当前位置:文档之家› 地震沉积学的概念_方法和技术

地震沉积学的概念_方法和技术

地震沉积学的概念_方法和技术
地震沉积学的概念_方法和技术

文章编号:100020550(2006)0520698207

①教育部第二届高校优秀青年教师教学科研奖励基金资助.收稿日期:2005212229;收修改稿日期:2006203209

地震沉积学的概念、方法和技术

董春梅 张宪国 林承焰

(中国石油大学地球资源与信息学院 山东东营 257061)

摘 要 简单地讲,地震沉积学是应用地震信息研究沉积岩及其形成过程的学科,它是继地震地层学、层序地层学之后的又一门新的边缘交叉学科。其研究内容、方法和技术与地震地层学、层序地层学和沉积学等其他学科都有所不同,地震沉积学最大的理论突破在于对地震同相轴穿时性的重新认识。但它是沉积学的发展而不是替代,地震沉积学研究要以地质研究为基础,在沉积学规律的指导下进行。90°相位转换、地层切片和分频解释是地震沉积学中的三项关键技术。相位转换使地震相位具有了地层意义,可以用于高频层序地层的地震解释;地层切片是沿两个等时界面间等比例内插出的一系列层面进行切片来研究沉积体系和沉积相平面展布的技术;基于不同频率地震资料反映地质信息的不同,采用分频解释的方法,使得地震解释结果的地质意义更加明确。关键词 地震沉积学 穿时性90° 相位转换 地层切片 分频解释

第一作者简介 董春梅 女 1963年出生 副教授 博士 沉积岩石学及储层地质学中图分类号 P65 P512.2 文献标识码 A

2005年2月,地震沉积学国际会议在美国休斯

敦召开,继地震地层学、层序地层学之后,地震沉积学作为一门新的学科越来越受到人们的关注。国外上世纪80年代开始出现地震沉积学这个名词,但由于地震分辨率和研究手段的限制,没有形成一套系统的理论体系和完整的学科,国内近几年虽然广泛开展利用地震资料进行沉积相、地层岩性识别的研究,但还没有出现有关地震沉积学的系统研究。本文对这门新学科的有关概念、主要方法和关键技术进行阐述。

1 有关地震沉积学的概念

在墨西哥湾北部中新世地层Tiger 浅滩地区高频层序研究中,曾洪流等人研究发现,四级层序的地震响应是一系列沉积界面的组合,包括层序顶底及在地

震剖面上难以识别的内部界面[1]

,常用的地震剖面简单追踪的方法已经不能划分这样的四级层序边界和体系域了。针对这种情况,曾洪流等人提出了基于地震沉积学的高频层序解释方法:首先在平面上分析低级层序(二、三级层序)地层格架中高分辨率沉积要素;然后在垂向上和三维视图中研究高频层序地层

背景[1]

1998年曾洪流,Henry,R i ola 等首次使用了“地

震沉积学”一词[2]

,认为地震沉积学是利用地震资料

来研究沉积岩及其形成过程的一门学科[3]

。地震岩

石学和地震地貌学组成了地震沉积学的核心内

容[1]

。将地球物理技术与沉积学研究相结合,二者联合反馈进行沉积相分析是近几年地震沉积学应用领域中推广最快的一项技术,但这只是地震沉积学应用的一个方面。地震沉积学与地震地层学、层序地层学、沉积学等学科相关,但是在概念、研究内容、方法技术等方面都有所不同。

从研究内容上看,沉积学的研究范围从微观的岩石孔隙结构、成岩作用等到宏观的沉积相和沉积体系展布,地震地层学主要通过地震同相轴的接触关系研究层序地层格架,而地震沉积学主要是在地质规律(尤其是沉积环境及不同沉积环境下沉积相模式)的指导下利用地震信息和现代地球物理技术进行地层岩石宏观研究、沉积史、沉积结构、沉积体系和沉积相平面展布的研究(图1)。 从研究方法技术上看,沉积学研究离不开对岩石

的直接观察和实验分析[4]

,在沉积岩的研究中通过镜下观察及各种实验手段对岩石进行微观层次上的研究是沉积岩研究的一个很重要的内容,对沉积环境的分析首先对野外露头或者岩心进行细致全面的观察描述,包括对岩性、沉积构造、古生物标志、地球化学标志等方面的全面描述。然后综合各种相标志,运

用沉积学原理,对古沉积环境作出正确的解释[5]

。地震地层学主要是在井点信息的约束下研究地震剖

 

第24卷 第5期2006年10月沉积学报

ACT A SE D I M E NT OLOGI CA SI N I C A Vol .24 No 15

Oct .2006

面上的反射结构样式,从中获取层序地层信息,它的研究手段和研究内容相对比较单一。地震沉积学在井资料、基础地质研究成果及地质规律指导下更多的

运用地震资料和地震的研究方法,目前采用的关键技术主要包括90o

相位转换技术、地层切片技术和分频

解释技术等

图1地震沉积学研究思路流程

Fig .1 The fl owchart of seis m ic sedi m ent ol ogy research

图2 地震同相轴反射结构随频率变化的正演模型结果

Fig .2 The f or ward modeling result of the seis m ic reflecti on configurati on varying with frequency

2 地震沉积学对地震地层学理论基础

的挑战

地震地层学是基于下面一个假设:沉积层序的地

震反射是沿有明显声阻抗差的地层界面产生的,因为地层界面反映等时沉积界面,所以地震反射具有等时意义。Vail 等指出“在自然界中,不存在形成的地震

反射平行于岩性地层单元顶面的物理界面”[6]

。这一假设是地震地层学进行地震解释的基础。

曾洪流和Charles Kerans 在Per main 盆地King 2dom Abo 储层研究中发现,在前积的碳酸盐岩台地边缘和斜坡沉积中,主反射同相轴并不沿倾斜的地质时间界面。通过对三角洲前积体中常见的平行倾斜界

面模型进行正演的结果

[6]

(图2)可以看到:用60Hz 的雷克子波可以清晰的反映出等时沉积界面的形态(图2a );子波频率40Hz 时,等时沉积界面的地震反射同相轴开始出现合并(图2b );当频率降低到30Hz 时,地震同相轴形态已经不再反映等时沉积界面形态,而是与三角洲前积中的岩性界面形态一致(图2c ),可见地震资料的频率成分控制了地震反射同相

轴的倾角和内部反射结构[6]

。低频地震资料中同相轴更倾向于具有岩性意义而不是时间意义。实际应用的地震资料的主频一般在35Hz 以下,有些深层资

9

96 第5期 董春梅等:地震沉积学的概念、方法和技术

图3 90°相位转换前后岩性测井与地震同相轴对应关系的对比(秘鲁Dorissa油田)

Fig.3 The comparis on of the relati onshi p bet w een seis m ic events and l og bef ore and after the90°phase converti on

(Dorissa oil field in Peru)

料甚至低于20Hz,所以对于实际使用的地震资料而言,在岩性界面(或岩石物理界面)与沉积时间界面相交时,反射同相轴是穿时的。这一观点否定了反射同相轴的严格等时性,动摇了地震地层学的研究基础。3 地震沉积学的研究方法和技术目前提高地震地层解释精度的技术很多,如AVO分析、波阻抗反演等,但这些方法都是应用于储层预测研究的技术,一般只有在复杂储层评价中才做这些高成本的处理[1];这些处理方法都存在很大的不确定性,必须依赖于地质认识(包括层序划分、沉积相等)及井资料的约束;更重要的是这些处理都是基于岩性单元预测和含油气单元预测的,最终的结果是对地层岩性和含油气性的反映,并不能提供高频等时沉积界面信息。所以在地震沉积学研究中真正有意义的实用技术还比较少,地震沉积学研究中的关键技术主要包括90°相位转换技术、地层切片技术和分频段解释技术。

(1)90°相位转换技术。波形和测量振幅是地震相位谱的函数。标准的地震处理通常把零相位的地震数据体作为提供给解释者的最终结果。零相位数据体在地震解释中具有很多优点,包括子波的对称性、主瓣中心(最大振幅)与反射界面一致以及较高的分辨率等。但是只有海底、主要不整合面、厚层块状砂岩顶面等单一反射界面得到的地震反射零相位数据才具有这些优点[1]。而且,零相位地震数据中,波峰、波谷对应地层界面,岩性地层与地震相位间不存在必然的关系,要建立地震数据和岩性测井曲线间的联系很困难,尤其是在许多薄地层互层的情况下。

90°相位转换的方法通过将地震相位旋转90°将反射波主瓣提到薄层中心,以此来克服了零相位波的缺点。地震反射相对于砂岩层对称而不是相对于地层顶底界面对称,这使得地震反射的同相轴与地质上的岩层对应,地震相位也就具有了岩性地层意义。这样地震相位在一个波长的厚度范围内与岩性唯一对应[7,8]。从秘鲁Dorissa油田的实例(图3)可以看到,经过90°相位转换后地层界面由蓝轴(正相位)内变到了零相位上,在层位追踪时减小了视觉误差造成的追踪位置的不准确,而且地震相位与岩性测井曲线更加吻合,使地震相位具有了岩性地层意义。

(2)地层切片技术。B r own等(1981)首先阐明通过三维地震的水平地震成像可以产生高分辨率的沉积相图像[9]。荷兰沉积学家Wolfgang Schlager指出,三维地震提供了研究古代沉积形态平面展布的简单方法,并将密西西比河三角洲的航拍照片与古代沉积在地震切片上的响应进行对比[10]。自20世纪90年代起,大量研究证实地震地貌学是沉积成像研究的有力工具。地震地貌成像是沿沉积界面(地质时间界面)提取振幅,反映地震工区内沉积体系的展布范围。这样的地震切片称为地层切片,这与1996年Posa mentier提出的等比例切片[11]比较类似。

007 沉 积 学 报 第24卷 

图4 三角洲沉积体系在地层切片中的反映(据曾洪流,Hentz等,2001) Fig.4 The reflecti on of delta2sedi m ent syste m in strata slice

(after Zeng Hongliu,Hentz,et al.,2001)

利用切片识别沉积相的关键有两个,一是通过单井沉积相来标定地震相,建立二者的联系;二是由单井相推断研究区沉积环境,并建立此沉积环境下的一般沉积相模式,在沉积相模式的指导下将地震振幅的平面响应转化成沉积相的平面展布。图4是曾洪流等在Tiger沿岸地区Ver m ili on50区块做的地层切片[11],利用研究区内三口井井点位置的沉积相与地震振幅的关系建立起沉积相与地震相的对应关系,通过这种标定可以在切片中清楚地识别出中新统上部三角洲沉积体系的平面展布。

传统的切片方法包括等时切片和沿层切片(水平切片),在大多数解释软件(如GeoFra me,Land2 mark的Open works,D iscovery等)中都提供了相应的实现工具。等时切片(时间切片)是沿某一固定地震旅行时对地震数据体进行切片显示,切片方向是沿垂直于时间轴的方向[12];沿层切片(水平切片)是沿某一个没有极性变化的反射界面的切片,它更倾向于具有地球物理意义[13],即沿着或平行于追踪地震同相轴所得的层位进行切片;而地层切片则是以追踪的两个等时沉积界面为顶底,在顶底间等比例内插出一系列的层位,沿这些内插出的层位逐一生成切片。从胜利乐安油田的例子(图5)中可以看到,地层切片技术考虑了沉积速率随平面位置的变化,比时间切片和沿层切片(水平切片)更加合理而且更接近于等时沉积界面[14]。

(3)分频解释技术。地震沉积学与地震地层学的最大不同在于它认识到地震同相轴既不简单的反映等时界面也不单纯反映岩性界面,而是受到地震资料频率的控制[6],不同频段的地震数据反映的地质信息是不同的。低频资料中反射同相轴更多的反映岩性界面信息而高频资料中反射同相轴更多的反映等时沉积界面信息(图6)。

图5 沿层切片与地层切片原理对比(胜利乐安油田)

Fig.5 The comparisi on of the concep t bet w een horizontal slice and strata slice(Shengli Le an oil field)107

 第5期 董春梅等:地震沉积学的概念、方法和技术

图6 

地震数据纵向分辨能力随主频而变化

(据曾洪流,2003)

Fig .6 The vertical res olving ability of seis m ic data varying

with main frequeny (after Zeng Hongliu,2003)

地震沉积学中使用的分频解释技术实际上是一种分频段解释的方法,它是基于“地震资料的频率成

分控制了地震反射同相轴的倾角和内部反射结

构”[6]

这一认识。

按照褶积理论,地震道是声阻抗剖面中反射系数

序列与地震子波褶积的结果[15]

。根据傅立叶法则,这一过程在频率域中等价于子波频谱和反射系数序列频谱的褶积,见公式1。

S (ω)=W (ω)×G (ω)

(1) 式中:ω=2

πf,f 为频率,W (ω)为子波频谱,G (ω)为测井资料得出的反射系数频谱,S (ω)为地震频谱。

从图7的比较可以看出地震资料中的高频成分

与测井高频层序划分吻合的更好[6]

。因此,对地震资料进行分频处理,从原始地震资料中提取高、中、低不同频段信息经过振幅增益后,针对不同的需要选用相应频段的地震数据体,如利用高频数据体进行等时沉积界面解释等。通过上面的阐述不难发现,90o

相位转换技术、地层切片技术、分频解释技术这三项地震沉积学的关键技术都是基于一点认识:地震反射同相轴不是严格等时的,其地质意义与地震资料的频率有关,当岩性界面与等时沉积界面相交时会发生反射同相轴穿时的现象

图7 反射系数频谱、子波谱和地震频谱间的关系

(据曾洪流,2003)

Fig .7 The relati onshi p of reflecti on coefficient frequency s pectru m,wavelet s pectru m and seis m ic frequency s pectru m

(after Zeng Hongliu,2003)

2

07 沉 积 学 报 第24卷 

4 结论

通过上述分析可以得到以下几点结论:

(1)地震沉积学认为地震反射同相轴不是等时的,当岩性界面与等时沉积界面相交时会发生同相轴穿时现象。地震频率成分控制了反射同相轴的倾角和内部反射结构,低频地震资料中同相轴更倾向于具有岩性界面的意义而不是时间界面意义,这一认识动摇了地震地层学研究的前提假设,是地震沉积学最大的理论突破。

(2)地震沉积学借助于地震手段进行井间沉积相和地层岩性预测,这代表了未来的发展方向;与地震地层学、层序地层学和沉积学相比较,它在概念、研究内容、研究方法技术上都有自己的特点。但它是沉积学的发展而不是替代,它强调要以基础地质研究和沉积学规律(尤其是不同沉积环境下的沉积相模式)为指导。

(3)90°相位转换技术赋予了地震相位以地层意义,使岩性测井与地震同相轴间对应关系更加明确。

(4)地层切片技术是传统切片技术的一大改进,它考虑了沉积速率的平面差异性,比时间切片和沿层切片(水平切片)更加具有等时性。

(5)地震沉积学中的分频段解释技术是基于反射同相轴的穿时性以及地震频率对反射结构具有控制作用的认识而提出的。

致谢 本文的完成得益于和曾洪流博士的学术交流和讨论。

参考文献(References)

1 Hongliu Zeng and Tucker F Hentz.H igh2frequency sequence stratigra2 phy fr om seis m ic sedi m ent ol ogy:App lied t o M i ocene,Ver m ili on B l ock 50,Tiger Shoal area,offshore Louisiana.AAPG Bulletin,2004,88(2) :153~174

2 Hongliu Zeng,Stephen C Henry,and John P R i ola.Stratal slicing, part II:Real32D seis m ic data.Geopgysics,1998,63(2):514~522 3 Hongliu Zeng and W illiam A.Ambr ose.Seis m ic sedi m ent ol ogy and re2

gi onal depositi onal system s in M i oceno Norte,Lake Maracaibo,Vene2 zuela.The Leading Edge,2001.11

4 Wolfgang Schlager.The future of app lied sedi m entary geol ogy.Journal of Sedi m entary Research,2000,70(1):2~9

5 黄锋,李志荣,廖玲,等.利用地震资料进行沉积相分析.物探化探计算技术,2003,25(3):197~200[Huang Feng,Zhang Zhir ong, L iao L ing,et al.Sedi m ent ory facies analysis using seis m ic https://www.doczj.com/doc/a919078782.html,2 puting Techniques for Geophysical and Geoche m ical Exp l orati on, 2003,25(3):197~200]

6 Hongliu Zeng and Charles Kerans.Seis m ic frequency contr ol on car2 bonate seis m ic stratigraphy:A case study of the Kingdom Abo se2 quence,west Texas.AAPG Bulletin,2003,87(2):273~293

7 Hongliu Zeng and M il o M Backus.I nter p retive advantages of90-phase wavelets:Part1—Modeling.Geopgysics,2005,70:7~15

8 Hongliu Zeng and M il o M Backus.I nter p retive advantages of90-phase wavelets:Part2—Seis m ic app licati ons.Geopgysics,2005,70: 17~24.

9 B r own A R,Dahm C G,and Graebner R J.A stratigraphic case hist ory using three2di m ensi onal seis m ic data in the Gulf of Thailand.Geophysi2 cal Pr os pecting,1981,29(3):327~349

10 Wolfgang Schlager.The future of app lied sedi m entary geol ogy.Jour2 nal of Sedi m entary Research,2000,70(1):2~9.

11 Posa mentier H W,Dorn G A,Cole M J,Beierle C W and Ross S P.

I m aging ele ments of depositi onal syste m s with32D seis m ic data:A

case study:Gulf Coast Secti on SEP M Foundati on,17th Annual Re2 search Conference,1996.213~228

12 Hongliu Zeng,Tucker F.Hentz,and Lesli J.Wood,Stratal slicing of M i ocene2Pli ocene sedi m ents in Ver m ili on B l ock502Tiger Shoal A rea, offshore Louisiana.The Leading Edge,2001.4

13 Hongliu Zeng and M il o M Backus,Kenneth T Barr ow,et al.Facies Mapp ing fr om Three2di m ensi onal seis m ic data:Potential and guide2 lines fr om a Tertiary sandst one2shale sequence model,Powerhorn Field,Calhoun County,Texas.AAPG Bulletin,1996,80:16~46 14 Hongliu Zeng,M il o M Backus,Kenneth T Barraw and Noel Tyler.

Stratal slicing,partΙ:Realistic3D seis m ic model:Geophysics, 1998,63(2):502~513

15 吴国忱,康仁华,印兴耀.三维时频分析方法在地震层序分析中的应用.石油大学学报(自然科学版),2000,24(1):81~84[W u Guochen,Kang Renhua,Ying Xingyao.The app licati on of3D ti m e2 frequency analysis in seis m ic sequence analysis.Journal of the Uni2 versity of Petr oleum,China,2000,24(1):81~84]

307

 第5期 董春梅等:地震沉积学的概念、方法和技术

407 沉 积 学 报 第24卷 Concepti on,M ethod and Technology of the Seis m i c Sedi m entology

DONG Chun2mei ZHANG Xian2guo L I N Cheng2yan

(Earth Resource and I nfor ma ti on College of Un i versity of Petroleu m,D ongy i n g Shandong 257061)

Abstract Seis m ic sedi m ent ol ogy is the use of seis m ic inf or mati on t o study sedi m entary r ocks and their f or m ing p r ocesses.It is a ne w marginal interdisci p linary subject f oll owing seis m ic stratigraphy and sequence stratigraphy.It differs fr om seis m ic stratigraphy,sequence stratigraphy and sedi m ent ol ogy in its research contents,methods and tech2 nol ogies.The ne w knowledge of“seis m ic events go acr oss ti m e surfaces”is the most i m portant innovati on of this sub2 ject.But it is only a supp le ment not a substituti on of sedi m ent ol ogy.It should base on the geol ogy research and under the p rinci p le of sedi m ent ol ogy.The technol ogies of90°2phase inversi on,stratal slicing and inter p reting with frequency are the three key technol ogies.The method of90°2phase inversi on gives stratigraphic meaning t o seis m ic phase,and is used t o inter p ret high frequency sequences;the technol ogy of stratal slicing is a series of slices al ong the surfaces inserted p r oporti onally bet w een t w o ti m e2surfaces and this technol ogy is used t o study the p lanar distributi on of deposi2 ti onal system s.Based on the fact that seis m ic data with different main frequency reflect different geol ogical inf or ma2 ti on,the inter p retati on result will be more reas onable in geol ogical meaning by the technol ogy of inter p reting with fre2 quency decomposing.

Key words seis m ic sedi m ent ol ogy,the ti m e2cr ossing attribute of seis m ic event,90°phasing of seis m ic data,strata slicing,inter p retati on with frequency decomposing

欢迎订阅《沉积学报》

《沉积学报》是中国矿物岩石地球化学学会沉积学专业委员会、中国地质学会沉积地质专业委员会、中国科学院兰州地质研究所共同主办的综合性学术刊物,是全国自然科学核心期刊。主要刊载沉积学、沉积矿产、地球化学以及相关分支学科、交叉学科的基础和应用基础研究的创新性研究成果和高水平论文,介绍沉积学研究的新技术、新理论及国内外最新沉积学论著,同时也报导有关学术活动、学科研究动态及学术思想的讨论和争鸣。优先发表国家、省、部级重大科技项目及基金资助的在沉积学、地球化学前沿各分支领域以及学科交叉点上有创造性的研究成果。读者对象为大专院校地学专业的师生及科研院所的地学工作者。

2006年起《沉积学报》改为双月刊,16开本,每期144页,逢双月10日出版,定价30元,全年定价180元。国内外公开发行,欢迎广大读者到当地邮局订阅。

国内邮发代号:54-45

国外发行代号:Q832

同时欢迎各位专家学者踊跃投稿。

地址:兰州市东岗西路382号中国科学院兰州地质研究所《沉积学报》编辑部

邮政编码:730000

联系电话:(0931)4960916 传真:(0931)8278667

E mail:cjxb@https://www.doczj.com/doc/a919078782.html,

工程地震学基本概念

(1) 地震学是研究与地震有关的科学问题,哪几门学科的研究反映了地震学直接为社 会抗震减灾的服务?这几门学科的主要研究内容。 ①地震预报:短临预报,中、长期预报。 ②地震工程学:研究地震危害性的工程问题。 ③地震社会学:研究地震引起的社会问题,包涵震害预测与抗震减灾。 (2) 抗震设计的目的、内容与抗震设防标准。 抗震设计目的:是建筑结构能够达到抗震的要求 内容:通过确定抗震设计的要求、抗震设计以及抗震设计施工,使得建筑结构物达到抗震设计标准。 设防标准:小震不坏,中震可修,大震不倒 (3) 板块构造运动学说。 板块构造学说是在大陆漂移学说和海底扩张学说的基础上提出的。根据这一新学说,地球表面覆盖着不变形且坚固的板块(岩石圈),这些板块确实在以每年1厘米到10厘米的速度在移动 (4) 地震的一些基本概念:震级、震源、震中、震源距、震中距… 震级:用地震释放的能量来表示地震的大小 震源:地球内部岩层破裂引起振动的地方 震中:震源在地面上的投影位置 震源距:某一点到震源的距离 震中距:某一点到震中的距离 震源深度:震源到震中的距离 (5) 地震的分类。 ①震动的性质:天然地震、人工地震及脉动 ②成因划分:构造地震、火山地震和陷落地震 ③震源深度划分:浅源地震(<60 km)、中源地震(60~300 km)、深源地震(>300 km) ④震中距划分:地方震(Δ<100 km)、近震(Δ<1000 km)、远震(Δ>1000 km) ⑤震级划分:弱震(M<3)、有感地震(M:3~4.6)、中强震(M:4.5~6)、强震(M>6,其 中M>8为巨大地震) (6) 断层的基本类型与断层的几何参数。 正断层、逆断层、走滑断层 参数:走向,倾向,倾角,倾伏角。。。。 (7)地震矩与矩震级。 地震矩:受构造应力影响使断裂面突然滑移的力学模型,推导出地震整体大小的最有用的量度 指为测定地震矩而引入的衡量地震能量以及地震错动。 矩震级: (8)震害与次生灾害、地震烈度与等震线。 震害:地震引起强烈的地震动或地表破裂与变形产生的灾害 次生灾害:原生灾害诱发出来的灾害

地震数据处理方法(DOC)

安徽理工大学 一、名词解释(20分) 1、、地震资料数字处理:就是利用数字计算机对野外地震勘探所获得的原始资料进行加工、改进,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。 2、数字滤波:用电子计算机整理地震勘探资料时,通过褶积的数学处理过程,在时间域内实现对地震信号的滤波作用,称为数字滤波。(对离散化后的信号进行的滤波,输入输出都是离散信号) 3、模拟信号:随时间连续变化的信号。 4、数字信号:模拟数据经量化后得到的离散的值。 5、尼奎斯特频率:使离散时间序列x(nΔt)能够确定时间函数x(t)所对应的两倍采样间隔的倒数,即f=1/2Δt. 6、采样定理: 7、吉卜斯现象:由于频率响应不连续,而时域滤波因子取有限长,造成频率特性曲线倾斜和波动的现象。 8、假频:抽样数据产生的频率上的混淆。某一频率的输入信号每个周期的抽样数少于两个时,在系统的的输出端就会被看作是另一频率信号的抽样。抽样频率的一半叫作褶叠频率或尼奎斯特频率fN;大于尼奎斯特频率的频率fN+Y,会被看作小于它的频率fN-Y。这两个频率fN+Y和fN-Y相互成为假频。 9、伪门:对连续的滤波因子h(t)用时间采样间隔Δt离散采样后得到h (nΔt)。如果再按h (nΔt)计算出与它相应的滤波器的频率特性,这时在频率特性图形上,除了有同原来的H (ω)对应的'门'外,还会周期性地重复出现许多门,这些门称为伪门。产生伪门的原因就是由于对h(t)离散采样造成的。 10、地震子波:由于大地滤波作用,使震源发出的尖脉冲经过地层后,变成一个具有一定时间延续的波形w(t)。 11、道平衡:指在不同的地震记录道间和同一地震记录道德不同层位中建立振幅平衡,前者称为道间均衡,后者称为道内均衡。 12、几何扩散校正:球面波在传播过程中,由于波前面不断扩大,使振幅随距离呈反比衰减,即Ar=A0/r,是一种几何原因造成的某处能量的减小,与介质无关,叫几何扩散,又叫球面扩散。为了消除球面扩散的影响,只需A0=Ar*r即可,此即为几何扩散校正, 13、反滤波(又称反褶积):为了从与干扰混杂的地震讯息中把有效波提取出来,则必须设法消除由于水层、地层等所形成的滤波作用,按照这种思路所提出的消除干扰的办法称为反滤波,即把有效波在传播过程中所经受的种种我们不希望的滤波作用消除掉。 14、校正不足或欠校正:如果动校正采用的速度高于正确速度,计算得到的动校正量偏小,动校正后的同相轴下拉。反之称为校正过量或过校正。 15、动校正:消除由于接受点偏离炮点所引起的时差的过程,又叫正常时差校正。 16、剩余时差:当采用一次波的正常时差公式进行动校正之后,除了一次反射波之外,其他类型的波仍存在一定量的时差,我们将这种进过动校正后残留的时差叫做剩余时差。

地球物理学专业

地球物理学专业人才培养方案 教研室主任: 系主任: 教学副院长: 院长:

一、专业代码:070801 二、专业名称:地球物理学 三、标准修业年限:四年 四、授予学位:理学学士 五、培养目标: 本专业培养适应社会主义现代化建设需要,德、智、体、美等方面全面发展,具有良好的思想政治素质、人文素质、创新精神与实践能力,具有扎实的数理基础,掌握基本的地质学原理与方法,系统掌握地球物理学的基本理论、基本知识和基本技能,具有从事地震监测预测,地质矿产、煤田和油气资源勘查,道路桥梁的工程地球物理检测等方面的实际工作和研究工作初步能力的应用型人才。 六、基本要求: (一)知识要求: 1.具有基本的人文社科理论知识和素养,在哲学、经济学、法律等方面具备必要的理论知识,对社会有较强的适应能力; 2.具有扎实的数学、物理基础; 3.掌握基本的地质学原理与方法; 4.掌握地球物理场论、数字信号分析、水文地质学等专业基础知识; 5.系统地掌握固体地球物理学和勘探地球物理学的基本理论和基本知识; 6.掌握地震监测预测的基本理论与方法。 (二)能力要求: 1.具有较强的人际交往意识和初步的人际交往能力; 2.具有良好的自学能力和终身学习的意识; 3.具有独立思考问题、分析问题、解决问题的能力; 4.具有独立设计实验,并能对实验数据进行分析评价的能力; 5.具有独立地利用计算机进行文字和图像信息处理及进行科学计算的能力; 6.具有创新意识和创新精神,对特优学生要求具有质疑和挑战传统的理论、方法、假设的意识和能力; 7.了解全球自然灾害现状及防灾减灾体系研究发展趋势,具备综合防灾减灾意识及防震减灾宣传教育能力; 8.具有一定的提出新的问题和新的方法,分析、推断、解释新问题的能力; 9.得到从事基础研究和应用研究的初步训练。 (三)素质要求: 1.热爱祖国,具有高尚的民族气节、良好的道德品质和中华民族的传统美

地震勘探的一些基础知识.doc

接收条件received condition:指地震勘探中接收地震波的仪器的工作状态和条件。广义地说, 接收条件包括地震检波器的安置情况、组合个数与方式,以及地震仪的各种因素等。但通常将接收条件狭义地指地震检波器的安置情况。地震资料的质量与接收条件有密切关系。陆地工作中埋置检波器,海洋工作中使检波器处于水面下一定深度,都是为了避免风、浪等影响而改善接收条件。 界面速度interface velocity:指折射波沿折射界面滑行的速度。界面速度主要反映折射界面以下地层中岩石的物理性质。由于组成地层的岩石颗粒排列有方向性,通常界而速度大于层速度。界面速度可通过折射波测得。 加速度检波器accelerometer:即“压电地震检波器”。 激发条件excited condition:地震勘探中将震源种类、能最、周围介质的情况总称为激发条件。对于炸药震源来说,激发条件一般包括炸药量大小、药包形状,个数,分布方式及埋置岩性和沉放深度等。对于非炸药震源,激发条件则包括装置的种类、能量、参数选择及安置情况等。激发条件的选择是否适当,对地震勘探原始资料质量的影响很大。一般认为,陆地工作中, 风化层下的含水可塑性岩层是有利的激发条件,因此往往采用井中爆炸,在海洋工作小,主要是以减小气泡影响作为合适的激发条件。 海洋地震勘探marine seismic survey:是利用勘探船在海洋上进行地震勘探的方法°其特点是在水中激发,水中接收,激发,接收条件均一;可进行不停船的连续观测。震源多使用非炸药震源,接收常用压电地震检波器,工作时,将检波器及电缆拖曳于船后一定深度的海水中由于上述特点,使海洋地震勘探具有比陆地地震勘探高得多的生产效率,更需要用数字电子计算机处理资料。海洋地震勘探中常遇到一些特殊的干扰波,如鸣震和交混问响,以及与海底有关的底波干扰。海洋地震勘探的原理,使用的仪器,以及处理资料的方法都和陆地地震勘探基本相同。由于在大陆架地区发现大量的石汕和天然气,因此.海洋地震勘探有极为广阔的前景。 高频地震high frequency seismic survey:在水文地质、工程地质调杏和金属矿床勘探中,勘测深度只在儿米到儿百米之间,需要精细分层和精确地测定波的传播时间。为了提高仪器的分辨能力,要用专门的高频地震仪,记录震波的高频分量。高频地震仪的通频带?般在60-350周 /秒之间,专门测定岩石波速时需提高到500-600周/秒。为了压制低频干扰,仪器频率特性的低频一边应有较大的陡度。 干扰波noise:地震勘探中妨碍分辨有效波的振动都属于干扰波。干扰波大体上可分为两种:其中具有明显传播规律的称为规则干扰或干扰波,如声波、面波,多次波等等;没有明显传播规律性的振动称为随机干扰,或简称干扰,如微震等。抗干扰的问题是关系到地震勘探中提高勘探的质量和能力的极其重要的问题。因此,在野外工作和资料处理上采用多种措施,以提高有效波而压制干扰波。干扰波有时也是相对的概念,如在反射法中,折射波就常

地震沉积学中的相位转换(相移)问题

90°相位转换(相移)技术和切片技术、分频技术都是地震沉积学的几项重要技术。90°相移技术更是经常出现在地震沉积学文献中。上周一个中国地质大学的用户问我,如何确定相移的度数。为了回答这样问题,现将文献中涉及到的相关论述摘录如下: 1、90°相位转换技术 波形和测量振幅是地震相位谱的函数。地震解释人员通常要求处理人员提供零相位的地震数据 ,它在地震解释中具有很多优点 ,包括子波的对称性、主瓣中心 ( 最大振幅 ) 与反射界面一致以及较高的分辨率。但是在零相位地震数据中波峰、波谷对应于地层界面 ,岩性地层与地震相位之间不存在良好的对应关系 ,要建立地震相位与岩性测井曲线间的联系很困难 ,尤其是薄互层发育的情况下。90°相位转换的方法通过将地震相位旋转 90°后把反射波瓣提到地层的中心 , 以此来克服零相波的缺点。地震反射波形相对于砂岩层对称而不是相对于地层界面对称 , 这使得地震反射同相轴与岩性地层对应 ,地震相位也就具有了岩性地层意义,这样地震相位在一个波长的厚度范围内与岩性唯一对应。一方面在应用于实际数据时 , 这种方法更加易于解释,另一方面相位转换之后地震道与岩性测井更加具有一致性。图 2 是秘鲁 S油田的一个例子 ,从图中可以看到 ,转换后地层界面的位置由蓝轴( 正相位 )内转换到了零相位的位置 ,在层位追踪时减小了视觉误差造成的层位拾取位置的误差 , 而且地震相位与岩性测井曲线更加吻合 , 使地震相位具有了岩性地层意义。 2、不只是90° 90 °相位变换技术的核心思想是 : 在零相位地震资料的情况下地层界面对应于波峰值或波谷值 , 地层的岩性与地震相位间不存在对应关系 , 通过相位90 °旋转使地层界面对应于零相位 ,这样地震道也就能更好的模拟测井波阻抗, 地震相位也就具有了地层意义。所以 90 °相位转换并没有提高地震资料的分辨率 ,只是使地震相位具有了地层意义。从相位转换的方法本身来说 ,本文认为 ,不应仅局限于 90°相位转换。相位转换的目的是赋予地震相位以地层的意义 ,将地层界面标定到零相位上 ,所以具体转换角度要根据标定后测井分层上目的层位对应的地震相位来决定,如经过标定某四级层序界面对应 45 °相位 , 那么在解释这个层面时就需要将相位调整 45°,使其层面对应于零相位 , 只有这样才能达到通过相位转换赋予相位以地层意义的目的。

地震基本知识

地震基本知识 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

地震基本知识 地震是自然灾害的一种,除了地震以外,还有火灾、水灾、泥石流等灾害,但是地震的破坏性却是最强的,地震和其它自然灾害不一样,旱灾、水灾、火灾等灾害目前基本上都可以预报了,但是地震预报目前仍然是世界性难题。我们国家开展的防震减灾工作,建立在地震预报难题未解的基础上,以“预防为主、防御与救助相结合”为方针,目的是最大限度地减小因地震对人员和财产造成的损失。历史上,人类公认的一次成功预报地震是1975年辽宁海城级地震,成功转移了23万人。但是像汶川等许多破坏性地震,仍然难以准确预测。地震预报还有许多未知的空间、未知的领域,还有许多高峰,需要我们去探索。 地震的产生和类型:通俗的讲地震就是地球表层的快速振动,在古代又称为地动。它就象刮风、下雨、闪电、山崩、火山爆发一样,是地球上经常发生的一种自然现象。可以把地震分为以下几种:一是构造地震:由于地下深处岩层错动、破裂所造成的地震称为构造地震,这类地震发生的次数最多,破坏力也最大,约占全世界地震的90%以上。二是火山地震:由于火山作用,如岩浆活动、气体爆炸等引起的地震称为火山地震。只有在火山活动区才可能发生火山地震,这类地震只占全世界地震的7%左右。三是塌陷地震:由于地下岩洞或矿井顶部塌陷而引起的地震称为塌陷地震。这类地震的规模比较小,次数也很少,即使有,也往往发生在溶洞密布的石灰岩地区或大规模地下开采的矿区。四是诱发地震:由于水库蓄水、油田注水等活动而引发的地震称为诱发地震。这类地震仅仅在某些特定的水库库区或油田地区发生。五是人工地震:地下核爆炸、炸药爆破等人为引起的地面振动称为人工地震。 地震三要素:1、震中:地震发生时,震源在地球表面的垂直投点,一般用经纬度表述;2、震级:地震发生的强度,一次地震只有一个震级;3、时间:地震发生时的时间; 其它几个概念:1、震源:是地球内发生地震的地方。2、震源深度:震源垂直向上到地表的距离是震源深度。我们把地震发生在60公里以内的称为浅源地震;60-300 公里为中源地震;300公里以上为深源地震。目前有记录的最深震源达720公里;震中及其附近的地方称为震中区,也称极震区。震中到地面上任一点的距离叫震中距离(简称震中距)。震中距在100公里以内的称为地方震;在1000公里以内称为近震;大于1000公里称为远震。3、地震波:地震时,在地球内部出现的弹性波叫作地震波。这就像把石子投入水中,水波会向四周一圈一圈地扩散一样。地震波主要包含纵波和横波。振动方向与传播方向一致的波为纵波(P波)。来自地下的纵波引起地面上下颠簸振动。振动方向与传播方向垂直的波为横波(S波)。来自地下的横波能引起地面的水平晃动。横波是地震时造成建筑物破坏的主要原因。 1、地震预报按时间划分为:长期预报是指对未来10年内可能发生破坏性地震的地域的预报。中期预报是指对未来一二年内可能发生破坏性地震的地域和强度的预报。短期预

地震资料数字处理试卷合集

一、名词解释 1.道均衡:是指在不同或同一地震记录道建立振幅平衡。 2.数字信号:相对于模拟信号,记录瞬间信息的离散的信号。 模拟信号:随时间连续变化的信号. 有效信号:能为我们所利用的信号就叫有效信号。 3.最小相位:能量集中在序列前部。 4.反射波:在波速突变的分界面上,波的传播方向要发生改变,入射波的一部分被反 射,形成反射波。 折射波:滑行波在传播过程中也会反过来影响第一种介质,并在第一种介质中激发新的波。这种由滑行波引起的波,叫折射波。 5.共深度点:CDP。地下界面水平时,在共中心点下方的点,界面倾斜时无共深度点。 6.解编:地震数据是按各道同一时刻的样点值成列排放的,解编就是将数据重排成行。 12. 最大相位:能量集中在序列后部。 16.地震波:地震波是在岩石中传播的弹性波。 多次波:在地下经过多次反射接收到的波叫多次波。 17. 切除:地震信号经动校正后被拉伸畸变,目前处理动校正拉伸畸变的方法是切除, 即把拉伸严重部分的记录全部充零。 18. 混合相位:能量集中在序列中部。 自相关:一个时间信号与自身的互相关。 互相关:一个时间信号与另一个时间信号的相关。 21.环境噪音:交流电、人、风吹草动等环境因素所引起的对地震波有干扰的信号。 随机噪音:交流电、人、风吹草动等随机因素所引起的对地震波有干扰的信号。 22.反射系数:反射振幅与入射振幅的比值。 28.模拟记录:把地面振动情况,以模拟的方式录制在磁带上。 二、简答题 1、地震资料数字处理主要流程?地震资料的现场处理主要包括哪些内容? 地震勘探资料数据处理中的预处理主要包括哪些内容? 简述地震资料数据中有哪些目标处理方法? 地震资料数字处理如何分类? 地震资料数字处理质量控制有哪些? 地震资料数字处理主要流程:输入→定义观测系统→数据预处理(废炮道、预滤波、反褶积)→野外静校正→速度分析→动校正→剩余静校正→叠加→偏移→显示。 地震资料的现场处理主要有:预处理、登录道头、道编辑、切除初至、抽道集、增益恢复、 设计野外观测系统、实行野外静校正、还可以进行频谱分析、速度分析、水平叠加等(2分)。 地震勘探资料数据处理中的预处理主要包括登录道头、废炮道编辑、切除初至、抽道集(4分)、增益恢复、预滤波、反褶积等. 地震资料数据中目标处理方法有高分辨率地震资料处理、三维地震资料处理、叠前深度偏移处理、井孔地震资料处理(4分)、多波多分量地震资料处理、时间推移地震资料处理等地震资料数字处理分类有数据预处理、数据校正、叠加和偏移归位、振幅处理、滤波、分析、正反演、复地震道技术等。(3分) 地震资料数字处理质量控制包括野外原始资料检查与验收、处理流程及主要参数确定、

地震沉积学的研究方法和技术

地震沉积学的研究方法和技术 摘要]地震沉积学是一门主要运用地震资料研究沉积岩和沉积相的学科。其研究要依据沉积学的规律并且以地质研究为基础。此门学科的运用的主要技术有地层切片、90相位转换和分频解释等。[关键词]地震沉积学;研究方法和技术;白云深水区 一、地震沉积学的概念 曾洪流提出,地震沉积学是主要应用地震储层预测方法对等时地层格架中的沉积相的分布与形成过程进行研究。它是层序地层学、沉积学、地震储层预测相结合的产物,是在地震地层学和层序地层学之后出现的一门新的边沿交叉学科。 二、最主要的三种研究方法与技术 当前地震沉积学还处于探索和发展阶段,所以在其研究中的实用技术还比较少,本文主要介绍地层切片、90相位转换和分频解释这三种研究方法与技术。 1地层切片技术 地层切片主要是把我们所追踪的一组等时沉积的界面分别作为顶和底,在顶和底之间以相等的间隔的切出一系列的层位,然后沿着这些切出的层位一一生成地层切片。利用地层切片进行沉积相识别的关键点有:一、由单井沉积相识别地震相,建立它们之间的联系;二、通过单井相推断沉积环境,并建立其沉积相模式,以沉积相模式为指导将地震相转化为沉积相。 由于精细研究的需要,本文对白云深水区珠江下及珠海组目的层段

层序地层格架进行划分,将对LST21、ZHSQ6、ZHSQ5、ZHSQ4作分析,其中从上到下分别为SQ21的低位砂、ZHSQ6高位低位砂、ZHSQ5高位砂、ZHSQ4低位砂层段。为了达到对沉积过程精细研究的目的,将砂组层分别内插了8个层位。 在选择与地质等时界面相对应的地震同相轴作参考时,可选取与层序边界和最大洪泛面相对应的反射同相轴,对区域性地质界面加以追踪。本次研究以层序顶底界面为边界进行等比例层位内插,生成内插层位,通过对内插后的层位沿层开了一个小的时窗,在小时窗内进行沿层属性的提取,由于小时窗内包含的信息具有统计特征,比单样点的振幅更具有地质沉积上的意义,所以这样做的结果更能精确客观的反映地下的沉积现象。 2.90相位转换技术 为了克服零相位波的一些缺点(如零相位地震数据不适合用于对薄层砂体进行解释),90相位转换将地震相位旋转90,将反射波的主瓣提至薄层砂体的中心。这样就可以将地震反射的同相轴和岩层相对应起来,于是地震相位就相应的具备了岩性的意义,可以使剖面得到更好的解释。 本文选择了白云深水区的零相位数据体作了90相位转换的尝试。首先作出白云深水区北坡连井的地震剖面,通过对比原始地震剖面和作了90相位转换后的剖面,从同相轴与测井曲线的对应关系来看,较强的红轴、黑轴与声波测井曲线之间有较好的对应。经过多井曲线与地震同相轴的对比分析,认为在白云深水区90相位转换后的数据体同相轴

层序地层学--考试资料

层序地层学考试资料 一、名词解释 层序地层学:是研究以不整合面或与之相对应的整合面为边界的年代地层格架中具有成因联系的、旋回岩性序列间相互联系的地层学分支学科。 层序:一套相对整一的、成因上存在联系的、顶底以不整合面或与之相对应的整合面为界的地层单元。 体系域:一系列同期沉积体系的集合体,是一个三维沉积单元,体系域的边界可是层序的边界面、最大海泛面、首次海泛面。 准层序:一个以海泛面或与之相应的面为界、由成因上有联系的层或层组构成的相对整合序列。在层序的特定位置,准层序上下边界可与层序边界一致。 首次海泛面:Ⅰ型层序内部初次跨越陆架坡折的海泛面,即响应于首次越过陆棚坡折带的第一个滨岸上超对应的界面,也是低位与海侵体系域的物理界面。 凝缩层:沉积速率极慢、厚度很薄、富含有机质、缺乏陆源物质的半深海和深海沉积物,是在海平面相对上升到最大,海侵最大时期在陆棚、陆坡和盆地平原地区沉积形成的。 Ⅰ型层序:底部以Ⅰ型层序界面为界,顶部以Ⅰ型或Ⅱ型层序界面为界的层序类型。 陆棚坡折带:陆架向海盆方向坡度陡然增加的地方。 低位体系域:Ⅰ型层序中位置最低、沉积最老的体系域,是在相对海平面下降到最低点并且开始缓慢上升时期形成的。并进型沉积:常出现于正常的富含海水的陆棚环境,海平面上升速率相对较慢,足以使得碳酸盐的产率与可容空间的增加保持同步,其沉积以前积式或加积式颗粒碳酸盐岩沉积准层序为特征,并且只含极少的海底胶结物。 二、层序地层学理论基础是什么? (1)海平面升降变化具有全球周期性。 层序地层学是在地震地层学理论基础上发展起来的,它继承了地震地层学的理论基础,即海平面升降变化具有全球周期性,海平面相对变化是形成以不整合面以及与之相对应的整合面为界的、成因相关的沉积层序的根本原因。 (2)4个基本变量控制了地层单元的几何形态和岩性。 这四个基本变量是构造沉降、全球海平面升降、沉积物供给速率和气候变化,其中构造沉降提供了可供沉积物沉积的可容空间,全球海平面变化控制了地层和岩相的分布模式,沉积物供给速率控制沉积物的充填过程和盆地古水深的变化,气候控制沉积物类型以及沉积物的沉积数量。一般说来,前三者控制沉积盆地的几何形态,沉降速率和海平面升降变化综合控制沉积物可容空间的变化。 三、图示并说明三种准层序组序列特征 进积式准层序组:是在沉积物沉积速率大于可容空间增长速率的情况下形成的,所以较年轻的准层序依次向盆地方向进积,形成向上砂岩厚度增大、泥岩厚度减薄、砂泥比值加大、水体变浅的准层序堆砌样式。常为HST和LST的前积楔状体的沉积特征。 退积式准层序组:是在沉积速率小于可容空间增长速率的情况下形成的,所以较年轻的准层序依次向陆方向退却,尽管每个准层序都是进积作用的产物,但就整体而言,退积式准层序组显示出向上水体变深、单层砂岩减薄、泥岩加厚、砂泥比值降低的特征。常为TST的特征。 加积式准层序组:是在沉降速率基本等于可容空间变化速率时形成的,相邻准层序之间未发生明显的侧向移动,自下而上,水体深度、砂泥岩厚度和砂泥比值基本保持不变。常为HST早期和陆架边缘体系域的沉积响应。 四、对比具陆棚坡折的碎屑岩Ⅰ型层序与具台地边缘的碳酸盐岩Ⅰ型层序之间的特征(含成因、边界特征、体系域构成及LST、TST、HST特征、主控因素) 具陆棚坡折的碎屑岩Ⅰ型层序界面是在全球海平面下降速率大于盆地沉降速率时产生的,它响应于区域性不整合界面,其上下地层岩性、沉积相和地层产状可以发生很大变化,具有陆上暴露标志和河流回春作用形成的深切谷。随着相对海平面下降,河流深切作用不断向盆地中央推进,形成了岩相向盆地中央方向的迁移特征。 具台地边缘的碳酸盐岩Ⅰ型层序界面是在海平面迅速下降且速率大于碳酸盐岩台地或滩边缘盆地沉降速率、海平面位置低于台地或滩边缘时形成的,以台地或滩的暴露和侵蚀、斜坡前缘侵蚀、区域性淡水透镜体向海方向的运动以及上覆地层上超、海岸上超向下迁移为特征。 这两类层序都包含低位体系域LST、海侵体系域TST和高位体系域HST这三个体系域。 具陆棚坡折的碎屑岩Ⅰ型层序中,LST的底为Ⅰ型不整合界面及其对应的整合面,其顶为首次越过陆棚坡折带的初次海泛面,它经常由盆底扇、斜坡扇和低位楔状体组成。TST的底界为首次海泛面,顶界为最大海泛面,它由一系列较薄层的、不断向陆呈阶梯状后退的准层序组构成,当海泛面达到最大时形成薄层富含古生物化石、以低沉积速率沉积的凝缩层。HST广泛分布于陆棚之上,下部以加积式准层序组的叠置样式向陆上超于层序边界之上,向海方向下

建筑结构抗震设计基本知识

单元21 建筑结构抗震设计基本知识 学习目标】 1、能够对抗震的基本概念、抗震设防目标和抗震设计的基本要求知识点掌握。 2、能够具备砌体结构房屋和钢筋混凝土框架房屋、框架剪力墙结构、剪力墙结构房屋的抗 震设计要点,从而为识读平法03G101-1混凝土结构施工图中抗震部分打下基础。 【知识点】 构造地震;地震波;震级;烈度;抗震设防;抗震设计的基本要求;钢筋混凝土框架房屋的抗震规定。 【工作任务】 任务1 建筑结构抗震设计基本知识 【教学设计】通过带领学生观看地震灾害照片,让学生对抗震设计的必要性有一个清楚的认识,从而为识读平法03G101-1混凝土结构施工图中抗震部分打下基础,为今后识读结构 施工图、胜任施工员岗位打下基础。 21.1地震基本知识 21.1.1 地震 21.1.1.1构造地震 地震是由于某种原因引起的地面强烈运动(见图21-1)。是一种自然现象,依其成因,可分为三种类型:火山地震、塌陷地震、构造地震。由于火山爆发,地下岩浆迅猛冲出地面时引起的地面运动,称为火山地震。此类地震释放能量小,相对而言,影响围和造成的破坏程度均比较小;

由于石灰岩层地下溶洞或古旧矿坑的大规模崩塌引起的地面震动,称为塌陷地震。此类地震不仅能量小,数量也小,震源极浅,影响围和造成的破坏程度均较小;由于地壳构造运动推挤岩层,使某处地下岩层的薄弱部位突然发生断裂、错动而引起地面运动,称为构造地震;构造地震的破坏性强影响面广,而且频繁发生,约占破坏性地震总量度的95%以上。因此,在建筑抗震设计中,仅限于讨论在构造地震作用下建筑的设防问题(见图21-2)。 地壳深处发生岩层断裂、错动的部位称为震源(见图21-3)。这个部位不是一个点,而是有一定深度和围的体。震源正上方的地面位置叫震中。震中附近地面震动最厉害,也是破坏最严重的地区,称为震中区。地面某处至震中的水平距离称为震中距。把地面上破坏程度相似的点连成的曲线叫做等震线。震中至震源的垂直距离称为震源深度。 根据震源深度不同,可将构造地震分为浅源地震(震源深度不大于60km),中源地震(震源深度60~300km),深源地震(震源深度大于300km)三种。我国发生的绝大部分(地震都属于浅源地震,一般深度为5~40km)。浅源地震造成的危害最大。如大地震的断裂岩层深约1lkm,属于浅源地震,发震构造裂缝带总长8km多,展布围30m,穿过市区东南部,这里就是震中,市铁路两侧47km的区域属于极震区。 21.1.1.2 地震波 当地球的岩层突然断裂时,岩层积累的变形能突然释放,这种地震能量一部分转化为热能,一部分以波的形式向四周传播。这种传播地震能量的波就是地震波。总之,地震波的传播以纵波最快,横波次之,面波最慢。在离震中较远的地方,一般先出现纵波造成房屋的上下颠簸,然

地震数据处理vista软件使用手册

Vista 5.5的基本使用方法 数据输入 地震分析窗口 一维频谱 二维频波谱 观测系统 工作流 一、数据输入 1.1 把数据文件加入Project 首先选择File/New Project,新建一个Project,按住不放,出现按钮组合,可以选择不同类型 的数据集,选择,向Project中增加一个新的2-D数据集,按住不放,出现按钮组合, 可以选择加入不同类型的地震数据,选择,选择一个SEG-Y数据,即可将该数据文件加入新建的数据集。 1.2 命令流中数据的输入 双击进入如下界面 1.2.1 Input Data List 数据输入列表,选择已加入到Project的数据集,下面的文本框中会显示选择的数据的基本信息。 1.2.2 Data Order 选择输入数据的排列方式,对不同的处理步骤可以选择不同的数据排列方式 Sort Order a. NO SORT ORDER 输入数据原始排列方式 b. SHOT_POINT_NO 输入数据按炮点排列方式 c. FIELD_STATION_NUMBER d. CMP_NO 输入数据按共中心点排列方式 e. FIELD_STATION_NUMBER 1.2.3 Data Input Control 数据输入控制 右键-->Data Input Control a. Data Input 进入Flow Input Command(见上) b. Data Sort List 查看数据排列方式的种类 c. Data/header Selection 输入数据的选择,可以控制输入数据的道数和CMP道集 查看所有已经选择的数据 如果没有定义任何可选的数据信息,则如下图所示: 可以选择一种选择方式,单击并设置选择信息。定义有可选的数据信息后,在查看,则如下图所示,会显示选择的信息。 选择共炮点集 单击后,会弹出如下界面:

固体地球物理学

固体地球物理学 (学科代码:070801) 一、培养目标 本学科培养德、智、体全面发展,具有坚实的地球物理理论基础和系统的专业知识,了解固体地球物理学和与其相关学科发展的前沿和动态,能够适应二十一世 纪我国经济、科技和教育发展的需要,并具有较熟练的实验技能和较强的动手能力,具有较全面的计算机知识,具有独立从事该学科领域研究和教学能力的高层次人 才。 二、研究方向 1. 地震学、 2. 地球动力学、 3. 岩石物理、 4. 应用地球物理学、 5. 城市地球物理学 三、学制及学分 按照研究生院有关规定。 四、课程设置 英语、政治等公共必修课和必修环节按研究生院统一要求。 学科基础课和专业课如下所列。 基础课: GP15201★地球内部物理学★(4) GP15202★ 地球动力学★(4) GP15203★地球物理反演★(4) 专业课:

GP14201 计算地震学(3) GP14202 地球物理学进展(4) GP14203 地震学原理(4) GP15210 地震勘探(3) GP15211 定量地震学(4) GP15212 地震偏移与成像(4) GP15213 工程地震学(4) GP15214 岩石本构理论(4) GP15215 应用地球物理学(3) GP15216 地球内部电性与探测(4) GP15218 现代计算机与网络应用(3) GP15219 固体力学(4) GP15220 城市地球物理学(3) GP15701 地球物理高级实验(2) PI05204 工程中的有限元法(3) GP16201 固体地球物理理论(4) GP16202 地球科学中的近代数学(4) GP16203 地球科学前沿讲座(4) 备注:带★号课程为博士生资格考试科目。 五、科研能力要求 按照研究生院有关规定。 六、学位论文要求 按照研究生院有关规定。

地震沉积学在徐家围子断陷的应用

第11卷第10期2011年4月1671—1815(2011)10-2165-07 科学技术与工程 Science Technology and Engineering Vol.11No.10Apr.2011 2011Sci.Tech.Engng. 地震沉积学在徐家围子断陷的应用 宋效文 1 马世忠 1 秦秋寒 1 周莹 2 (东北石油大学地球科学学院1,大庆163318;大港油田公司油气勘探开发研究院2,天津300280) 摘要徐家围子断陷深层勘探取得了重要成果,但是营四段砾岩研究难度较大,导致该后备潜力储层研究程度较低。文中 应用地震沉积学的先进理论技术方法(沉积模式和规律指导下的基于井震结合的相位转换、三维可视化、地层切片、分频、相干等技术方法)针对营四段砾岩展开研究,确定了该区为北北西主物源,刻画出了扇体轮廓及内部结构,为后期勘探开发奠定了重要基础。同时,在实践应用的过程中更加明确了地震沉积学中技术方法的适用条件及注意事项。关键词 地震沉积学 地层切片相位转换 分频技术中图法分类号 P631.4 TE122; 文献标志码 B 2011年1月14日收到 黑龙江省教育厅科学技术研究 项目(11521010)资助 第一作者简介:宋效文(1980—),男,山西人,东北石油大学博士生,研究方向:油气田开发地质与储层综合预测。E-mail :nepusxw@live.cn 。 地震沉积学是应用地震信息研究沉积岩及其形成过程的学科, 它是继地震地层学、层序地层学之后的一门新的综合性学科。其理论基础在于对地震同相轴穿时性的重新认识,但它是层序地层学和沉积学的发展而不是替代, 地震沉积学研究要以地质研究为基础,在沉积学规律的指导下进行。体系域表征、 90?相位转换、地层切片和分频解释是目前地震沉积学中的几种常用的技术 [1—4] 。 2002年徐家围子断陷深层高产工业气井的钻探成功,显示了该地区广阔的资源前景,作为重要后备潜力储层的砾岩由于研究难度较大(营四段之下是火成岩, 古地形差异大,古地貌复杂,营四段砾岩本身为近源沉积、粒度相对均值且厚度变化极大), 目前研究程度较低,单纯的井或者地震方面的研究已经不能满足勘探开发的需要, 应用地震沉积学的先进的理论及技术方法对营四段砾岩展开研究, 进行沉积相及沉积微相展布特征的描述,对徐家围子断陷营四段砾岩勘探开发有着重要的意义。 1区域地质概况 徐家围子地区位于松辽盆地北部徐家围子-北 安断陷带上,东到肇东-朝阳沟背斜带与莺山断陷带, 南至松花江,西为安达-肇州背斜带,北为明水斜坡。近南北向展布,长90km ,中部最宽处有55km , 面积5400km 2 ,是松辽盆地北部深层规模较大的断 陷。受徐西、宋西两条边界断裂控制,为西断东超型箕状断陷,沉积地层主要为古生界地层、上侏罗统-下白垩统断陷期地层、下白垩统坳陷期地层,营四段属下白垩统营城组。 2 地震沉积学概念及适合研究区的技术路线 2.1 地震沉积学定义 1998年,美国学者曾洪流, Henry ,Riola 等首次使用了“地震沉积学”一词[5] ,认为地震沉积学是利 用地震资料来研究沉积岩及其形成过程的一门学科 [6] 。2001年,曾洪流等将“地震沉积学”定义为利 用沉积体系的空间反射形态和沉积地貌之间的关系来研究沉积相、沉积岩和沉积建造。 Schlager 等认为“地震沉积学”是利用高精度地震资料、现代沉积环境和露头古沉积环境模式来识别沉积单元的三维几何形态、内部结构。

《地震地层学》第三章

第三章地震相分析 地震相分析是根据地震资料解释沉积环境背景和岩相。 第一节地震相的概念 一、相和沉积相 1、相的定义 相是一种具有特定特征的岩石体。 2、沉积相的概念 在理想情况下,沉积相是在一定的沉积条件下形成的一种有特色的岩石,这种沉积条件反映一种特定的沉积作用或沉积环境。简单地讲,沉积相是沉积环境的产物。 3、沉积相的相标志 沉积相类型划分的依据是那些能够反映沉积相特征和类型的相标志。相标志包括八种类型: 1)颜色; 2)岩石类型; 3)自生矿物; 4)颗粒结构(粒度参数曲线,形态,圆度,颗粒定向,颗粒表面结构); 5)原生构造(层理,层面,生物扰动,其它沉积构造); 6)岩性组合; 7)韵律; 8)化石。

二、地震相的定义 地震相是一个可以在区域圈定的,由地震反射层组成的三维单元,共反射结构,外形,振幅,连续性,频率和层速度等要素,与邻近相单元不同。 实际上,地震相是沉积相的宏观特征在地震反射资料中的表现;或者说,地震相是岩相的声学响应。 由于地震分辨率的局限,地震资料不可能分辨出很细微的沉积结构和岩性变化,而只反映沉积相的宏观特征。如外形,较大规模的层面(大型交错层)。 三、地震相参数 1、反射结构揭示地下总的层理模式,根据反射结构可以解释沉积过程,侵蚀现象和古地形,另外,流体接触面(如一平点)也可通过反射结构识别出来。 2、几何外形地震相单元的总体形态,反映古地形,沉积作用等。 3、反射连续性与地层的连续性密切相关,连续反射表示了分布广泛,均一成层的沉积。 4、反射振幅包含了单个界面的速度,密度差以及它们顶底间隔(距)的信息。它反映侧向的层理变化和烃类的赋存条件。 5、频率与反射层的间距或层速度的变化有关,并且与气体的赋存有关。 6、层速度岩性(砂泥含量),物性(孔隙度),含烃性(流体

地震基本常识

地震基本常识 一、地震预警信息一般包含哪些内容? 按照日本现在的做法,面向公众发布的地震预警信息内容一般很简明,主要是为了方便接收者快速理解地震预警信息,主要包括以下两个方面的内容: (1)地震的强度,如发生的是中等地震,还是强烈地震,一般不使用震级概念。 (2)预警时间,即本地大约多少时间后可能发生地震灾害。 二、是不是能够接收到地震预警信息,就一定能避免地震灾害的伤害? 答案是:否。地震预警实际上是一种灾害警报,它只能提示接收者注意地震灾害可能在未来的数秒至数十秒(即预警时间)后发生。 要想成功地避免地震灾害的伤害,实际上需要的是接收者在接收到地震预警信息后,迅速地采取合理的避震措施。这才是减轻地震伤亡的关键。 三、听说地震预警信息有可能出现误差和误报,应该如何对待? 由于地震预警信息是在某地地震灾害发生前发出的灾害警报。因此,它的计算时间非常有限,出现误差甚至误报,确实难免。但即便如此,为了自身的安全起见,还是要以地震灾害可能会发生的态度来对待它,即在接收到地震预警信息后要及时采取避震措施,以免生命受到伤害。 四、听说日本的地震预警信息会出现改变或更正的情况,这是为什么? 因为地震预警信息的计算时间非常有限,所以有时最先发出的地震预警信息可能没有准确地反映出即将发生的地震灾害强度,所以会根据后续的计算结果对先前的信息进行修正。其目的,还是为了方便公众准确地了解可能发生的地震灾害强度,从而采取有效、合理的避震措施。 五、接收到地震预警信息一定要采取避震措施吗?

对。地震预警信息实际上是对即将可能发生的地震灾害发出的一种警报。不管灾害是否会发生,都应在第一时间采取避震措施。这样做才能最有效地保护自己。 六、为什么有时接到地震预警信息,而实际上却没有发生地震灾害? 地震预警信息是对即将可能发生的地震灾害发出的一种警报,这并不代表地震灾害一定会发生。就好像宾馆的火灾警报发生时,你所居住的客房并不一定会出现火灾一样。 地震灾害的发生,取决于很多的因素,这些因素中又有很多是偶然因素。因此,很难确定地说,哪里一定会或者不会发生地震灾害。当地震预警信息发出时,只是代表地震灾害可能会发生。所以,最好还是及时采取避震措施,以防万一。 七、接收到地震预警信息,应该怎么办? 一般情况下,接收者要根据自己所处的实际环境,灵活地选择避震措施。以下是两种较常见的避震措施,供网友参考。 (1)如果预警时间足够接收者撤离建筑物:及时关闭火源和电源,迅速离开房间,到户外远离建筑物的空旷之处。 (2)如果预警时间不足以让接收者撤离建筑物:及时关闭火源和电源,迅速到坚固的家具下方或侧下方伏下(注意远离玻璃窗户),双手护头;或者到小开间的房屋中蹲下(注意远离玻璃镜或玻璃窗户),双手护头。等到地震震动过去后,再迅速离开房间,到户外远离建筑物的空旷之处。 八、企业如何接收和使用地震预警信息? 不同的企业,因其抗震措施、应急处置措施的不同,而对地震预警信息有着不同的具体要求。因此,需要企业明晰自身到底需要什么样的地震预警信息内容,然后向地震预警信息发布单位订制本企业所需要的地震预警信息,并专门安装符合本企业技术特点的接收终端。

地震学原理与应用Chapter5b(1)

二、地震波辐射源的理论模式 1.集中力系点源 (1)集中力 弹性力学中为了分析连续体的运动,引入: Δm为ΔV中之质量;ΔF 为 Δm所受之合力。 1)r点上单位质量所受的体力(密度): 2)r点上单位体积所含质量受到的体力(密度): V r , m Δ F Δ lim )t,r ( X V Δ ∈ = → Δ V Δ r t), ,r ( X t),r (ρ m Δ F Δ V Δ m Δ lim V Δ F Δ lim t),r ( F V V ∈ = = = → Δ → Δ 即运动方程中的体力项。

*如果:???? ?Δ?=Δ∈≠V r 0,V r 0,t),r ( F *如果:(t) g t)dV', r'( F lim V V =∫ Δ→Δ当ΔV 趋于r 点时,积分有限。则称g(t)为作用在r 点上的集中力。 用Dirac δ函数表示: F(r, t)=g(t)δ(r) (2)力场的势函数(用Φ和Ψ表示) *据场论分析,矢量场作Stokes 变换(分解): 0,t),r ( F =Ψ??Ψ×?+Φ?=① *对①式两边分布求散或求旋: Ψ ??=Ψ??Ψ???=Ψ×?×?=×?Φ?=??2 2 2 )(F ;F ②

它们都是泊松方程(非奇次的拉普拉斯方程),有定解 ∫∫ ∞ ∞ ×?= Ψ???=dV' ) r' -r (π 4 t) , r' (F ') t ,r (;dV') r' -r (π 4 t), r' (F ' t),r (Φ③ *求③式的积分:

第二式也可类似导出。力势可由给定的力场表示: ?? ? ? ?? ?×?=Ψ???=Φ∫∫∞∞dV'r t), r' (F 4π1 t),r (dV'r t) , r' (F 4π1 t),r (** ④ (3)几种基本的集中力系点源的弹性波辐射场 (均匀各向同性弹性全空间) 1)单个集中力引起的位移场(基本解)*运动方程: F u μ)u ()μ2(λt u ρ22+×?×?????+=??⑤ *位移矢量场的Stokes 分解(用小写字符?和ψ表示): ψ;ψu =??×?+??=⑥

《地震地层学》第二章

第二章地震层序分析 地震层序分析是区域地震地层学的基础,而地震层序分析的基础(或核心任务)是识别沉积层序这种地层单元,然后进行层序的对比和追踪。 第一节地层学的基本概念 一、地层的概念 碎屑物沉积成层状,通常称之为地层或层。这种成层性是由水或风等地质营力在相似地质环境时期将相当薄的席状沉积物散布在一较广阔的地区中造成的。 当沉积区的沉积环境发生变化时,可同时出现以下三种情况: 1)在原生沉积地层的顶部继续沉积其他类型的沉积物; 2)或含有一段时间没有沉积物的沉积; 3)或者原来的沉积物遭受剥蚀。 二、地层概念的引申 由于沉积环境相同,所以层内的沉积物比不同层的沉积物更相似。这很容易理解,但问题往往却很复杂。 (1)虽然层内沉积物比不同层的沉积物更相似,但其横向延续性有一定限度。一个层横向有可能变薄或者尖灭,在尖灭地区会出现这段时间内无地层记录。或者,同一地层内的层状沉积物横向上由一种类型逐渐递变为另一种类型,表明区域沉积环境也已经出现(发生了)渐变的形式。

(2)沉积环境的特定组合导致相似沉积地层明显的不连续。例如,由于反复的水道化作用和多次的河水泛滥,河道砂岩和页岩通常是不连续的,而在其他沉积环境中,可形成较连续的地层,例如深海盆地中心的远洋页岩(纵横比例)。 (3)我们讨论的对象一般是横向延伸大于垂向延伸的沉积物。连续层是这样,交错层也是这样。 三、地层面的概念 定义:地层面是分隔沉积岩层的物理沉积面。 地层面包括:①纹层②岩层及③大型地层单元的界线,并代表了无沉积时期或沉积环境的突然变迁。地层面通常表示一个相当小的时间间隔。假如时间间隙大,则这种层面称为不整合面。 四、地层面概念的引申 1) 地层面所表示的时间间隔长短因地而异,不等时是绝对的,等时是相对的。 2) 但地层面表示在它的全部延伸范围内至少有某些小的时间单元是共同的。 3) 地层面概念完全与地质时代和岩石年龄有关。 4) 只有分隔不同地层时才容易辨认出来。 5) 产生地震反射信号需要速度—密度差,即波阻抗差。111V ρZ = , 222V ρZ =,210?Z =Z -Z ≠。 五、地层面的类型 地层面分三种类型:

相关主题
文本预览
相关文档 最新文档