3+0、3+0、5+1、0+1、2/tan 60°=2、80m 9、每日栅渣量(W) 设:单位栅渣量W 1 =0、05m3栅渣/103m3污水 则:W 1 ==1、49/d 因为W>0、2 m3/d,所以宜采用机械格栅清渣及皮带输送机或无轴输送机输送栅渣 二、细格栅 1、设计流量Q=30000m3/d,选取流量系数K z =1、40则: 最大流量Q max =1、40×30000m3/d=0、486m3/s 2、栅条得间隙数(n) 设:栅前水深h=0、8m,过栅流速v=0、9m/s,格栅条间隙宽度e=0、006m,格栅倾角α=60° 则:栅条间隙数(n=105) 设计两组格栅,每组格栅间隙数n=53 3、栅槽宽度(B) 设:栅条宽度s=0、015m 则:B 2 =s(n—1)+en=0、015×(53—1)+0、006×53=1、1m 所以总槽宽为1、1×2+0、2=2、4m(考虑中间隔墙厚0、2m) 4、进水渠道渐宽部分长度 设:进水渠宽B 1=0、9m,其渐宽部分展开角α 1 =20°(进水渠道前得流速 为0、6m/s) 则: 5、栅槽与出水渠道连接处得渐窄部分长度(L 2 )

污水处理厂课程设计报告书

1总论 1.1 设计任务和容 1.1.1 设计任务 m d的二级污水处理厂 为某城市设计一座日处理为12万3 1.1.2 设计容 ①工艺构筑物选型作说明 ②主要处理设施(格栅、沉砂池、初沉池、曝气池、二沉池)的工艺计算 ③污水处理厂的平面和高程布置 1.2 任务的提出目的及要求 1.2.1 任务的提出及目的 随着经济飞速发展,人民生活水平的提高,对生态环境的要求日益提高,要求越来越多的污水处理后达标排放。在全国乃至世界围,正在兴建及待建的污水厂也日益增多。有学者曾根据日处理污水量将污水处理厂分为大、中、小三种规模:日处理量大于10万m3为大型处理厂,1---10m3万为中型污水处理厂,小于1万m3的为小型污水处理厂。 根据所确定的工艺和计算结果,绘制污水处理厂总平面布置图,高程图,工艺流程图。 1.2.2 要求 ①方案选择合理,确保污水经处理后的排放水质达到国家排放标准。 ②所选厂址必须符合当地的规划要求,参数选取与计算准确。 ③全图布置分区合理,功能明确;厂前区,污水处理区污泥处理区条块分割清楚。延流程方向依次布置处理构筑物,水流创通。厂前区布置在上风向并用绿化隔离带与生产区隔离,以尽量减少对厂前区的影响,改善厂前区的工作环境。

④ 构筑物的布置应给厂区工艺管线和其他管线设有余地,一般情况下,构筑物外墙距道路边不小于6米。 ⑤ 厂区设置地坪标高尽量考虑土方平衡,减少工程造价,满足防洪排涝要求。 ⑥ 水力高程设计一般考虑一次提升,利用重力依次流经各个构筑物,配水管的设计需优化,以尽量减少水头损失,节约运行费用。 ⑦ 设计中应该避免磷的再次产生,一般不主采用重力浓缩池,而是采用机械浓缩脱水的方式,随时将排出的污泥进行处理。 ⑧ 所选设备质优、可靠、易于操作。并且设计必须考虑到方便以后厂区的改造。 ⑨ 附有平面图,高程图各一份。 1.3 基本资料 1.3.1 设计基本要求 污水处理量:12万3m ,污水处理厂设计进出水质:(如下表) 1.3.2 处理要求 污水经二级处理后应符合以下具体要求: Cr COD ≦70mg/L ; 5BOD ≦20 mg/L ; SS ≦30 mg/L 1.3.3 处理工艺流程

相关主题
文本预览
相关文档 最新文档